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ABSTRACT

The prosodic modeling is one of the most important tasks for developing a new text-to-speech
synthesizer, especially in a female-voice high-quality restricted-domain system. Our double
objective is to get accurate predictors for both the FO curve and phoneme duration by minimizing
the model estimation error in a Spanish text-to-speech system. To achieve these complementary
aims we needed to find the factors that most influence prosodic values in a given language. We
have used neural networks and experimented with the different combinations of parameters that
yield the minimum error in the estimation. In the restricted-domain environment the variation in
the different patterns is reduced, and there are more instances of each parameter vector in the
database. This way, the neural network proves to be an excellent tool for the modeling.

The resulting system predicts prosody with very good results (for duration: 15.5 ms in RMS and a
correlation factor of 0.8975; for FO: 19.80 Hz in RMS and a relative RMS error of 0.43) that
clearly improves our previous rule-based system.
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1. INTRODUCTION

The primary goal of this study was to develop an automatic system to model prosody for a
Spanish text-to-speech system (TTS) in a restricted-domain environment for a female voice. This
work is the continuation of [1] and [2] which were dedicated to a general-domain database for a
male voice and [3], that included the first version of the restricted-domain modeling, achieving
better results than our original rule-based system. For modeling duration this rule-based approach
follows a classic multiplicative Klatt model; for FO, it models the curve in a parametric way as a
series of text-dependent FO peaks and FO valleys [4].

Although a domain-specific application does not require as many sentence structures as a
general one (the delivered messages are syntactically constraint), there can be many words
embedded in them (e.g., more than 40,000 family names, more than 30,000 village names, etc.).
A message is typically a sentence with two different parts: one of them, that is fixed, is a template
for the other, which is composed of one or more slots (Variable Fields) containing the relevant
information that the user is looking for in the message. Current prosodic patterns are judged as
too monotonous to allow a great diversity of services, but in restricted-domain applications and
by mixing female natural speech and diphone-concatenation synthesis (from the same speaker),
we can provide high quality services if we mimic the natural prosody exhibited by the speaker.

Many studies have been successfully carried out lately in the field of automatic estimation of
the prosodic values, using different techniques and input parameters to obtain the model. For
duration, these automatic techniques are mainly of two types: decision trees and neural networks
(the objective of this paper); another line of investigation with very good results is the statistical
sum-of-products method. For FO modeling, the dominant techniques are artificial neural networks
and k-nearest-neighbour, combined with a parametric model of the FO curve [5].



In all the systems, regardless of the modeling technique, it is crucial to find the parameters (or
features) that are most significant for prosodic modeling. So, we can take advantage of previous
studies dedicated to prosody prediction, but using other techniques to decide the parameter set.
Neural networks have previously been used with success. In [6] a neural network was trained to
predict syllable timing. In [7] they compare the performance of neural networks and CART
techniques for six different languages, including Spanish. The results for both are very similar,
which shows that any of them can be used. Regarding the application of these techniques to
Spanish, there are very little references and none is dedicated to neural networks or CART
approaches. We have considered some of them but only to decide the parameters to be used as
input. See in [1] a summary of references for Spanish.

2. DATABASE USED FOR THE MODELING

The database used in this paper is described in [3]. We extracted a set of 19 Carrier Sentences
(CS) from two real services in banking and traffic information domains, provided by the IVR
design company. The CS contained 24 Variable Fields (VF) and each VF conveys the most
important information in the CS and must be surrounded by compulsory pauses. Prosodic values
are only computed for the VFs. We classified the CS into 3 classes or groups:

e  Proper Names: surnames (both compound and simple ones), cities, villages, etc
e Questions: bank-related information such as currency, check status, etc.
e Noun Phrases: regarding accounts, credit cards, names of transactions and banks...

For the design of the database we used a greedy algorithm that is described in [3]. We aimed
at selecting a small database with the same probability distributions of certain phonetic and
prosodic features as in a very big database (about 6600 phonemes and 2800 syllables per class)

3. NEURAL NETWORK SYSTEM DEVELOPMENT METHODOLOGY

3.1. Topology of the neural network

For both duration and FO modeling, we have used a multilayer perceptron (MLP), using the
sigmoid as the activation function and the backpropagation algorithm for training. For each
phoneme (or syllable), we compute a series of parameters (features), which we code and use their
values as inputs to the neural network. There is one output in our networks: the duration of the
phoneme (or the FO of the syllable). For duration experiments we used 2 sets (training and
testing) and we divided the training into three phases of 300 iterations each (for over-fitting
detection). For FO, we used a ten-fold cross-validation strategy with 3 non-overlapping sets (one
for training, one for over-fitting detection and one for the final evaluation). As it is very difficult
to know the optimum number of neurons and layers that the net should have, a set of experiments
were carried out in order to optimize the system without overtraining.

In this restricted-domain system we had the option to use a single network for the 3 classes of
sentences or 3 different networks for each class. Using the best configuration of parameters of [1]
we compared both approaches. The 3-networks option improved the results in 6% for duration so
we decided to use 3 different networks in our duration experiments.

3.2. Coding of the parameters

We have considered different ways of presenting the parameters to the neural network, i.e., the
way they are coded, as we have different kinds of parameters.
1. Binary coding: this is the standard coding for true/false parameters.
2. One-of-N coding: to code N classes, we use N neurons and only 1 of them is active.
In ordinal values we have more possibilities, as these values can be ordered:
3. Percentage transformation: we divide the current value by the maximum value to
obtain a percentage. We obtain a floating-point value between 0 and 1 as input.



4. Thermometer: we divide all the possible values into different classes (intervals). We
activate all the neurons until we get to the current class and leave the remaining neurons
inactive. We developed an algorithm to obtain a uniform distribution of all the classes.

5. Z-Score mapping: we normalize the floating-point value by accounting for the average
and the standard deviation of the variable (a good coding for very variable parameters).

3.3. Network evaluation

To evaluate the error of the networks (difference between the prediction from the network and the
optimum value), we have considered different metrics. The most important one is the RMSE
(sqrtfMSE]). Another one is the relative RMSE (RMSE / sqrt [Z [t-t]*]), that it is adimensional
and independent of the way we code the target values (t;), and it does not have an offset.

3.4. Modeling the output

We obtained in [1] that phoneme durations should be normalized by the duration of the phrase
(to be less affected by changes of speed in the database recordings). After the normalization, we
use the standard deviation of the logarithm of the duration (to balance the distribution of the
values and to minimize the error, as it includes the characteristic duration of each phoneme in the
prediction) and a Z-Score codification. For FO, we just used Z-Score.

4. PARAMETERS TO BE USED

4.1. Base experiment for duration

In our base experiment for duration (first row of Table 1) we have decided to include just the
phoneme identity (with a set of 38 phonemes and a windowing of three values, described in next
section), and the stress, which are the most relevant parameters according to our previous work
and to our own statistical studies. The coding used is a one-of-n coding: a ‘1’ in the input which
corresponds to the phoneme and ‘0’ for all the other inputs.

In Table 1 we can see the relative RMSE and the average improvement obtained for the test
set with individual parameters, using a 10-neurons network. The last column shows the results of
applying a T-Student test to compare the base experiment and the experiment considered (when
“2-tail-sig” is below 0.05 the difference between both systems is statistically significant).

4.2. Contextual phonemes

In our previous studies, the duration of a phoneme was significantly affected by the phoneme
to the right and to the left. As the number of phonemes is too high, we made 14 clusters of
phonemes according to its type. Using a two-phonemes context (a window of five values) we
obtained an improvement of 5% for the test set (Table 1, experiment 1). This result is really
remarkable, as it shows the importance of contextual information. But for a 7-values window the
results were slightly worse.

4.3. Parameters related to position and binary parameters

In [1] we found that “Position in phrase in relation to first/last stress™ was a especially relevant
parameter, as it explicitly includes the “lengthening before pause” effect. We coded each syllable
in 5 possible classes with very good results (Table 1, experiment 3).

We have also obtained new significant improvements over the base experiment by considering
several binary parameters (experiments 4-6 in Table 1):

e Syllable structure: syllables ending with a vowel (open syllables) are generally longer.

e Vowel in diphthong (“i/u” before/after “a/e/0”). In Spanish, we differentiate both of them
as different allophones, and they follow different rules for duration.

e Phoneme in a function word. Syllables in a function word are shorter.

In [1] we considered different alternatives for parameters related to position and decided to
use: phoneme in the syllable, syllable in the word, and word in the phrase, as they provide



different information to the network (not redundant), their range of values is smaller, and, so,
fewer neurons and classes are needed. We carry out the following steps for the coding:

1. To normalize the value of position by the total length of the higher-order unit

2. This value is coded using 3 classes, and their intervals are computed automatically.

3. The 3 classes use a thermometer-type coding with 2 inputs (number of classes minus 1).

The results of these experiments (7 to 9 in Table 1) have improved the base experiment again.

The best parameter is ‘position of the word in the phrase’, one conclusion that we did not obtain
in the unrestricted-domain system, where all parameters related to phrase were worse. The reason
is that the range of values is much more uniform in this restricted-domain system.

4.4. Parameters related to the “Number of units”

In a similar way as for parameters related to position, we decided to use the number of
phonemes in the syllable, the number of syllables in the word, and the number of words in the
phrase. Because of their different distribution, we needed a different coding:

1. To normalize the value by the maximum one: a floating point value between 0 and 1.
2. To apply Z-score (using average and standard deviation): this way, we can restrict at our
will the operating range of the parameter, which is too variable.

The improvements (experiments 10-12 of Table 1) were significant and very similar to those
of position parameters (the number of words in the phrase is the best parameter). In order to
check the suitability of this floating point coding, we tested the thermometer-type coding (as for
position-related parameters), but the results were always below.

4.5. Summary of results for duration

The summary in Table 1 correspond to the best network (10 neurons). We have obtained the
best results for: window of 5 phonemes, number of words in the phrase, position of the word in
the phrase and position in phrase in relation to first/last stress.(Stress is important too, but it is
included in the base experiment); almost all the improvements are significant (not as in [1]).

Experiment Test set | Improvement | 2-tail-sig |

Base experiment 0.5580 - -

1- Base + window of 5 phonemes 0.5318 4.98 % 0.000
2- Base + window of 7 phonemes 0.5350 4.81 % 0.000
3- Base + position in phrase 0.5450 2.48 % 0.001
4- Base + vowel in diphthong 0.5515 1.53 % 0.045
5- Base + syllable structure 0.5462 2.43 % 0.001
6- Base + function word 0.5451 2.35% 0.000
7- Base + position of Phoneme in Sentence | 0.5523 1.03 % 0.419
8- Base + position of Sentence in Word 0.5462 2.29 % 0.006
9- Base + position of Word in Phrase 0.5427 2.49 % 0.001
10- Base + number of Phoneme in Sentence | 0.5494 2.07 % 0.010
11- Base + number of Sentence in Word 0.5501 2.20 % 0.048
12- Base + number of Word in Phrase 0.5403 3.43 % 0.000

Table 1. Summary of results in average relative RMS (for duration)

4.6. Final experiments for duration

The next set of experiments was dedicated to including all the parameters together. This is the
crucial step in neural networks, because many times the improvements combining parameters are
not additive, because the parameters are closely correlated (do not offer additional information),
or the topology of the network needs to be tuned (a larger number of neurons may be needed).



In Table 2 we can see the summary of results. The numbers in the description of the
experiments refer to the experiments specified in Table 1. The T-Student test is now applied to
the comparison of an experiment with the previous one.

e Experiment 13: it is the base experiment using now a window of 5 phonemes and
position in phrase in relation to first/last stress. The improvement was remarkable.

e Experiment 14: we added the binary parameters: vowel in diphthong, syllable structure
and function word. The improvement is reduced and not significant

e Experiment 15: with position parameters. The improvement is significant.

e Experiment 16: including the ‘no. of units’ parameters with significant improvements.

The results are really good, and the system keeps improving for both the train and the test set
as we increase the number of parameters, which shows the correct learning of the networks.

Experiment Test | Improvement 2-tail-sig
Base experiment 0.5580 - -
13- Base+ 1 +3 0.5214 6.58 % 0.000
14-13+4+5+6 0.5206 6.83 % 0.512
15-14+7+8+9 0.5121 8.09 % 0.039
16- 15+ 10+ 11+ 12 0.4927 11.12 % 0.002

Table 2. Results for duration including all parameters.

In the unrestricted-domain system [1], there were symptoms of overtraining with very few
neurons, which impeded the improvement of the global system. In this system, the best results
correspond to the topology with 20 neurons. The improvement over the base experiment is
18.71%, which shows that our solutions improved this system drastically. The relative RMS is
0.4536, the average absolute error is 11.79 ms, and the absolute RMS is 15.5 ms. The Pearson
correlation coefficient between estimated and measured durations is 0.8975, a very good figure.

4.7. Comparison to previous systems

As could be anticipated, the results are much better than those obtained with the unrestricted-
domain database: an absolute RMS equal to 19.1 ms. The relative RMS was equal to 0.76428,
clearly worse than the 0.4536 obtained in this domain.

Using our previous multiplicative rule-based system, with the best parameter coding of the
ANN experiments, the absolute error was 19.8 ms and the RMS was 28.5 ms, which is clearly
worse than the result obtained with our neural network.

4.8. FO0 experiments

For FO, we performed similar experiments with a different set of parameters. Our previous
rule-based system used features such as: whether the syllable is stressed, whether the following
syllable is stressed, the type of punctuation mark at the end of the intonation group (this
parameter is related to the shape of the FO curve at the end of the group) and the number of
stressed syllables and the position of the syllable in the group. The FO-curve obtained this way is
acceptable but unnatural in human perception tests [2].

In addition to these general parameters, we tried several ways of coding the influence of the
carrier sentences from the restricted-domain. The best results obtained correspond to a one-of-N
coding of the carrier sentences (we grouped sentences according to 3 classes as defined in section
2; with only a 1% improvement, that is not significant). No significant improvement was obtained
through parameters related to position, to function words or to the number of units.

The summary in Table 3 correspond to the best network (20 neurons). We have obtained the
best results for: a one-of-N coding for the carrier sentence and the final punctuation mark, a
window of 11 syllables for stress and for the position of the syllable in the phrase (in relation to



first and last stressed syllable). All the improvements are significant when compared to the
previous one except for experiments 5 and 6.

F0 Experiment Test | Improvement
Base experiment: stress 0.7378 -

1- stress in a 3-syllables window 0.6815 7.63 %

2- stress in a 11-syllables window 0.6326 14.26 %

3- 2 +final punctuation mark 0.5500 25.45 %

4- 3 + identifier of the carrier sentence 0.4554 38.28 %

5- 4 + position of the syllable in the group| 0.4360 40.91 %

6- 5 + 3-neural-networks option 0.4312 41.56 %

Table 3. Results in average relative RMSE
5. CONCLUSIONS

Compared to our previous rule-based systems, the results are much better, even when using a
limited number of parameters. As we expected, the results obtained in the restricted-prosody
domain show improvements that are much more significant than in [1] (because the database is
more homogeneous) and than in [3] (due to a better parameter selection). For a new female voice,
we have demonstrated that our prosodic model can be easily adapted to specific contexts and/or
new databases in a very short time. For duration another important aspect is that the results
improve when we include all the parameters and increase the number of neurons, a tendency we
did not observe in the unrestricted-domain system.

Regarding the topology, it is difficult to find the optimum of the network. It is better to begin
with a low number of neurons and increase it step by step. The same applies to the inclusion of
parameters: it is better to decide their best coding in small networks. We have found that a second
hidden layer is not necessary. The “Z-score” normalization for numeric parameters shows a good
behavior: it adjusts the margin of accepted values automatically rejecting the out-of-range values.

In general, we can say that we have found a good compromise between network topology and
parameters considered, with good results that are stable. The system has been included in a
commercial high quality TTS system in Spanish [3] (http://www-gth.die.upm.es/index.html)
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