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ABSTRACT 

Automatic speech recognition (ASR) systems are usually 
composed of a parameterization module and a back-end 
classifier. The performance of the overall system strongly 
depends on the choice of the feature extraction module. In 
this paper we investigate two different approaches for 
designing this module. In the first one (the conventional 
approach), its main characteristics are chosen based on 
psychoacoustic knowledge. In the second one, a data-
driven technique (“Discriminative Feature Extraction”-
DFE-), which performs a simultaneous optimization of the 
feature extractor and the back-classifier, is used. Both 
strategies have been applied to a front-end based on the 
Wavelet Transform (WT). Results show that DFE 
systematically improves the performance. In fact, applying 
the DFE strategy to the WT-based acoustic features, a 
relative error reduction around 23% (compared to the 
conventional features based on Short-Time Fourier 
Transform) is achieved when using the SpeechDat database 
with a vocabulary of 1000 words. 

1. INTRODUCTION 
The performance of the ASR systems strongly depends on 
the choice of the feature extraction module. This module 
can be designed using two different strategies. The first one 
(the conventional approach) is based on heuristics or 
psychoacoustic knowledge. In the second one, some of the 
characteristics of the front-end are training according to a 
certain minimization criterion. The Discriminative Feature 
Extraction (DFE) method [1] provides an appropriate 
formalism for this strategy. 

In this paper we explore the application of DFE for 
optimizing a wavelet-based front-end for an ASR system 
working in a telephone environment. 

In most of the current ASR systems, feature extraction 
techniques are based in the analysis of the speech 
waveform on short time windows (typically, 20-30 ms) 
using the Short-Time Fourier Transform (STFT). However, 
several studies show that the information obtained on 
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ent time scales or resolution levels could improve the 
nition accuracy.  
e Wavelet Transform (WT) offers an implicit way to 

it information on multiple time scales or resolutions. 
T has been used instead of the DCT involved in 

al computation [2] or the conventional STFT [2], [3], 
ur wavelet-based front-end is related to this latter 

ach. 
e paper is organized as follows. Section 2 presents 
avelet-based parameters (MWCC) in comparison to 
onventional MFCC. Section 3 reviews the DFE 
lism and the application to the wavelet-based system. 
n 4 presents the experiments and discusses the 

s. Finally, some conclusions are drawn in section 5. 

. PARAMETERIZATIONS BASED ON 
PSYCHOACOUSTIC KNOWLEDGE 

ly, the design of the front-end extractor is based on 
oacoustic knowledge or heuristics. An example is the 
er of critical bands and its values for the extraction of 
C parameters or the number of critical bands an its 
s for MWCC parameters (see below). 
long this section, we describe the features investigated 
s paper: cepstral parameters based on STFT (MFCC) 
epstral parameters based on WT (MWCC). 

el-Frequency Cepstral Parameters (MFCC) 

 are two main stages in MFCC-based 
eterization. The first step is the calculation of the log 
ank energies of the signal. They are derived using the 
 defined by, 
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here x(t) is the speech signal and h(t) represents a 
w function. Thus, a version of the signal windowed 

t) around time τ is analyzed at all frequencies f. 



Once a window has been chosen for the STFT, then the 
time-frequency resolution is fixed over the entire time-
frequency plane since the same window is used at all 
frequencies. This is one of the main problems associated 
with this approach. 

The log filterbank energies are obtained passing the 
power spectrum, |Sx(τ, f)|2 through a mel-scaled filterbank 
and using a log function. 

The second stage consists of the decorrelation of the 
log-energies using a DCT to obtain MFCCs. Finally, the 
first derivatives of MFCCs (∆MWCC) are appended to the 
feature vector. 

2.2. Wavelet-based Cepstral Parameters (MWCC) 

The extraction of MWCC parameters also involves the two 
main steps described above. The main difference is that the 
log filterbank energies are obtained using the Wavelet 
Transform (WT) instead of the STFT. 

The Continuous WT of a signal x(t) is defined as, 
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where Ψa,τ(t) are the scaled (by a) and translated (by τ) 

versions of the basic wavelet Ψ(t). In our case, it is the 
Morlet wavelet (a modulated Gaussian function). So, 
equation (2) can be expressed as, 
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in which g(t) is a Gaussian window and fo = 3 Hz. 

Although g(t) is an infinite-length function, only the values 
above 0.1 are kept, so the size of Ψ (t) is λ0 ≈ 4.625 s. 

Comparing (1) and (3), it can be observed that both 
expressions are similar with f = fo / a and h(t) = g(t / a) [4]. 
In fact, in the case of WT, at certain scale s, the signal is 
windowed with a Gaussian function, g(t / a) (with length λs 
= a.λ0), and then analyzed at the frequency fs = fo / a. 

The main difference with the classical STFT is the 
analysis window length: constant for all frequencies in 
STFT and variable with the scale factor a (and hence, with 
frequency) in WT, thus enabling different time/frequency 
resolutions. For small values of a, WT analysis provides a 
good temporal resolution for high frequencies (λs decreases 
and fs increases) and, for large values of a, a good 
frequency resolution for low frequencies is obtained (λs 
increases and fs decreases). 

In our case, we have used Ns = 34 scales corresponding 
to a set of 34 frequencies, fs, emulating the mel scale. For 
each scale, a = fo / fs , the size of the analysis window was 
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length
lated according to λs = a.λ0 (where λ0 is the size of the 
wavelet). 
s in MFCCs, the first derivatives of MWCCs are 
uted and appended to the feature vector (∆MWCC). 

ombination of acoustic features 

ombination of different types of features provides 
rate reductions if they have significant 

lementary information contents. For investigating this 
ility, a comparative analysis of the errors made by 

C, ∆MFCC, MWCC and ∆MWCC-based systems 
conducted. These preliminary results showed that 
C and ∆MFCC are the best candidates for merging: 
r experimentation (see section 4.1) 31.5 % of the 
 made by the MWCC-based system would be 
ted by ∆MFCC-based one while 26.8% of ∆MFCC-
 system are correct decisions in the MWCC-based 
It will be shown in section 4.2 that the strategy of 
e combination outperforms the baseline system. 

emporal filtering of time trajectories 

oth, MFCC and MWCC parameters, can be improved 
plying a temporal filtering of their time trajectories. In 
ular, we have used the CMN technique (“Cepstral 
 Normalization”). 

. PARAMETERIZATIONS BASED ON 
CRIMINATIVE FEATURE EXTRACTION 
ly, in ASR systems, the feature extraction and the 
end classifier modules are designed independently. 
ver, this procedure doesn’t guarantee an error-rate 
tion of the overall system. One of the methods that 
rms simultaneously the optimization of both modules 
 Discriminative Feature Extraction technique (DFE). 
ecently, it has been applied to obtain optimal filter-
 [1] and lineal transformations of the feature space 
 this paper, we propose the DFE-method for training 

avelet-based front-end described in section 2.2. 

daptive Gaussian wavelets 

Adaptive Gaussian wavelets can be considered a 
alization of the Morlet wavelet, in which the 
lation frequency (fo) is a variable value that can be 
ted according to a certain minimization criterion [6]. 
 consequence, for a certain scale the value of the 
w size is independent of the frequency. The Adaptive 
ian Wavelet Transform is defined as, 
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 which wg,s(t) is an adaptive Gaussian window with 
 λs modulated at the frequency fs. 



3.2. Review of the DFE algorithm 

DFE is usually performed by using the MCE-GPD 
algorithm (“Mininum Classification Error/Generalized 
Probabilistic Descent”) [7]. According to this approach, the 
set of trainable parameters, Φ, are iteratively re-estimated 
in order to minimize a certain average loss function, L(Λ), 
which is a good approximation of the classification error 
rate of the training data. 

For doing it, the GPD algorithm is applied. In this way, 
Φ is iteratively updated along a gradient descent direction. 
At iteration k, the new set of parameters is calculated as, 

 
( )11 L −− Φ∇−Φ=Φ kkk η  (5) 

 
where η is the learning step size and controls the 

convergence of the algorithm. The gradient ( )Φ∇L  is 
obtained by computing the partial derivatives of L(Φ) via 
the chain rule. 

For the wavelet-based front-end, the trainable 
parameters, Φ, to be adjusted by DFE are Λ = {λ1,..., λNs}, 
where λs represents the window size for the frequency fs of 
the corresponding Adaptive Gaussian wavelet. 

The DFE algorithm needs a set of labeled sequences of 
training vectors, each of them belonging to a predefined 
class. In our DFE implementation, the classes are defined 
by HMM states. So, initially, the training data must be 
segmented and labeled into states (in our case, by using the 
Viterbi algorithm). Obviously, as the back-end HMM 
classifier is not very optimized at this stage, the initial 
segmentation contains incorrect labels that can affect the 
behaviour of DFE. Before performing DFE, the updated 
HMM recognizer segments the training sequences in a 
more accurate way and this contributes to improve the 
performance of DFE in the next iteration. This practical 
implementation of DFE is called “Segmental DFE” [5]. In 
summary, in order to reduce the error rate of the overall 
ASR system, it is necessary to iteratively segment the 
training data, adjust the parameters of the feature extractor 
module using DFE and adjust the parameters of the HMM 
classifier using the ML procedure (“segmental iteration”). 
The global process ends when the reduction of the average 
loss function is smaller than a predefined threshold. 

4. EXPERIMENTAL SETUP AND RESULTS 

4.1. Database and baseline system 

In our experimentation, we have used part of the SpeechDat 
database [8], a speaker-independent speech corpus collected 
over the Spanish telephone network. It contains utterances 
pronounced by 1000 different speakers and it has been 
recorded at 8 KHz (A law). The training and test sets 
consist of 5080 and 2003 utterances, respectively The 
dictionary is composed by 1000 words. 
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three states and one Gaussian mixture per state are 
for modeling each of the 47 allophone-like units. So, 
tal number of states (different classes in DFE) is 141. 
 order to state the statistical significance of the 
imental results shown in the following subsections, 
ve calculated the 95 % confidence intervals. 

FCC vs. MWCC 

e baseline system, the speech signal is analyzed with 
 ms Hamming window every 10 ms. For the 
utation of the log-energies, 17 triangular mel-spaced 
 were used. Finally, 10 MFCCs and the frame log-
y and their first derivatives are computed. 
r the wavelet-based system, the parameters were also 
ted every 10 ms. We used 34 scales, so the speech 

l is analyzed with 34 analysis windows of variable 
from 50 to 4 ms) as represented in Figure 1 (labeled 
nitial MWCC”). Preliminary results suggested to 
rain the maximum window length to 50 ms. Finally, 
WCCs and the log-energy (extracted from a window 
 ms length) and their derivatives are computed. 
 Table 1, we compare the recognition rates for the 
C and MWCC-based systems. MWCC+∆MWCC 
eters outperform the baseline system, although the 

ences are not statistically significant. 

Features Recognition Rate (%) 

 + ∆MFCC (Baseline) 73.20 % [71.35% - 75.05%] 

WCC + ∆MWCC 75.48 % [73.68% - 77.28%] 

WCC + ∆MFCC 77.12 % [75.37% - 78.87%] 

Table 1: Comparison of recognition rates for different 
parameterizations. 

ased on the preliminary experimentation in section 2.3 
cided to combine MWCC and ∆MFCC features into 

single stream. From Table 1 it is seen that the 
ination (“MWCC+∆MFCC”) results in improved 
rmance compared to both, the baseline and MWCC-
 systems. 

xperiments with DFE 

 DFE uses a gradient descent search, which only 
ntees to find a local minimum, a good initialization is 
mended. In our case, the initial values for Λ were the 
ted in section 4.2. According to a series of 
inary experiments we fixed the slope of the sigmoid 

.1 and the learning rate η = 0.0001. 



We have carried out two different experiments. In the 
first one, DFE was performed using the parameterization 
MWCC-∆MWCC. In the second one, DFE used the 
combination of MWCC-∆MFCC. In the first case, the 
algorithm reached the convergence after seven segmental 
iterations. In the second one, 20 iterations were needed for 
getting a negligible reduction of the average cost. 

 

Figure 2: Window sizes vs. frequency: STFT, initial 
MWCC, MWCC + ∆ MWCC (at segmental iter. 7) and 

MWCC +∆MFCC (at segmental iter. 20). 

Figure 2 shows the window sizes corresponding to each 
frequency band for both experiments. For comparative 
purposes, this figure also shows the sizes for the STFT-
based system and the initial configuration of the MWCC-
based system. It can be observed that windows 
corresponding to frequencies around 250, 650 and 1750 Hz 
become larger when applying the DFE procedure. On the 
other hand, windows corresponding to frequencies above 
2250 Hz become shorter. 

 

 Recognition Rate (%) 

Features No CMN CMN 

MFCC + ∆MFCC 
(Baseline) 

73.20 % 
[71.35% - 75.05%] 

78,30 % 
[76,58% - 80,02%] 

MWCC + ∆MWCC 
+ DFE 

76.98 % 
[75.22% - 78.74%] 

79,89% 
[78,22% - 81,56%] 

MWCC + ∆MFCC 
+ DFE 

79.42 % 
[77.73% - 81.11%] 

81,78 % 
[80,17% - 83,39%] 

Table 2: Comparison of recognition rates with different 
parameterizations and DFE. 

Table 2 shows the recognition rates. As it can be 
observed in Table 2 (column labeled as “No CMN”), DFE 
(without and with feature combination) systematically 
improves the performance of the MFCC and the original 
MWCC-based systems (see Table 1). Again, best results 
are achieved using the feature combination strategy (plus 

DFE)
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. In this case, relative error reductions around 23% 
ared to the baseline system are obtained and the 
ences in ASR performance are statistically significant. 
lso in Table 2 (column labeled as “CMN”) we show 
sults obtained when applying CMN to the acoustic 
es. It can be observed that CMN increases the 
nition rate in all cases. Again, best results are 
ed when applying the DFE method. 

CONCLUSIONS AND FURTHER WORK 
is paper, we have compared the performance of a 
al parameterization derived from the Wavelet 
form and the conventional MFCC parameters. We 
shown that MWCCs show a similar performance 

ared to MFCCs in a telephone environment. However, 
mbination of both kinds of parameters (in particular, 
C + ∆MFCC) outperforms the baseline system. We 
also designed a procedure based on the DFE 

thm for training the optimal window sizes in the 
C-based systems. In this case, the proposed method 

des significant improvements in the ASR 
rmance. 
e are presently exploring the performance of the 

let-based features in additive noise conditions. 
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