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Resumen: En este artículo exploramos diversas opciones para la adaptación a tarea en 
reconocimiento de habla y las comparamos con desarrollar el sistema nuevo desde cero. 
Comparamos adaptación a tarea mediante MAP y MLLR, y ambas en serie, en dos 
reconocedores de habla para tareas de control del tráfico aéreo, una para habla espontánea y la 
otra para una interfaz de comandos. Vamos a mostrar cómo MLLR puede incluso superar a 
MAP cuando se utilizan un número elevado de transformadas, cómo MLLR seguido de MAP es 
la mejor opción, y también vamos a proporcionar varias pistas de cuáles son las mejores 
opciones para la creación de los árboles de clases de regresión utilizados en MLLR. En todos 
los casos, demostramos la efectividad de la adaptación conjunta de medias y varianzas. Para la 
interfaz de comandos, también incluimos la comparación entre MAP y MLLR para adaptación a 
locutor utilizando una cantidad variable de datos de adaptación. 

Palabras clave: adaptación a tarea, adaptación a locutor, reconocimiento de habla, MAP, 
MLLR. 

Abstract: In this paper we explore several options for cross-task adaptation in speech 
recognition and compare them to develop the new system from scratch. We compare cross-task 
MAP and MLLR adaptation, and both of them together, in two speech recognizers for air traffic 
control tasks, one for spontaneous speech and the other one for a command interface. We show 
how MLLR can even outperform MAP when a big number of transforms is used, how MLLR 
followed by MAP is the best option, and we also provide some hints of which are the best 
options to create the MLLR regression class trees. In all cases, we show the effectiveness of 
means and variance adaptation. For the command interface, we also include the comparison 
between MAP and MLLR for speaker adaptation using a variable amount of adaptation data. 

Keywords: cross-task adaptation, speaker adaptation, speech recognition, MAP, MLLR. 
 

1 Introduction 
To develop a speech recognition system in a 
new environment we have to take into account 
that the usual speech recognition systems often 
perform well when tested on data similar to that 
used in training, but give much higher error 
rates when tested on data from a new task.  

So, we have to consider two options. In first 
place, we can begin from scratch, but collecting 
a large amount of task-specific data needs a 
great effort, it is very costly, and is often 
impractical. The second option is to do cross-
task adaptation as we did in a previous work 
(Cordoba, 2002a) and (Cordoba, 2004). We 

need a generic and robust recognition system 
that works well over a range of tasks. Then, 
with a small set of adaptation data, we adapt it 
to the new environment. 

This work has been done under the project 
INVOCA, for the public company AENA, 
which manages Spanish airports and air 
navigations systems (INVOCA, 2002). We 
have worked with two different systems, the 
first one is a command interface, used to control 
the air traffic controller position, and the second 
one is a spontaneous speech system with 
conversations between controllers and pilots. 
Both were implemented in two languages, 
Spanish and English; therefore, we have 
worked with four different databases in total. 



 

 

We have considered the two main adaptation 
techniques that can be applied to cross-task 
adaptation: maximum a posteriori (MAP) 
estimation (Gauvain, 94) and maximum 
likelihood linear regression (MLLR) (Gales, 96; 
Leggetter, 95). We will show the behavior of 
each technique in both systems with varying 
sizes and characteristics. In both techniques, we 
will see the effect of adapting the means alone 
or the means and variances together. 

We will also see the effect of speaker 
adaptation in the command interface for 
Spanish, using the same techniques and varying 
the size of the adaptation set to find the point 
where MAP outperforms supervised MLLR. 

The paper is organized as follows. In section 
2 we present the database used in the 
experiments and the general conditions of the 
experiments. In section 3, the results for the 
command interface and the spontaneous speech 
systems are described. The conclusions are 
given in Section 4. 

2 System Setup 

2.1 Databases used 
We have used two different databases: 
• An isolated speech database, used in a 

command interface to control the air traffic 
controller position. In fact, it contains some 
compound words. 

• A spontaneous speech database, which 
consists of conversations between 
controllers and pilots. It is a very difficult 
task, noisy and very spontaneous. 

2.2 General conditions of the 
experiments 

The system uses a front-end with PLP 
coefficients derived from a Mel-scale filter 
bank (MF-PLP), with 13 coefficients including 
c0 and their first and second-order differentials, 
giving a total of 39 parameters for each 10 
msec. frame.  

As the channel conditions are noisy, we 
decided to apply CMN plus CVN. CMN plus 
CVN meant a 15% improvement in average 
over CMN alone in preliminary experiments. 

For all experiments, we have considered 
very detailed sets of allophones. In Spanish, we 
used a set of 45 units: we differentiate between 
stressed / unstressed / nasalized vowels, we 
include different variants for the vibrant ‘r’ in 
Spanish, different units for the diphthongs, the 

fricative version of ‘b’, ‘d’, ‘g’, and the 
affricates version of ‘y’ (like ‘ayer’ and 
‘cónyuge’). In (Córdoba, 2002b) we show the 
results with three different sets of units, where 
the best was for 45 units (12% over a 23 units 
set). 

In English, we defined a very detailed set of 
61 units: we have 19 vowels and diphthongs 
plus 16 of them stressed. The remaining units 
are consonants. 

All systems use context-dependent 
continuous HMM models built using decision-
tree state clustering. We have developed our 
own rules using phonetic relevant information 
in Spanish and English. 

2.3 Isolated word recognition 
experimental setup  

A database specific to the project Invoca was 
recorded. The vocabulary of the task consists of 
228 different commands (words or compound-
words). For Spanish, we had 16 hours of 
speech, and dedicated 11 hours to 
training/cross-task adaptation and 5 to 
validation. For English, we had 10 hours and 
dedicated 6 to training/cross-task adaptation 
and 4 to validation. In both languages, we had a 
total of 30 different speakers, all identified, so 
we could do speaker adaptation experiments.  

For cross-task adaptation, we have used as 
starting point the SpeechDat database for 
Spanish (its isolated speech part), with 4,000 
speakers who utter the following items: 
application words, isolated digits, cities, 
companies, names, and surnames. There are a 
total of 44,000 files for training (41.8 hours). 

2.4 Spontaneous speech recognition 
experimental setup 

Another database was created for these 
experiments. It consists of recordings on five 
air traffic control real positions (Arrivals, 
Departures, Madrid Barajas North taxing, 
Madrid Barajas South taxing, and Clearances). 
As Barajas is an International Airport, both 
Spanish and English utterances have been 
obtained interleaved. The recordings proceeded 
for about one week per position on a channel 
where only the controller speech was captured. 
During these recordings, a group of about 30 
different controllers for each position 
contributed with their voices to the database. 
Although they knew, for legal requirements, 
that they were being recorded, they were doing 
their real work and the speech produced was 



 

 

fully spontaneous. In fact, recording equipment 
was in a different room from the actual 
controlling facility, and thus, no disturbance has 
been produced on their work.  

The only drawback for our purposes is that 
they did not allow us to control the identity of 
each speaker, so we could not do speaker 
adaptation experiments in this task. 

Expert labelers that marked each sentence 
with relevant information regarding both the 
correct grapheme and the artifacts that actually 
appeared in the speech realization processed the 
recordings. 

To train the HMMs from scratch and to do 
cross-task adaptation, we used speech from the 
Clearances position. Table 1 shows the database 
details. The vocabulary size is 1104 words, and 
the test set perplexity of the bigram language 
model that we used is 15.2. We decided to use a 
bigram for two reasons: the phraseology used 
by the controllers is very regular, so a bigram 
could be enough, and the text that we had 
available was clearly too small to train a trigram 
LM. 

Table 1. Database for continuous speech 

Sentences/hours Spanish English 
Training set 4,588 / 8.0 2,700 / 5.7 
Test set 503 / 0.9 453 / 0.9 

 
For cross-task adaptation, we have used as 

starting point the SpeechDat database (its 
continuous speech part), with 4,000 speakers 
who utter 9 phonetically rich sentences. 
Removing sentences with mistakes and 500 
sentences for test, we used a total of 31,393 
sentences for training (43.2 hours). 

3 Experiments and Results 

3.1 Isolated word recognition - Spanish 

3.1.1 New system from scratch 

We used the train set described in Section 2.3 to 
create HMM models from scratch. First, we 
estimated context independent (CI) models with 
10 mixture components per state: we got 2.6% 
error rate with the vocabulary of 228 
commands. Then, we estimated context 
dependent (CD) models with 1509 states after 
the tree-based clustering, each state with 6 
mixture components. The error rate with that 
system was 0.90%. 

3.1.2 Cross-task adaptation 

We use robust context-dependent HMM models 
trained with the SpeechDat database. The 
optimum error rate obtained in that 
environment was 3.8% with a 500 words 
dictionary, using a total of 1900 states in the 
HMMs and 8 mixture components per state.  

Using those models without adaptation, the 
result is 2.1% error rate, so they are worse than 
the system from scratch, showing that there is a 
mismatch between both environments. 

Beginning from those models, we have 
considered two types of adaptation: MAP 
(Gauvain, 94) and supervised MLLR (Gales, 
96; Leggetter, 95), as we know the transcription 
of the adaptation data.  

For MLLR, we have considered regression 
class trees of different sizes (from 64 until 1024 
transforms), block-diagonal linear 
transformations and several iterations were run. 
We can see the results in Table 2. Results with 
2048 transforms were worse and have not been 
included. The benefits of iterating in MLLR are 
clearly more remarkable when using fewer 
transforms, although some saturation in the 
results is observed as we approach the 0.80 
‘limit’. 

Table 2. MLLR adaptation (Isolated-Sp.) (% 
error rate) 

Iteration number  # 
nodes 1 2 3 4 5 

64 1.59 1.55 1.51 1.48 1.50 
128 1.37 1.20 1.07 1.04 0.99 
256 1.24 1.04 0.93 0.91 0.89 
511 1.09 0.99 0.93 0.92 0.91 

Means 
adaptation 

1000 0.98 0.89 0.85 0.84 0.84 
64 1.61 1.54 1.40 1.41 1.39 

128 1.18 1.06 1.01 0.95 0.91 
256 1.12 0.90 0.80 0.82 0.89 
511 0.86 0.84 0.85 0.84 0.89 

Means and 
variances 
adaptation 

1000 0.83 0.83 0.84 0.86 0.88 
 
The results for MAP can be seen in Table 3. 

We can see that the results are better than the 
ones obtained beginning from scratch (10% 
improvement), showing that the original 
database is useful and complements the 
adaptation database, as we wanted. We can also 
see that variances adaptation is clearly needed 
to improve the system trained from scratch. 



 

 

Table 3. MAP adaptation (Isolated-Spanish) 

 % error rate 
Means adaptation 1.00 
Means and variances adaptation 0.81 
MLLR + MAP 0.79 

 
We can see that MAP outperforms MLLR 

when the number of transforms is low (up to 
128), but can obtain similar results with 256-
1024 transforms. The results also show that 
there is enough data to estimate this number of 
transforms. When applying MAP to the best 
MLLR models the result increases slightly 
providing the best performance. This confirms 
the results obtained in (Cordoba, 2002a), where 
MLLR+MAP obtained similar results to just 
MAP (the best in this case). 

3.1.3 Speaker adaptation 

For speaker adaptation we began from the best 
models so far, obtained using MAP with means 
and variances adaptation (0.81% error rate).  

In this case, we are going to vary the amount 
of data dedicated to the adaptation. In this 
database, every speaker uttered five times the 
list of 228 commands defined for the 
application. We are going to dedicate up to 
three of those repetitions for speaker adaptation 
and do the test with the other two repetitions 
(there are a total of 4,086 files for the test set in 
these experiments). Considering this new test 
set the error rate is 0.73%. The results for MAP 
and MLLR speaker adaptation are shown in 
Table 4. For MLLR, several iterations were run 
again, and the results usually converged after 4 
iterations, so the results for the forth iteration 
are shown. We present the results using 128 
transforms. We also considered the use of 
bigger trees, but results were similar or equal, 
as very few transforms were actually used 
because the occupation threshold was not 
reached. 

Table 4. MAP & MLLR speaker adaptation 

 Adaptation set 
(words) 

MAP MLLR 

50 0.56 0.61 
228 0.29 0.47 
456 0.17 0.39 

Means 
adaptation 

684 0.17 0.29 
50 0.56 0.54 

228 0.27 0.27 
456 0.17 0.27 

Means 
and 
variances 
adaptation 684 0.17 0.15 
 

We can extract some interesting conclusions 
from this results: 
• Variance adaptation has very little effect on 

MAP, but for MLLR the improvement is 
obvious (30% error rate reduction in 
average). 

• Using variance adaptation, both techniques 
provide very similar results. We are 
probably very close to the maximum 
performance of the system. 

• With only 50 words of speaker adaptation 
MLLR outperforms MAP slightly (as could 
be expected), and the relative improvement 
is a remarkable 26% for MLLR. 

• With 456 words, MAP outperforms MLLR, 
but surprisingly with 684 words MLLR is 
slightly better than MAP.  

In any case, both techniques are close to a 
limit in performance. 0.15% equals 6 mistakes 
(from 4,086 files) that may be are impossible to 
recover. 

3.1.4 Hints for regression class tree 
creation in MLLR 

MLLR makes use of a regression class tree to 
group the Gaussians in the model set, so that 
the set of transformations to be estimated can be 
chosen according to the amount of adaptation 
data that is available. Before the experiments 
for MLLR presented in the previous sections 
were made, we considered several options for 
the creation of the regression class tree, which 
we will describe now. The conclusion of these 
experiments is that, at least in this task, tree 
creation is not crucial when a large number of 
transforms is used or several iterations of 
MLLR are run, probably because we are too 
close to the best performance that can be 
obtained with the system (close to 0.8% error 
rate). Nevertheless, differences can be observed 
if we consider an intermediate number of 
transforms and the first iteration. So, we want 
to describe the alternatives that we have 
considered and their overall results to serve as 
guidelines for tree creation. 

A. Balanced / unbalanced tree 
In a balanced tree, all nodes are split when the 
next level of the tree is created. In an 
unbalanced tree, the ‘biggest’ node is selected 
for splitting. Several criteria can be used to 
decide the biggest node, e.g., the largest total 
distance between its Gaussians (the largest 
intra-cluster dispersion). Our experiments show 
that the balanced tree provides better results 



 

 

than the unbalanced one, especially when small 
trees are used (3-4% relative error reduction). 
At the same time, the number of nodes that 
have more than 2 Gaussians is bigger for the 
balanced tree. 

B. Minimum number of Gaussians per node 
We experimented with several values for the 
threshold to be applied to the number of 
Gaussians in each node during the tree creation 
process, and the best results were obtained 
using 2 Gaussians per node, although similar 
but slightly worse results were obtained using 6 
Gaussians. A bigger threshold obtained worse 
results. 

C. Distance between Gaussians 
To compute the distance between Gaussians, 
which is used for the clustering algorithms, 
several alternatives can be used. We have 
considered the following ones: 

1. Mahalanobis 
( ) ( )( ) ( ) ( )( )1( , ) · ·

Tp q p qd p q µ µ µ µ−= − Σ −  
2. Symmetric likelihood: measures the 

decrease in likelihood after joining Gaussians p 
and q into Gaussian g. 

[ ] )(log)(log)(log),( glikqlikplikqpd −+=  
3. J-Divergence: the average of two 

Kullback-Leibler distances between the two 
Gaussians. 

2
)||()||(),( pqKLqpKLqpJ +

=
 

4. Euclidean distance. 
 
In Table 5, we can see the average word 

error rate for each distance for the first iteration 
of MLLR using 128 and 256 transforms for 
cross-task adaptation and 128 transforms with 
the 4 adaptation sets considered for speaker 
adaptation (means and variances adaptation in 
all cases). The best overall distance is the 
Symmetric likelihood, clearly better than using 
the usual Euclidean in both cases. So, this is the 
one that we have used in all results presented in 
this paper. 

Table 5. WER for several distances used in 
regression class tree creation 

 Mahala-
nobis 

Sym. 
likelihood 

J-Diverg. Euclidean 

Cross-task  1.19 1.15 1.18 1.18 
Speaker  0.372 0.373 0.398 0.408 

3.2 Isolated word recognition - English 
Again, we used the train set described in 
Section 2.3 to create HMM models from 
scratch. First, we estimated context independent 
(CI) models with 10 mixture components per 
state: 8.2% error rate with the vocabulary of 
270 commands. Then, we estimated context 
dependent (CD) models with 1400 states after 
the tree-based clustering, each state with 8 
mixture components. The error rate was 2.7%. 

The error rate was clearly worse than in the 
Spanish system with a similar dictionary. The 
reason is probably that the speakers were in fact 
Spanish (non-native) and we observed that 
many pronunciations were quite different from 
the phoneme transcriptions we had used (native 
English). We included some alternative 
pronunciations in the dictionary trying to cover 
the different possibilities, but we could not get a 
performance similar to the Spanish system. 

In this system, we did not do cross-task 
adaptation because we did not have a previous 
robust and general system trained for English. 
We did not do either speaker adaptation 
because error rates were low enough to fulfill 
the project specifications. 

3.3 Spontaneous speech recognition 

3.3.1 New system from scratch 

We used the train set with 8 hours (see Table 1) 
to create HMM models from scratch. All 
adaptation results refer to the 503 test sentences 
with a vocabulary of 1,104 words. First, we 
created context independent (CI) models with 
10 mixture components per state: 16.7% error 
rate. Then we created context dependent (CD) 
models with 1506 clustered states, each state 
with 8 mixture components. The error rate with 
that system was 12.70%. We created two other 
systems with 1203 and 1803 states, but results 
were slightly lower for them. 

3.3.2 Cross-task adaptation 

Again, we used context-dependent HMM 
models trained with the SpeechDat database 
(43.2 hours). The optimum error rate obtained 
in that environment was 4.2% with a 3,065 
words dictionary, using a total of 1,807 states in 
the HMMs and 7 mixture components per state. 

Using those models without adaptation, the 
result is 19.51% error rate, so they are even 
worse than CI models beginning from scratch. 
There is a clear mismatch between both tasks; 



 

 

the most remarkable aspect is the spontaneity of 
the Invoca database, whereas SpeechDat is read 
speech. 

After the experience with the isolated 
database, we decided to do means and variances 
adaptation, as means only adaptation was worse 
in all cases. Using MAP, the error rate was 
12.43%. We can see the results for MLLR (% 
error rate) in Table 6.  

Table 6. MLLR cross-task adaptation (Spont) 
# 

nodes 
1 2 3 4 5 6 

64 16.05 15.28 14.94 14.87 14.78 14.78 
128 15.40 14.69 14.42 14.11 14.17 14.00 
255 14.42 13.71 13.40 13.20 13.09 13.08 
507 13.61 12.94 12.81 12.66 12.60 12.64 
1004 13.16 12.68 12.39 12.42 12.15 12.11 
1956 13.03 12.32 12.35 11.94 12.08 12.09 
3694 13.04 12.52 12.32 12.19 12.05 12.05 

 
We can extract the following conclusions 

from these results: 
• MAP outperforms MLLR with the typical 

number of transforms (up to 512), as could 
be expected due to the big size of the 
adaptation set, but we can see that using 
bigger trees MLLR behaves much better 
than MAP (a 4% relative improvement 
using MLLR). 

• There is enough data to train up to 2000-
4000 transforms in MLLR.  

• Both cross-task MAP and MLLR 
adaptation are better that beginning from 
scratch in this case. The reason for this 
improvement in cross-task adaptation is that 
the adaptation set is much smaller than the 
train set in SpeechDat, so that we can take 
advantage of some information from the 
original system. The improvement is 
remarkable, especially considering that 
there is a clear mismatch between tasks: 
Invoca is very spontaneous and SpeechDat 
is read speech. 

We applied then MAP to the best MLLR 
models, and the results improved to 11.66%. 
So, unlike the results obtained in (Cordoba, 
2002a), where MLLR+MAP obtained similar 
results to just MAP, and our results for the 
isolated task (see the low improvement in 
section 3.1.2), in this task the improvement is 
remarkable over MLLR alone (2.4% relative 
improvement). 

3.4 Spontaneous speech recognition - 
English 

We used the train set with 5.7 hours (see Table 
1) to create HMM models from scratch. All 
adaptation results refer to the Clearances task 
(453 test sentences) with a vocabulary of 793 
words. As before, we created context 
independent (CI) models with 9 mixture 
components per state: we obtained 28.7% error 
rate.  

Then we created context dependent (CD) 
models with 901 clustered states, each state 
with 8 mixture components. The error rate with 
that system was 22.2%. We created another 
three systems using 599, 1205 and 1499 states, 
but the optimum was using only 901.  

We can see that the results are clearly worse 
than in Spanish. We have found two reasons for 
that: first, the train set is almost half the size 
and is clearly too small, as the optimum was 
found for only 901 states; second, the 
controllers are non-native speakers and their 
pronunciation is quite Spanish, especially in 
airline, airport and city names, and even some 
greetings and goodbyes are in Spanish. In fact, 
first results were even worse, so we included 
alternative pronunciations with a remarkable 
improvement. 

4 Conclusions 
We have shown a whole set of adaptation 
experiments using MAP, MLLR and both in 
two different tasks. 

For the isolated speech task, the cross-task 
experiments show that MAP and MLLR obtain 
similar results when using more then 500 
transforms, being the best solution using MLLR 
followed by MAP. All of them are better than 
creating new models from scratch. In the 
speaker adaptation experiments, we showed 
that: 50 words are enough for a remarkable 
improvement; with 50 words, MLLR 
outperforms MAP slightly; using more words, 
both techniques have similar results; the best 
result means a 79.5% relative improvement 
over no speaker adaptation with a negligible 
error rate. 

For regression class tree creation in MLLR, 
it is better to use balanced trees and a 
symmetric likelihood distance. 

For the spontaneous speech system, the 
cross-task experiments show that MLLR 
outperforms MAP when using 1024 or more 
transforms, and now the best is clearly MLLR 



 

 

followed by MAP, with a relative improvement 
of 6.2% over MAP alone and 2.4% over MLLR 
alone. All the options are better than beginning 
from scratch. 
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