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ABSTRACT

We present an overview of the most common techniques
used in automatic speech recognition to adapt a general
system to a different environment (known as cross-task
adaptation) such as in an air traffic control system (ATC).
The conditions present in ATC are very specific: very
spontaneous, the presence of noise, and high speed speech.
So, with a typical speech recognizer the recognition results
are unsatisfactory. We have to decide on the best option for
the modeling: to develop acoustic models specific to those
conditions from scratch using the data available for the
. mew environment, or to carry out cross-task adaptation
starting from reliable HMM models (usually requiring less
data in the target domain).

We begin with a description of the main techniques
considered for cross-task adaptation, namely Maximum A
Posteriori (MAP), Maximum Likelihood Linear
Regression (MLLR), and the two together. We have
applied each in two speech recognizers for air traffic
control tasks, one for spontaneous speech and the other for
a command interface. We show the performance of these
techniques and compare them with the development of a
new system from scratch. We also show the results
obtained for speaker adaptation using a variable amount of
adaptation data., The main conclusion is that MLLR can
outperform MAP when a large number of transforms is
nsed, and MLLR followed by MAP is the best option. All of
these techniques are better than developing a new system
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from scratch, showing the effectiveness of mean and
variance adaptation,

INTRODUCTION

The potential benefits of speech recognition are obvious for
several types of applications, especially where the subject
would improve his performance by not using his hands when
performing a task, as is the case for an air traffic controller or a
pilot. The difficulty is that speech recognition can be
considered a very difficult problem in real-life environments
because of several factors: the great variability between
speakers and even for the same speaker resulting from stress
amongst other things, significant variations between channels
and/or environments, the presence of noise, etc. All these
factors contribute to a reduction in the speech recognizer
success rate that can lead to an unsatisfactory experience for
the user. If there are too many recognition mistakes, the user is
forced to correct the system which takes too long, it is a
nuisance, and the user will finally reject the system. A high
error rate is not acceptable for critical tasks, such as in ATC
environments, which is probably the main reason for the low
use of speech interfaces in ATC. What can be done to deal with
this problem? Well, a lot of work has been carried out recently
in several areas:

° Increasing the size of the training database:

It is well known that the bigger the database used
to train the system, the more robust the results
from the recognizer. So, larger recordings are
being used {even thousands of hours) that have
greatly reduced the error rate of the recognizer.
The problem with this approach, though, is that it
is clearly at saturation point now; when there are
more than enough recordings, very little
additional improvement can be obtained by
increasing its size.

* [Improving ASR system robustness:
Several techniques have been developed to
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improve the robustness of the recognizer against
different and varying types of noise that are
present in the speech signal.

* Adapting the ASR system to speaker & task:
The focus of this paper. The recognizer adapts its
models to different environments, conditions,
speakers, and styles of speaking.

As we will see, very significant improvements can be
obtained with this approach. )

Although most commercial systems claim to be generic or
speaker .independent, that is, they are able to recognize any
person, anywhere, and under any circumstances, the truth is
that the error rate will be much lower if the system is adapted to
the speaker, the environment, etc.

When we encounter a new environment for a speech
recognition system, we have to take into account that the usual
recognizers often perform well when tested on data similar to
that used in training, but produce much higher error rates when
tested on data from a new task. So, we have to consider two
options. In the first place, we can begin from scratch using a lot
of task-specific data. Nevertheless, collecting large amounts of
data involves a great effort, it is very costly, and it is often
impractical. The second option is to carry out cross-task
adaptation as we did in a previous work [I]. We need a generic
and robust recognition system that works well over a range of
tasks. Then, with a small set of adaptation data, we adapt it to
the new environment.

We have considered the two main adaptation techniques
that can be applied to cross-task adaptation: Maximum A
Posteriori (MAP) estimation [2] and Maximum Likelihood
Linear Regression (MLLR) [3, 4]. We will show the behavior
of each technique in both systems with varying sizes and
characteristics. We will also present the effect of speaker
adaptation in the command interface for Spanish, using the
same techniques and varying the size of the adaptation set to
find the point where MAP outperforms supervised MLLR.
Other relevant works in cross-task adaptation are [5, 6], where
MAP and MLLR are compared for different environments, In
this paper, we provide additional refinemenis of these
techniques, and we apply them in air traffic controt tasks.

This work has been carried out under the INVOCA project,
for the public company AENA, which manages Spanish
airports and air navigation systems [7]. We have worked with
two different systems, the first is a command interface used to
control the radar display in an ATC position, and the second is
a spontaneous speech system with conversations between
controllers and pilots. Both were implemented in two
languages: Spanish and English; nevertheless, we will show
the results only for Spanish, as similar conclusions can be
extracted for English and they add no relevant information.

Another field in speech processing where model adaptation
can be useful too is speaker recognition [8], if only a reduced
amount of data is available for each speaker, its model can be
obtained adapting a generic one using the techniques presented
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herein. It can also be useful for channel adaptation, when the
speaker changes the channel used for the recognition.

OVERVIEW OF ADAPTATION TECHNIQUES

We will focus on model-based adaptation, where the
acoustic models are the parameters being adapted. Another
possibility for adapting is, for example, to apply a spectral
transform to the feature vector or to try to classify the
speaker/environment in one of several categories or groups,
but model-based adaptation is especially successful, as we will
see.

Adaptation in speech recognition has been an issue for
several years and several techniques have been proposed.
These techniques can be classified according to several
criteria, the main one being the amount of adaptation data
available. If the amount of adaptation data is very small, e.g.,
only the speech recorded from a phone call is available, it is
called rapid adaptation, which is obviously the most difficult
task and specific techniques need to be applied. If the amount
of adaptation data is medium or large, several techniques can
be used successfully, namely Maximum a Posteriort (MAP)
{2}, Maximum Likelihood Linear Regression (MLLR) [3, 4],
and variations of both. We will focus on the comparison
between these techniques in the scope of cross-task and
speaker adaptation. First, we will present a brief description of
both. Further details can be found in the aforementioned
references.

In speech recognition, we work with continuous Hidden
Markov Models (HMM) [9], where every phone in the model
set is modeled using a set of states — usually three — each made
up of a set of Gaussian distributions (characterized by a mean
vector and a covariance matrix for each distribution, and a
vector with distribution weights). In a model-based adaptation,
all of these parameters are adapted using the adaptation data.

MAP

Also known as Bayesian adaptation, MAP adaptation
involves the use of prior knowledge about the model parameter
distribution. The idea is to use a previously well-trained model
as the prior knowledge.

The main advantage of MAP is that when enough
adaptation data is available, the estimation converges to the
maximum likelihood criterion, which is the optimum for
estimating the parameters from scratch. So, it should be the
best technique for large adaptation sets.

The disadvantage is that it does not modify the parameters
that do not appear in the adaptation data. Then, it can be a bad
choice when the adaptation set is small.

MLLR
In MLLR, a set of transformations for the model parameters

is computed which reduces the mismatch between an initial
model set and the adaptation data. The effect of these

13



transformations is to shift the component means and to alter
the variances in the initial system so that each state in the model
is more likely to generate the adaptation data. The mathematics
behind the transformation matrix is complex, so the reader
should take a look at [3, 4] to find out the details. The main idea
is that the transformation matrix is obtained by solving a
maximization problem using the Expectation-Maximization
(EM) technique, using the likelihood of the adaptation data as
the maximization criterion.

One important issue is that it is not feasible to compute a
transformation matrix for every unit in the model set. The
solution is to group the most similar units given a similarity
measure -or distance between units and then to compute a
common _transformi for all. Several distances can be
considered: Euclidean, Symmetric likelihood, the average of
two Kullback-Leibler distances between two Gaussians, etc.

So, a regression-class tree is created using the original
mode! parameters and a top-down strategy. First, all units are
grouped into a single cluster. Then, every cluster is divided
iteratively into two clusters and the units are reassigned to their
closest cluster (using one of the aforementioned distance
measures). This procedure is repeated several times for each
division and the number of final clusters has to be chosen
according to the amount of data available.

Fig. 1. Regression Class Tree

Then, during adaptation and according to the amount of
adaptation data available, the set of transformations to be
estimated can be chosen (a threshold is established). As we will
need to compute one transformation matrix for each cluster,
the matrix will not be reliable if there is insufficient data. That
is why the threshold has to be estimated carefully. In Figure 1,
we can see an example of a regression class tree where only
nodes 1 to 4 have enough data, so only the transformation
matrixes for nodes 2, 3, and 4 will be computed (1 is a
non-terminal node and its two children are above the
threshold). - .

In this paper, we show the results obtained for MLLLR using
different values for the number of clusters/transforms
considered.
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In summary, the main advantage of MLLR is that it shares
the transforms between similar units, so that every parameter
in the mode! set gets updated in the adaptation process even
though it does not appear in the adaptation set. So, this
technique should be better than MAP for smaller adaptation
sets (medium size).

SYSTEM SETUP

Databases Used
We have used two different databases:

° An isolated speech database, used in a command
interface to control the ATC position. It contains
single words as well as some compound words. A
few examples are as follows: “Altitude Filter,”
“Category Filter One,” “Freeze Flight Plan,” etc.

* A spontaneous speech database, which consists
of conversations between controllers and pilots. It
is a difficult task, noisy and spontaneous.
Examples: “lufthansa four two seven nine start up
approved clear to frankfurt standard departure
somosierra one echo three six left squawk one zero
two three report parking position,” “airfrance two
one zero one start up approved clear Paris de gaulle
standard departure somosierra one echo squawk
one zero seven three.”

General Conditions of the Experiments
The system uses a front-end with PLP parameters in the
cepstral domain (a common parameterization technique used

~ for speech recognition) derived from a Mel-scale filter bank

(MF-PLP), with 13 coefficients including their first- and
second-order differentials, giving a total of 39 parameters for
each 10 msec. frame.

As channel conditions are noisy, we decided to apply two
normalization techniques that are especially designed to
compensate for channel wvariations: Cepstral Mean
Normalization (CMN) and Cepstral Variance Normalization
(CVN). The effect of inserting a transmission channel into the
input speech is to multiply the speech spectrum by the channel
transfer function. In the log cepstral domain, this multiplication
becomes a simple addition which can be removed by subtracting
the cepstral mean from all input vectors. This is the objective of
CMN: subtract the mean of all vectors. Its only drawback is that
the mean has to be estimated over a limited amount of speech
data, so the subtraction will not be perfect. Nevertheless, this
simple technique is very effective in practice where it
compensates for long-term spectral effects such as those caused
by different microphones and audio channels. CVN adds
another normalization: every parameter is multiplied by the
quotient of the standard deviation of the parameter in the whole
database and the deviation of the parameter in the specific file.
This way, the variability of parameters throughout the database
is compensated.
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All systems use context-dependent continuous HMM
models [10] (they take into account the allophones which are
adjacent to the current one) built using decision-tree state
clustering. '

Isolated Word Recognition Experimental Setup

A specific database was recorded in the Invoca project [1].
The vocabulary of the task comprises 228 different commands
(words or compound-words). We had 16 hours of speech, and
we assigned 11 hours to training/cross-task adaptation and 5
hours to validation. We had a total of 30 different speakers, all
identified, so we could do speaker adaptation experiments. For
cross-task adaptation, we have used the Spanish SpeechDat
database as a starting point (only the isolated speech part, 41.8
hours). In this database, 4,000 speakers uttered the following
items: application words, isolated digits, cities, companies,
names, and surnames.

Spontaneous Speech Recognition Experimental Setup

Another database was created for these experiments. It
consists of live recordings on five air traffic control real
positions (Arrivals, Departures, Grounds North, Grounds
South, and Clearances). As Barajas is an International Airport,
both Spanish and English utterances have been obtained
interwoven. The recordings proceeded for about one week per
position on a channel where only the controller speech was
captured. During these recordings, a group of about 30
different controllers for each position contributed to the
database with their voices.

To train the HMMs from scratch and to carry out cross-task
adaptation, we used speech from the Clearances position. We

had 9 hours of speech, and we dedicated 8 hours to. .

training/cross-task adaptation and 1 hour to validation. The
vocabulary size is 1104 words. For cross-task adaptation, we
have used the SpeechDat database as a starting point again, but
its continuous speech part, with 4,000 speakers and a total of
43.2 hours for training.

EXPERIMENTS AND RESULTS
FOR ISOLATED WORD RECOGNITION

New System From Scratch

We used the training set described above to create HMM
models from scratch. Using context-dependent models with
1509 states after the tree-based clustering, each state with 6
mixture components, the error rate was 0.90% for the
vocabulary with 228 commands.

Cross-Task Adaptation

We used robust context-dependent HMM models trained
with the SpeechDat database (as we have seen in the previous
section, this database has 42 hours of speech versus 11 hours
available in the Invoca database). Without adaptation, the error
rate is 2.1%, worse than the system from scratch, showing the
mismatch between both environments. Beginning from those
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Table 1. MLLR Adaptation (Isolated) (% error rate)

64 128 256 511 1000

Means
Adaptation 1.48 099 089 091 0.84

Means and 1.39 0.91 0.82 0.84 0.3
Variances :
Adaptation

Table 2. MAP Adaptation (Isolated)

% Error Rate

Means Adaptation 1.00
Means and Variances

Adaptation 0.81

MLLR + MAP 079

Table 3. MAP & MLLR Speaker Adaptation

# Words MAP MLLR

Adaptation '
Means and 50 0.56 0.54
Variances 228 0.27 0.27
Adaptation 456 0.17 0.27
684 017 015

models, we have considered two types of adaptation: MAP and
supervised MLLR (in supervised mode, the transcription of the
adaptation data is used and the estimated transforms are more
reliable). For MLLR, we have considered regression-class
trees of different sizes (between 64 and 1024 transforms) and
several iterations were run. We can see the results in Table 1
for the optimum iteration (usually, the fourth one).

The results for MAP can be seen in Table 2. We can see that
they are better than the results from scratch (a 10%
improvement), showing that the original database is useful and
complements the adaptation database, as we wanted. We can
also see that variances adaptation is clearly needed to improve
the system trained from scratch.

We can see that MAP outperforms MLLR when the number
of transforms is low (up to 128), but both can obtain similar

_ results with 256-1024 transforms. The results also show that
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Table 4. MLLR Cross-Task Adaptation (Spontaneous)

# Nodes 64 128

Error Rate 14.78 14.00

255 507 1004 1956 3694

13.08 12.60 1211 12.08 12.05

there is enough data to estimate this number of transforms.
When applying MAP to the best MLLR models the result
increases slightly, thus providing the best performance. This
confirms the results obtained in [1], where MLLR+MAP
obtained similar results to just MAP. '

Speaker Adaptation

For speaker adaptation we began from the best models so
far, obtained using MAP with means and variances adaptation
(0.81% error rate), and we varied the amount of data dedicated
to the task. In this database, every speaker uttered the list of
228 application commands five times per command. We
dedicated up to three of these repetitions for speaker adaptation
and carried out the test with the other two repetitions (the error
rate for this new test set is 0.73%). The resuits for MAP and
MLLR speaker adaptation are shown in Table 3. With more
transforms the results are similar, as very few fransforms were
actually used (occupation threshold not reached).

We can extract some interesting conclusions from these
resuits:

= Both techniques provide very similar results. We
are probably very close to the maximum
performance of the system.

¢ With only 50 words of speaker adaptation MLLR
slightly outperforms MAP (as could be expected
as discussed in the' comparison of both

techniques), and the relative improvement is a
remarkable 26% for MLLR.

* With 456 words, MAP outperforms MLLR, but
surprisingly with 684 words MLLR is slightly
better than MAP.

In any case, both techniques are close to a limit in
performance. 0.15% equals 6 mistakes (from 4,086 files). This
limit would be very difficult to surpass.

EXPERIMENTS AND RESULTS FOR
SPONTANEOUS SPEECH RECOGNITION

New System From Scratch

We used the 8-hour training set to create the HMM models
from scratch. All adaptation results refer to the 503 test
sentences with a vocabulary of 1,104 words. Using
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context-dependent models with 1506 clustered states, each one
with 8 mixtures, the error rate was 12.70%.

Cross-Task Adaptation

Again, we used context-dependent HMM meodels trained
with the SpeechDat database (43.2 hours) with a total of 1,807
states and 7 mixture components per state. Using these models
without adaptation, the result is a 19.51% error rate, 50 they are
clearly worse than beginning from scratch. There is a clear
mismatch between both tasks; the most remarkable aspect is
the spontaneity of the Invoca database, whereas SpeechDat is
read speech. After the experience with isolated speech, we
decided to carry out means and variances adaptation. Using
MAP, the error rate was 12.43%. We can see the results for
MLILR (% error rate) in Table 4.

We can extract the following conclusions from these
results:

* MAP outperforms MLLR with the typical
number of transforms (up to 512), as could be
expected resulting from the large size of the
adaptation set, but we can see that using MLLR
with a large number of nodes is better than MAP
{a 4% relative improvement).

° There is enough data to train up to 2000-4000
transforms in MLLR.

* Both cross-task MAP and MLLR adaptation are
again better than beginning from scratch. The
reason for this improvement in cross-task
adaptation is that the adaptation set is much
smaller than the training set in SpeechDat, so that
we can take advantage of some information from
the original system.

We then applied MAP to the best MLLR models, and the
results improved to 11.66%. So, untike the results obtained in
1], where MLLR+MAP obtained similar results to just MAP,
and our results for the isolated task (a low improvement, from
0.81 to 0.79), in this task the improvement is remarkable over
MLLR alone (2.4% relative improvement).

Again, the best result using adaptation — 11.66% - is much
better than system trained from scratch — 12.70% - with a
remarkable 8.2% relative improvement. We should also
mention that all these techniques can be applied in-real-time. In
fact, they mean no additional processing time to the usual

IEEE A&E SYSTEMS MAGAZINE, SEPTEMBER 2006



recognition stage as they are applied in the training stage,
where real-time is not a must.

CONCLUSION

We have shown a whole set of adaptation experiments using
MAP, MLLR, and both in two different tasks. -

For the isolated speech task, the cross-task experiments
show that MAP and MLLR obtain similar results when using
more than 500 transforms, the best solution being MLLR
followed by MAP. All are better than creating new models
from scratch. In the speaker adaptation experiments, we
showed that: 50 words are enough for a remarkable
improvement; with 50 words, MLLR slightly outperforms
MAP; using more words, both techniques have similar results;
the best result means a 79.5% relative improvement over
no-speaker adaptation with a resulting negligible error rate.

For the spontanecus speech system, the cross-task
experiments show that MLLR outperforms MAP when using
1024 or more transforms, and now the best is clearly MLLR
followed by MAP, with a relative improvement of 6.2% over
MAP alone and 2.4% over MLLR alone.

In summary, all the options considered for cross-task
adaptation are better than beginning from scratch, showing the
appropriateness of this approach. Another crucial conclusion is
that a generic speech recognizer is a bad option for a
spontaneous ATC task (19.51% error rate even with the
language model adapted to the task), so it is absolutely
necessary to use task specific data to obtain an acceptable error
rate in speech recognition for ATC.
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