The GEMINI Platform: Semi-Automatic Generation of Dialogue Applications

Stefan W. Hameridh Ricardo de @rdoba, Volker Schless Luis F. d’Har@?,
Basilis Kladig, Volker Schubett Otilia Kocsig', Stefan Igel, and Jog M. Pardé

L TEMIC Speech Dialog

{stefan.hamerich|volker.schless|volker.schubert

Systems, Ulm, Germany
}@temic-sds.com

2 Grupo de Tecnoldg del Habla, Universidad Pdditnica de Madrid, Madrid, Spain

{cordobal]lfdharo|pardo

}@die.upm.es

3 Knowledge S.A. (LogicDIS group), Patras, Greece

{bkladis|okocsis

}@logicdis.gr

4 Forschungsinstitutifr anwendungsorientierte Wissensverarbeitung (FAW), Ulm, Germany
sigel@faw.uni-ulm.de

Abstract

The EC funded research project GEMINI (Generic Environment
for Multilingual Interactive Natural Interfaces) has two main ob-
jectives: On the one hand the development and implementation of a
platform able to produce user-friendly interactive multilingual and
multi-modal dialogue interfaces to databases with a minimum of hu-
man effort and on the other hand the demonstration of the platform’s
efficiency through the development of two different applications us-
ing this platform. The platform consists of different assistants that
help the user to semi-automatically generate dialogue applications.
Its open and modular architecture simplifies the adaptability of gen-
erated applications to different use cases.

1. Introduction

In the project GEMINI [1] we exploit experience gained from pre-
vious projects (see e.g. [2, 3]) and from real-world use of similar
systems, to create a generic platform for the development of user-
friendly, natural, high quality, intuitive, platform independent and
multi-modal interactive interfaces to a wide area of databases em-
ployed by information service providers.

GEMINI's main idea is that, given a database structure and a
rough idea of the dialogue flow, the system should be able to semi-
automatically generate the necessary dialogue scripts for the service
application. In a sense, the information provided to the system cor-
responds to what a human operator in a call center needs to know in
order to perform his job. Within the project we strive to get as close
as possible to this ideal.

Specifically, the application generation platform of the GEM-
INI project contains generic dialogue components available for
adaptation to new services and languages. Thus, generation of mul-
tilingual and multi-modal interfaces is achieved by incorporating

the classes and semantic relations of the database, reducing the de-

velopment time and facilitating the system’s maintenance and trans-
portability to different applications and languages. Furthermore, the
platform enables a high degree of personalisation (by incorporating
e.g. user modelling and speaker verification).

This work was partly supported by the European Commission’s In-
formation Society Technologies Programme under contract no. IST-2001-
32343. The authors are solely responsible for the contents of this publica-
tion.

In relation to other approaches GEMINI's way of setting up
new dialogue applications differs in main points:

Compared with the REWARD system from [4] the GEMINI
platform allows the generation of dialogues for several modalities
and it generates dialogues in standardised description languages
(VoiceXML and XHTML).

In [5] a rapid development environment for speech dialogues
from online resources was described that composes a database using
knowledge from various web applications. Contrary the GEMINI
platform requires a filled database and allows the development of
speech and web applications from it. So we do not need to extract
any knowledge, which makes the GEMINI approach more domain
independent.

This paper is organised as follows: First we describe in detail
the three layers of the application generation platform (AGP). Af-
terwards we shortly introduce the two pilot applications that were
set up using the GEMINI AGP and conclude our major findings.

2. Application Generation Platform

The main target of the GEMINI project is the development of a
platform for generating interactive, multilingual and multi-modal
dialogue interfaces to databases with a minimum of cost and human
effort. We had several objectives in mind when building the AGP:

e Minimum effort for the designer to build a new dialogue ap-
plication.

Strong effort in standardisation to ensure usability, dissemi-
nation and guaranteed future of the platform. To achieve this
goal, all models generated by the AGP are described in GDi-
alogXML (GEMINI Dialogue XML), which is an object-
oriented abstract dialogue modelling language. For a de-
tailed description of GDialogXML refer to [6]. Furthermore
all modules of the AGP have been written using Trolltech Qt,
a multi-platform (Linux, Windows, Mac, etc.) programming
environment, so that the code generated can be executed on
any platform with a simple recompilation. And finally, the
output of the platform is XHTML scripts for web applica-
tions and VoiceXML scripts for speech applications.

To allow easy reusage and to speed up the development pro-
cess all models in the AGP may be saved as libraries for
future applications.



GEMINI AGP-Architecture

Framework

DMA DCMA Layer

% ﬂ ADA
Application Data
bes/m‘,@d Data Model @r\‘

Retrievals
Layer
Dialogues
Linker Layer
Dialogue
Model
VoiceXML Web
Generator Generator
VoiceXML JSGF
Script Grammar
% uuuumuumuumuumumuumuumuumumuumuummum\mm\mmﬁ}

C

Runtime-System

D]]]]]I'LJ} manual fine tuning ﬁ manual control

Figure 1: Architectural model of the platform.

All components of the AGP are integrated into one common
GUI. This eases the use of the platform and enables the designer to
switch back and forward to different tools in case she or he wants
to add or modify certain dialogues.

In Figure 1 the architecture of the AGP is illustrated. The whole
AGP consists of three layers. These layers are described in more
detail in the following sections.

2.1. Framework layer

The framework layer is the first layer of the AGP (refer to Fig-
ure 1). It includes the application description assistant (ADA), the
data modelling assistant (DMA), and the data connector modelling
assistant (DCMA). As indicated by the black arrow in the upper left
corner of Figure 1, all assistants are controlled manually.

The designer has to provide the application description, which
mainly consists of the modalities for which the AGP should gen-
erate dialogue scripts, the languages of the application and settings
for error handling. For further information about the error handling
capabilities of the AGP refer to [7].

The DMA helps creating the data model, which consists of class
descriptions. Each class is characterised by a list of attributes, a de-
scription, and a list of base classes (inheriting their attributes). The
graphical view of a class, and its attributes, is presented in Figure 2.
The attributes may be (a) of atomic type (e.g., string, boolean, float,
etc.), (b) complex objects, obtained by embedding or referring to
an existing class, or (c) lists of either atomic type items or complex
objects.

Data model development is accelerated by using library classes.
A new class is created very easily either by copying an existing

AwvailableBalance
Float

AccountCurrency

AccountHolder

ObjRefr
LastTransactionsList
List| ObjRefr| TransactionDescription

Figure 2: Graphical view of a class and its attributes.

library class, or by using attributes of several classes. The user has
only to rename the new class and to set its attributes lists.

Finally the DCMA as the third assistant in the framework layer
helps creating APIs and implementation references for application
specific data access functichs.These functions could then be
used in the runtime system without any knowledge of the existing
database.

2.2. Retrievals layer

The retrievals layer (shown as the second layer in Figure 1) mainly
consists of the state flow modelling assistant (SFMA) and the re-
trieval modelling assistant (RMA). This layer is modality and lan-
guage independent, therefore no language or modality specific data
is included here.

The designer first uses the SFMA to create the abstract dialogue
flow by specifying the high-level states of the dialogue (including
information about what slots are asked to the user and which are
the following states). To specify the slots, attributes from the data
model are offered to speed up the design. It is a very high level
definition of the dialogue.

The following assistant is the RMA, which provides a user-
friendly interface where the dialogue model is generated. The re-
sulting output of the RMA is called generic retrieval model (GRM),
which consists of the modality and language independent parts of a
dialogue, which is mainly the application flow. The GRM is mod-
elled in an object-oriented way using GDialogXML and mainly
consists of dialogue modules. A dialogue module can call other
modules as subdialogues or can jump to another top-level module.

Because the designer may need to develop different kinds of
services we provide the following types of dialogues and features
(in almost all cases, the designer can drag and drop the needed ac-
tion or dialogue to complete the design):

Different kinds of actions:The assistant allows the creation,
edition or deletion of assignments, conditional actions, loops,
switches, calls to other states (dialogues or functions), etc. Each
action has different possibilities, for instance: in a loop the designer
can select the actions inside it (the condition, the step action etc.).

Automatic dialoguesSeveral dialogues are automatically cre-
ated in order to obtain information from the user (called 'DGet dia-
logue’ from now on) and to provide information to the user (called
'DSay dialogue’). These dialogues are based on information from
the data model (classes and attributes defined for the service). For
each class and attribute we generate a DGet and a DSay dialogue,
which include a tag used by the modality extension assistant to
know that the prompt to be presented to the user (for DSay) and
the grammar used by the recogniser (for DGet) have to be specified.

1The implementation of data access functions has to be done outside of
the AGP context, since special knowledge about the database itself is needed
for this. Thus the AGP is database independent.



»ig RMA -- SFM Proposals

—Calls to ather SFM dialogs

e 3

State diagram &
GetCurrencyMame

e CurrencyMame

+ CALL: PresentAlCurrenciesDialog
-- CALL: AskOtherExchangeRates

Lo

—Input from user (DGet dialogs)

DGet_ATTR_Currencyblame_|M_CLASS Currency

—Databaze function callz

PGetCurrencyByMame
PYerifyCurrencyByMame

—Output to user (DSay dislogs)

DSay _ATTR_BuyPrice_IN_CLASS_Currency
DSay_ATTR_SelPrice_IM_CLASS_Currency
DSay_ATTR_FixingPrice_IM_CLASS_Currency
DSay_CurrencyExiztz_FROM_PWerifyCurrencyByiame

Cloze |

.

Figure 3: SFM proposals as offered by RMA.

Besides the data model information that we use to generate the au-

tomatic dialogues, the main source of the RMA is the output of the
state flow modelling assistant (SFMA). For each state we generate
automatically a dialogue. When that dialogue is edited, an 'SFM
proposals’ window pops up (see Figure 3), where all information

specific to that state is offered to the designer, so that he can select

predefined dialogues much faster.
Different kinds of dialoguesWe have considered four basic

types: dialogues based on a loop, based on a sequence of actions (o

subdialogues), on information input by the user, and on the value of
a variable (like a switch construction). We also allow empty dia-
logues, which are used to specify the call to a dialogue that will be
defined afterwards.

Mixed initiative and overansweringAt the beginning of the
development process when filling the application description, the
designer defines if the service will allow system-driven or mixed-
initiative strategy. Based on that, the assistant lets the designer in-
put two or more slots in the same prompt, and offers different kinds
of dialogues. Mixed initiative slots are defined in the SFMA, and
the RMA generates automatically a DGet for that, which the de-
signer just drops into the relevant window. Then, the code to handle
that situation is automatically generated. For overanswering, the de-
signer is always offered the possibility to add slots as overanswering

whenever a DGet is dragged (these slots can be from the same state

or from two following states).
Automated passing of arguments between dialogUéss is

a critical aspect of dialogue design. Several dialogues have to be
‘connected’ as they use the information from the preceding dia-
logue. Typically three dialogues have to be connected. We can
model that with just three drag & drop actions: (1) drag & drop a
DGet information dialogue, (2) drag & drop a call to the database
(from the data connector), and (3) drag & drop a DSay information
dialogue. In all three actions all variable passing is automated, as

the correct variable names are proposed to the designer, who just

has to accept the proposals.

r

2.3. Dialogues layer

The dialogue layer is modality and language dependent as now the
modality extensions from the modality extension retrieval assistant
(MERA) and the language dependent extensions from the modality
extension assistant (MEA) are added to the retrieval model.

The modality extensions consist of special subdialogues which
are specific for one modality only. The current implementation of
the AGP supports the generation of voice (speech modality) and
web-based applications (web modality). This is the place where the
designer can develop a dialogue with a complex output to the user
(which is quite different between modalities), e.g. to present results
of a query in a travel application, where many different results can
be obtained, or in order to receive complex information from the
user.

2.3.1. Modality extension retrieval assistant (MERA) for speech

At this stage we take care of dialogue aspects which are specific of a
speech application, and so they have to receive a different treatment
than in web:

Presentation of lists of objectsists of objects, which are usu-
ally the result of a database query, mean a lot of information. So,
they need special treatment in a speech application. We have distin-
guished four cases as a function of the number of elements of the
list: (1) The list is empty, (2) it has one item, (3) it has more than
one item and less than a maximum allowed, (4) it has more items
than the maximum allowed. Using the assistant, the designer can
specify different behaviours for all cases, including the possibility
to unset specific slots to make the queries more restrictive.

Confirmation handling:The result of speech recognition has
to be confirmed before making a database query. We have consid-
ered two types of confirmation in our assistant: 'Simple’ is rec-
ommended for dialogues with a very high confidence, as Yes/No or
password questions. 'Complete’ uses several levels of confidence to
determine the confirmation type: none, implicit, explicit or repeat
the question (like in a no match situation).

2.3.2. Modality extension assistant (MEA)

Within the modality extension assistant (MEA) the input and out-
put behaviour of an application is described for each modality (see
Figure 4). For speech modality the extensions consist of links to
grammar and prompt concepts, which are language independent,
while for web modality, the extensions consist of links to input and
output concepts.

In addition, language dependent information, specifically word-
ing for both speech prompts and web output concepts, is also set in
MEA and it is saved in separate concept files for each language.
For speech modality, prompts are first set for the main language of
the application, using three alternatives: TTS prompts, audio files,
or using runtime prompts generated by a natural language genera-
tion (NLG) module. In case of TTS prompts, the SSML mark-up
language can be optionally used.

Additional language prompt specification is accelerated by us-
ing the main language prompt as a template. So the user has only to
edit the string parts of a prompt. These prompts can be specified ei-
ther at once for one language for all dialogues, or for each dialogue
for all additional languages.

2.3.3. Generation of runtime scripts

The GRM is enriched by the modality extensions in the Linker. The
resulting model is called dialogue model, which is processed by
the speech script generator and/or the web-page script generator de-
pending on the selected modalities in the application description.
The VoiceXML generator has to deal with several problems and
limitations of VoiceXML. One major problem is that VoiceXML



=l MEA-EGBanking

File Extensions Additional Languages

Dialog Name I Dialog E:-:tel Aecceptors
DefaultPrompts DefaultPr...
DGet_AccountinfaType Filling AccountinfoType
Filline AerontiNymber_
DGet ATTR A1 Add/EditFiling Prompts b ionca
DGet ATTR C. Remove Filing Prompts mber IN |
DGet_ATTR_C. Add/Edit Filing Grammars — ruMame_|h
DGet_ATTR_C. Remove Filing Grammars yMName_ It
DGet ATTR_Ci Edit Dialog Arguments reountlde
DGet ATTR_Ci Reset Extension Type yMame_IM
DGel ATTR_D Add/Edit Input Concept countider
Dast ATTHIn Remove Input Concept pe IN Gl
DGet_ATTR_In Type_IN_
Add/Edit Output Concept
DGet ATTR_In gType_Ih
DGet ATTR.In Remowve Output Concept nansType

Figure 4: Input and output setting for each dialogue of the applica-
tion.

does not allow returning calls as ordinary statements. Therefore,
all complex statements and value expressions have to be ‘flattened’
into atomic operations.

The VoiceXML generator reads in all models and works di-
rectly on an internal representation of the models. This is only pos-
sible since the GDialogXML modelling language is very powerful
and concept-oriented. The concept 'Variable’, for instance, can be
directly represented internally as a data structure. This means that
there is one-to-one correspondence between the GDialogXML con-
cepts and the model classes of the generator.

In order to connect the runtime services a data bridge has been
developed. It allows for incorporating result values into VoiceXML
by producing VoiceXML code dynamically. It constitutes the bridge
between the VoiceXML script and the runtime services that are
available via the newly developed GEMINI service protocol on top
of HTTP. The main runtime services are

the data connector, building the access layer to the database,
the user level detector, switching between different user
types,

the prompt generator, generating natural language prompts
on the fly,

the speaker verification component, accepting or rejecting
the speaker by performing pattern recognition on a sampled
audio file,

the language detector, identifying the currently spoken lan-
guage.
For the web modality a web-page script is generated out of the di-

alogue model which enables dynamic web pages. For the speech 6]

modality, some more tools are relevant, namely the language mod-
elling tool and the vocabulary builder.

3. Applications

Two pilot applications have been set up using the AGP for evalu-
ation and validation. Both were generated in a very user friendly
way, taking into account the error handling capabilities of the AGP.

The voice banking application called EG-Banking application
constitutes a voice portal for user-friendly, high-quality interactions
for bank-customers. The main functionality of EG-Banking in-
cludes a general information part available to the public and a trans-
action part available to customers of the bank only.

CitizenCare is an e-government dialogue system for citizen-to-
administration interaction (via multiple channels like internet and
public terminals), filled with content for an exemplary community.
The main functionality is an interactive authority and information
guide.

Please refer to [8] for more details about the applications.

4. Conclusion

During the GEMINI project we developed an application generation
platform, which generates state of the art speech and web applica-
tions. The platform architecture is able to generate multi-modal and
multilingual dialogue applications from different databases: Fea-
tures like overanswering, user modelling, speaker verification, lan-
guage identification can be included easily. Using the assistants of
the AGP setting up new applications is done semi-automatically.
The use of standards like VoiceXML and XHTML leaves the plat-
form open for further development. Another important result of
the project is the newly designed abstract dialogue description lan-
guage, called GDialogXML.

5. Acknowledgements

GEMINI was funded within the European Union’s Fifth RTD
Framework Programme for two years and started in 2002. Its
consortium consisted of the following partners: Knowledge S.A.
(Greece) as coordinator, TEMIC Speech Dialog Systems (Ger-
many), Universidad Politecnica de Madrid — Grupo de Tecrialog
del Habla (Spain), University of Patras — Wire Communications
Laboratory (Greece), Forschungsinstitit &nwendungsorientierte
Wissensverarbeitung (Germany), and Egnatia Bank S.A. (Greece).

6. References

[1] GEMINI Project Homepage: www.gemini-project.org.

[2] U. Ehrlich, G. Hanrieder, L. Hitzenberger, P. Heisterkamp,
K. Mecklenburg, and P. Regel-Brietzmann, “ACCeSS - Auto-
mated Call Center through Speech Understanding System,” in
Proceedings EUROSPEECRhodes, Greece, 1997, pp. 1819
—1822.

3] G. Lehtinen, S. Safra, M. Gauger, J.-L. Cochard, B. Kaspar,
M. E. Hennecke, J. M. Pardo, R. défoba, R. San-Segundo,
A. Tsopanoglou, D. Louloudis, and M. Mantakas, “IDAS: In-
teractive Directory Assitance Service,” Workshop on "Voice
Operated Telecom Serviceser. COST 249, Ghent, Belgium,
2000, pp. 51 — 54.

[4] T. Brgndsted, B. N. Bai, and J. O. Olsen, “The REWARD Ser-
vice Creation Environment, an Overview,” Rroceedings IC-
SLP, Sydney, Australia, 1998, pp. 1175-1178.

[5] J. Polifroni, G. Chung, and S. Seneff, “Towards the Automatic

Generation of Mixed-Initiative Dialogue Systems from Web

Content,” in Proceedings EUROSPEECH5eneva, Switzer-

land, 2003, pp. 193-196.

S. W. Hamerich, Y.-F. H. Wang, V. Schubert, V. Schless, and

S. Igel, “XML-Based Dialogue Descriptions in the GEMINI

Project,” in Proceedings of the 'Berliner XML-Tage 2003’

Berlin, Germany, 2003, pp. 404-412.

[7] Y.-F. H. Wang, S. W. Hamerich, and V. Schless, “Multi-Modal
and Modality Specific Error Handling in the GEMINI Project,”
in Workshop on 'Error Handling in Spoken Dialogue Systems’
ser. ISCA, Chateau d'Oex, Switzerland, 2003, pp. 139-144.

S. W. Hamerich, V. Schubert, V. Schless, R. dardbba, J. M.
Pardo, L. F. d’'Haro, B. Kladis, O. Kocsis, and S. Igel, “Semi-
Automatic Generation of Dialogue Applications in the GEM-
INI Project,” in Workshop for Discourse and Dialoguger. Sig-
Dial, Cambridge, USA, 2004, pp. 31-34.

(8]



