MM74HC00 Quad 2-Input NAND Gate

General Description
These NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 54HC/74HC logic family is functionally as well as pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to VCC and ground.

Features
- Typical propagation delay: 8 ns
- Wide power supply range: 2–6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Connection and Logic Diagram

[Diagram showing the connection and logic diagram of the MM74HC00 quad 2-input NAND gate.]
Absolute Maximum Ratings (Notes 2, 1)

- **Supply Voltage** (V_{CC}): −0.5 to +7.0V
- **DC Input Voltage** (V_{IN}): −1.5 to V_{CC} +1.5V
- **DC Output Voltage** (V_{OUT}): −0.5 to V_{CC} +0.5V
- **Clamp Diode Current** (I_{IK}, I_{OK}): ±20 mA
- **DC Output Current, per pin** (I_{OUT}): ±25 mA
- **DC V_{CC} or GND Current, per pin** (I_{CC}): ±50 mA
- **Storage Temperature Range** (T_{STG}): −65˚C to +150˚C
- **Power Dissipation** (P_D): (Note 3) 600 mW
 - S.O. Package only: 500 mW
- **Lead Temperature** (T_L): (Soldering 10 seconds) 260˚C

Operating Conditions

- **Supply Voltage** (V_{CC}): 2 to 6 V
- **DC Input or Output Voltage**: 0 to V_{CC} V
- **Operating Temp. Range** (T_A): MM74HC −40 to +85˚C, MM54HC −55 to +125˚C

DC Electrical Characteristics (Note 4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>V_{CC}</th>
<th>$T_A=25^\circ C$</th>
<th>74HC $T_A=-40$ to $85^\circ C$</th>
<th>54HC $T_A=-55$ to $125^\circ C$</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Minimum High Level Input Voltage</td>
<td>2.0V</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Maximum Low Level Input Voltage</td>
<td>2.0V</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Minimum High Level Output Voltage</td>
<td>$V_{IN}=V_{IH}$ or V_{IL}</td>
<td>2.0V</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Maximum Low Level Output Voltage</td>
<td>$V_{IN}=V_{IH}$</td>
<td>2.0V</td>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic “N” package: −12 mW/˚C from 65˚C to 85˚C; ceramic “J” package: −12 mW/˚C from 100˚C to 125˚C.

Note 4: For a power supply of 5V ± 10%, the worst case output voltages (V_{OH}, V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC}=5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

Note 5: V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY’89.
AC Electrical Characteristics

\(V_{CC} = 5V, \ T_A = 25{}^\circ C, \ C_L = 15 \ pF, \ t_r = t_f = 6 \ ns \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Typ</th>
<th>Guaranteed</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>15</td>
<td>ns</td>
</tr>
</tbody>
</table>

AC Electrical Characteristics

\(V_{CC} = 2.0V \) to \(6.0V, \ C_L = 50 \ pF, \ t_r = t_f = 6 \ ns \) (unless otherwise specified)

\(T_A = 25{}^\circ C \)

\(T_A = -40 \) to \(85{}^\circ C \)

\(T_A = -55 \) to \(125{}^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(V_{CC})</th>
<th>(T_A = 25{}^\circ C)</th>
<th>(T_A = -40) to (85{}^\circ C)</th>
<th>(T_A = -55) to (125{}^\circ C)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{PHL}), (t_{PLH})</td>
<td>Maximum Propagation Delay</td>
<td>2.0V</td>
<td>45</td>
<td>90</td>
<td>113</td>
<td>134</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5V</td>
<td>9</td>
<td>18</td>
<td>23</td>
<td>27</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0V</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{PLH}), (t_{PLH})</td>
<td>Maximum Output Rise and Fall Time</td>
<td>2.0V</td>
<td>30</td>
<td>75</td>
<td>95</td>
<td>110</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5V</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0V</td>
<td>7</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>(C_{PD})</td>
<td>Power Dissipation Capacitance (Note 6)</td>
<td>(per gate)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>(C_{IN})</td>
<td>Maximum Input Capacitance</td>
<td></td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>pF</td>
</tr>
</tbody>
</table>

Note 6: \(C_{PD} \) determines the no load dynamic power consumption, \(P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC} \), and the no load dynamic current consumption, \(I_S = C_{PD} \frac{V_{CC}^2}{f} + I_{CC} \).
Physical Dimensions

Cavity Dual-In Line Package (J)
Order Number MM54HC00J or MM74HC00J
Package J14A

Molded Dual-In Line Package (N)
Order Number MM74HC00N
Package N14A

www.fairchildsemi.com
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.