
Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-17

Automatic Tools for Diagnosis and Feedback in a
Project Based Learning Course

Rubén San-Segundo, Juan M. Montero, Javier Macías-Guarasa, Ricardo Córdoba and Javier Ferreiros

Department of Electronics Engineering. ETSI Telecomunicación (Universidad Politécnica de Madrid)
28040-Madrid – SPAIN { lapiz , juancho, macias, cordoba, jfl}@die.upm.es

Abstract - In this paper, we present advanced diagnosis
and feedback tools to improve student software quality.
After several years of quantitative analysis of the
relationship between the assigned grades and certain
software features, we have been able to characterize high-
quality assembly software.
With these results, we have defined new learning
objectives after an instructors' consensus, and we have
developed a set of automatic tools that help to supervise
how well the objectives have been achieved and to feed this
information back to the students along the course. We
have successfully used these analysis tools in a new course,
with a considerable improvement in software quality
factors. In the 2003-2004 academic year, there were 54,7%
more subroutines per program, with 48,7% fewer lines per
subroutine and an increase of 43,6% in the use of the more
complex addressing capabilities. This improvement in
quality had a positive impact on students’ surveys.

Index Terms - automatic estimation of software quality,
Project Based Learning, automatic evaluation tools.

INTRODUCTION

The PBL technique has been successful in both university [1]
and pre-university courses [2]. In university teaching it has
been applied to a great variety of disciplines: law, medicine
[3]; but most applications has been in technical and
engineering courses [4] [5]. A comparison to the traditional
ways of teaching reveals a greater degree of learning in the
case of the PBL technique [6]. The difference is greater when
new technologies support this technique [7]. PBL allows
increasing student involvement in the learning process,
obtaining better results in terms of knowledge and habits
acquired by the students. With this technique, they must face a
multidisciplinary project aimed at developing new capabilities
that complete their instruction to better face the work in a
company. Some of these additional capabilities are team
interaction, self-learning, assumption of responsibilities,
resources management and time planning.

This technique also has several implementation problems:
a greater effort in management and coordination, and a more
complex and difficult evaluation process. In massive courses
(around 200 teams of 2 students), it is very difficult to
supervise and feed back to the students continuously. This fact
can cause that both students and instructors may focus on the
functionality of the project, setting aside other non-functional

quality aspects. On the other hand, there are several instructors
in our course (7-10) and they must evaluate a disjoint set of
students; increasing the risk of a discrepancy in their
evaluation criteria. In order to carry out a good supervision
and evaluation in massive PBL courses, it is necessary to use
automatic tools that help instructors to control and supervise
the student evolution and to analyze the evaluation process.

The development of automatic tools for continuously
monitoring the evolution of the students in a PBL course is a
field of teaching innovation with an increasing interest. The
main reason for investing effort in this development is to be
able to increase the quality of the learning process without
increasing the workload of the instructors, especially when the
courses are massive and they are based on projects [4] and
when one tries to evaluate both the final result of the process
and the associated teamwork [8].

In the last years, there have been several works to develop
automatic tools for supervising, feeding back and evaluating
student work [9] [10] [11]. Generally, these tools are applied
to software assignments and to circuit simulations. In these
cases, it is possible to verify the software or hardware
functionality in a fully automatic way, using test vectors or
case vectors (a set of inputs and their corresponding correct
outputs). If we want to develop similar tools for PBL courses,
we find the following problems:
• In our engineering projects, planned for a semester,

students try to develop a complete communication or
control system of medium complexity, including interface
modules: sensors, keyboards, screens... In this case, it is
necessary an eyewitness verification of the functionality
that is very difficult to automate.

• Secondly, the project is not fully specified. In PBL, the
target is to foster student initiative and creativity. Because
of this, the final systems exhibit important functionality
differences from team to team; therefore, it is very
difficult to carry out an automatic verification based on
standard test vectors. In our course, the students define a
relevant portion of the functionality, that can account for
more than 15% of the total score.

• Finally, an evaluation process based on test vectors
focuses on the functionality or response time, leaving out
aspects such as the structure of the developed system, the
management of available resources or the scalability of
the proposed solution.
On the other hand, when developing an automatic tool for

supporting the evaluation, it is necessary to analyze the grades

Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-18

assigned by the instructors in order to fine-tune the tool. This
article describes a set of analysis and diagnostic tools for PBL
courses that allow:
• To control and supervise the students’ process, helping

the instructors to feedback about wrong decisions or
implementation errors. All these actions can have a very
short response time and very low demand of time.

• To support the instructor in the evaluation process by
means of quantitative measurements.

DESCRIPTION AND CONTEXT OF THE COURSE

We used the developed tools in the LSED course (Laboratory
of Digital Electronic Systems) in the Department of Electronic
Engineering at the Telecommunication Engineering School, of
the Technical University of Madrid (UPM). This Department
is also responsible for several courses focused on the design of
electronic systems based on microprocessors: a theoretical
course in the 3rd academic year (5th semester) of
Telecommunication Engineering (SEDG: digital electronic
systems), another laboratory within the same academic year
(LCEL: Laboratory of Electronic Circuits), and two optional
ones in 5th year on the Electronics specialty (ISEL: Electronic
Systems Engineering, and LSEL: Laboratory of Electronic
Systems). In the first and second semester, the students must
pass a course and a laboratory on standard programming
issues, based on Java.

The LSED laboratory is closely related to SEDG because
SEDG is previous and it is focused on the same
microprocessor (Motorola 68000) and a common set of
peripheral devices. Both courses try to make a balance
between a reasonable workload and highly formative contents.

LSED is a laboratory with about 400 students attending
every year. The students, grouped in teams of two, have to
design, build, test and document a complete microprocessor-
based system (both HW and SW). The starting point is a
description of the system to be implemented (about 30-40
pages) that includes:
• the functional requirements of the system: the scope, a

general description and the use cases,
• part of the system analysis: a modular description of the

system and a detailed description of the main subsystems,
• some guidelines for the implementation of the system and

subsystems: including a proposal of the basic software
architecture. This architecture establishes a distribution of
tasks among the main process and the sub-processes,
making a special emphasis on the use of interrupt
routines,

• a tentative planning to help students on how to organize
the different laboratory sessions in order to achieve the
objectives in a professional-like environment
The students must complete the analysis of the system

(the initial specification is always incomplete) and they must
carry out the design, implementation, testing and
documentation. The target system changes every year and the
students must develop a completely functional prototype with
the associated documentation. Some of the specifications are
open to the student creativity. In order to reach the maximum

grade, the students must implement optional functionality
improvements on the basic proposed system, accounting for
more than 15% of the total score. Some of these improvements
are suggested in the assignment document (but they are not
thoroughly described) and some of them are fully analyzed
and designed by the students. This measure has been very
effective for fostering student initiative: our experience shows
that more than 80% of the teams provide some new
functionality to the basic system we propose.

We carry out the evaluation of each student in two steps:
• The first one is the evaluation of intermediate reports

during the semester. These reports help instructors to
verify the evolution and originality of the work.

• The second step is the final evaluation based on the
complete documentation of the system and an oral
examination. The instructors must verify that the
prototype follows the specifications and must make
individualized questions to verify the authorship of the
work, to determine the capacity of each student to explain
the obtained results, etc. Other factors that we evaluate
are: the quality of the technical writing, the skills for oral
communication, teamwork capabilities, etc.
At the end of the evaluation process, the instructors must

fill in a detailed evaluation sheet. The global evaluation is
ranged in a 0-100 scale including many evaluation items with
smaller scales (0-3, 0-5, etc). This granularity of these
evaluation criteria increases the objectivity of the evaluation
process.

In LSED we teach the students not only the
microprocessor capabilities and some practical
implementation issues, but we also teach a systemic point of
view, involving multidisciplinary knowledge. Microprocessors
and programming are the tools to build systems that include
communications, control, telemetry, user interfaces, etc. An
important point covered by this laboratory is the management
of real time components. The proposed learning approach is
the use of routines executed in periodic interruptions, that
complicates the debugging of the system and the development
of the prototype. To help students, the initial description
provides some recommendations on how to face the problems
of real time programming: concurrence and resource sharing.

Typically, the system proposed is a simplified version
(both economically and in terms of time demand) of a
consumer electronics device. For example, in 2003 the
proposed system was a talking calculator based on the
MC68000 and in 2004, we proposed a wireless chat with an
infrared link.

I. Web management tools

Management tools can carry out the following actions:
• To manage the enrolment of the students and the

assignment of laboratory slots per week (time schedule),
because it is necessary to have a list of students and teams
(for automating the monitoring) and several e-mail
distribution lists (for electronic tutoring and for answering
Frequently Asked Questions).

Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-19

• To link the examination of each team to an available
instructor on a certain date.

• To provide the students with additional services: extra-
slot booking or electronic access to grades.

• To make the final anonymous survey through the web: in
order to evaluate the competence of each instructor and
some aspects of the course.

II. Data acquisition tools

These basic management tools are not enough and need the
complement of a web tool to obtain monitoring data from
students’ programs at certain dates:
• To verify the attendance of students to the laboratory in

their pre-assigned slots or in extra ones.
• To estimate their degree of achievement of the functional

objectives according to the time schedule proposed by the
instructors.

• To collect partial electronic deliverables that contain the
software developed until that date. Typically, in a
semester, students must carry out four or five partial
deliveries and a final one, with three purposes: early
detection of bad programming habits or errors (before it is
too late to fix them); to deter students from plagiarism: a
case of partial or full software copy is easier to detect by
analyzing the history and the coherence of the deliveries;
and the evaluation of the final software delivery is one the
key points in the final grading (in addition to the oral
examination, the final written report and the monitoring
data). By the use of automatic analysis tools, one can get
a great deal of measurements to help the instructors to
assign an almost objective grade for a rather complex
project.
Currently, the system is mainly based on freeware:

• Linux operating system, kernel version 2.4.18
• PHP3 interpreter, for dynamic content generation
• MySQL v. 3.23.49, for database clients and server
• HTTP and HTTPS protocols, using an Apache server v.

1.3.26
• Support software in C, bash, bison, flex and perl

The whole set of tools makes it possible to have an
objective snapshot of the course at a certain date, without
increasing the workload of the instructors.

III. Collected data

Up to now, we have collected the partial and final deliveries
and the final grades from two academic years or semesters.

In the 2002-2003 academic year, the proposed system was
a talking calculator based on a MC68000 microprocessor. The
system was able to add, to substract and to multiply numbers
typed on a matrix keyboard. It was able to read out the
operators and the operands through a DAC and a loudspeaker,
as the user presses the keys (without losing keystrokes or
degrading voice quality).

In the 2003-2004 academic year, the students had to
implement a chat system based on an infrared link and a
MC68000. Through the matrix keyboard, the user types a new
message in a several keystrokes-per-symbol fashion (as in

mobile SMS phones); the message is serially transmitted using
a simple protocol with one bit for start, one for stop and one
for parity.

SOFTWARE QUALITY ANALYSIS AND AUTOMATIC TOOLS

It is not easy to make a precise definition of software quality,
although experimented professionals are able to classify
software programs in terms of quality and they are able to
estimate it reliably. To avoid the difficulties of a explicit
formal definition, one can use the final grades assigned by the
instructors as a source of expert knowledge. This way, quality
analysis is a particular case of a more general problem:
statistical feature analysis and pattern matching. A classifier
comprises:
• A feature extraction phase: aimed at comprising a

program into a set of measurable characteristics. These
feature vectors characterize the programs and allow
comparing them to each other or comparing them to a
high-quality reference. Therefore, as different programs
will have different feature values, we could distinguish
the good ones from the bad ones automatically.

• A set of programs already evaluated by an expert: their
feature vectors can be the reference patterns for
comparison. This set, usually called the training database,
can be useful for estimating the parameters of the pattern
comparison distance (training of the classifier): the more
relevant features for evaluation must have a greater
weight in the comparison.

• An evaluation phase: using the feature vectors of the
training database and the distance formula previously
obtained, one can estimate the quality of a new program
by means of a sequence of pattern comparisons to the
database vectors.

I. Relationship between features and software quality

There are a great deal of quantifiable features that could be
related to software quality. In the training phase, we must
gather a great set of characteristics and we must estimate their
relevance according to the evaluation of the laboratory
instructors. In this study, we have analyzed up to 48 basic
features of assembly programs:
• The use of CPU resources: such as the data and address

registers, the set of microprocessor instructions, the
number of different addressing modes that were used by
the students…

• Data structures used by the programmer: the number of
declared variables, the number of constants, tables or
messages…

• Structural characteristics: such as the number and the
average length of the subroutines (or the interrupt service
routine), the average number of exit and entry points in a
routine, the average and the maximal length of a jump…

• Comments inserted in the code: the number of line
comments, block comments, etc.
Using the data collected in the 2002-2003 academic year,

we studied the Pearson correlation between the feature values
and the final numerical grades (Table 1).

Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-20

TABLE I
RELEVANCE OF THE MAIN FEATURES IN 2002-2003

Main features Correlation with grades
Number of addressing modes
Number of instructions
Number of complex data structures
Number of subroutines
Number of exit points per subroutine
Number of interlaced subroutines
Mean length of jumps
Number of commented lines
Number of lines of code

0.19
0.53
0.19
0.48
-0.15
-0.26
-0.32
-0.18
0.55

The results in Table 1 deserve a qualitative discussion:

• Complex addressing modes: we intuitively considered
that the use of the more complex addressing modes (such
as the indirect or indexed ones), could reveal a higher or
lower quality in a program. The reason would be that
these addressing modes ease the access to complex data
structures such as tables or lists and these modes are
related to the use of elegant algorithms based on arrays or
lists. For many students, indexing is the most complex
addressing mode because it involves a simultaneous use
of two registers and several sizes of operands (the size of
data and the size of each register). Only the best students
are able to use it fluently, whereas the other students
prefer to avoid it. As a result, the remaining addressing
modes are associated to lower quality systems. The use of
more addressing modes in the same program is a cue of
mastery and it correlates positively with grading.

• Use of other CPU resources: the best students are able to
design and implement the more complex systems and
seem to use a greater variety of instructions and registers;
the students with fewer programming abilities seem to use
always the same resources, the ones that make them feel
comfortable.

• Data structures: the most relevant feature related to data
structures is the use of the more complex ones: arrays
(that allows more compact and smarter algorithms),
messages (warning or error messages are linked to a
better user interface)

• Use of subroutines: as we expected, programs with more
subroutines are better programs in general, and the
excessive length of one subroutine reveals a flaw in the
design (the routine should have been split into several
smaller ones). Generally speaking, the students with less
subroutines develop almost basic programs with fewer
functionality extensions and receive lower grades
(without a good set of subroutines, it is very hard to
implement an improvement that could add some new
functionality to the basic specifications). This explains
why the programs with more lines of code are better
graded: they characterize programs with more functions.
If one analyzes only the basic systems, then this feature is
negatively correlated to grades: the simpler programs with
more lines are worse than the more compact ones;
however, an analysis of the programs with more functions
reveals that this feature is irrelevant for them. The
structure of the subroutines is also relevant: they should

be non-interlaced (non-overlapped) and with just one exit
point as the correlations suggest.

• Conditional and unconditional jumps: the use of jumps is
related to the use of loops and if-then-else structures; the
more complex programs (with more functions
implemented) have more jumps, but the jumps are shorter
because all of them are local and limited by the average
size of the subroutines.

• Comments: in the 2002-2003 academic year, instructors
did not assign better grades to the more commented
programs, probably because the longer programs had a
lower percentage of lines with comments: the students
had concentrated their effort on the creative task of
adding new functions, without paying the same attention
to keeping the number of comments at the same high
level.
In addition to this, we must take into account that a

certain project proposal can bias the use of some features:
• In 2002-2003, the use of the post-increment and pre-

decrement addressing modes was dependent on the
development of a specific improvement, and it was
positively correlated to the total grade. If we analyze the
correlation for those students without any improvement,
that feature is irrelevant.

• For the use of the indexing mode or the number of
symbolic constants, the problem is just the opposite: it is
not relevant for the general student but relevant for the
students without improvements.

• If we analyze separately the students with improvements
and the students that developed a basic system, some
features lose discriminating power under this
classification, because they are especially useful for the
identification of these two classes, but these features are
not so good for intra-class discrimination. For instance,
the total number of lines of code or the number of jumps
are generally positive (the more lines of code or jumps,
the higher the grade), but they are negative for the basic
systems. The number of modes or the length of the
longest jump are not relevant for the best students, but
they are good predictor features for the worst students.

II. Automatic tools for quality analysis

As a first approach, we have designed a simple effective linear
classifier based on a vector of weights obtained from the
available training data (from human graders). This vector is
multiplied by the vector of feature values in a scalar way in
order to obtain an estimation of the grade that the students
should deserve if they were evaluated by an instructor.

To try to minimize the influence of the small differences
between the proposed systems (that change every year), we
must normalize the feature values. In PBL, it is convenient to
change the specification of the project each year in order to
avoid plagiarism from previous-year students, but then the
conditions have changed from training to testing. If we assume
that the average student is quite similar from year to year, we
must avoid the use of absolute values that could be dependent
on the proposed system. This way, we are able to predict a

Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-21

relative grade: whether a student is in the top 10% or the
bottom 10% students, or so on.

As a by-side product, we can use the tool in the grade
revision process: we can show the objective measurements to
those students that think their grades are not fair. The
comparison between their vector values and the mean vector
provides the student with a more objective view of their work,
minimizing the controversy.

The students have a second chance to pass the course in
September. They have to develop almost the same system, but
then one of the proposed improvements is compulsory to pass.
This similarity of contents makes the learnt classifier very
useful, because it is perfectly tuned for the evaluation of such
systems.

MEASURES ADOPTED FOR THE FOLLOWING COURSE

The results in 2002-2003 suggested important warnings about
the poor quality of the software developed by students.
Because of this, we decided to make an important effort to
address these faults.

Although we do not have all the data from 2001-2002 or
previous years, the available data and the opinion of the
instructors involved in both years reveal a certain
improvement in some features (the number of subroutines or
their average length). Nevertheless, most of the values of these
important characteristics are poor and should be greatly
improved (average longest subroutine, the number of exit
points per subroutine, the number of commented lines...).

I. Measures to improve the quality of the students’ software

Instructors must avoid students to focus just on functional
aspects of the system under development, without making an
adequate emphasis on stylistic aspects that also define the
quality of the system. According to our experience, it is not
enough to devote part of the grade to these aspects, because
they are apparently secondary for the students, so they are
confident on passing the final exam just because the system is
working and they are the authentic authors.

If the instructors lack quantitative automatic tools to
estimate quality and they cannot show automatic figures to the
students in an intermediate revision, students focus mainly in
short-term functional aspects. However, if automatic tools are
available and instructors are able to show to students that this
part of the grade is not only based on subjective appreciations
of the instructors (that seem hard to obtain), but also on
objective measurements (obtained almost-effortless), they will
pay attention to the evaluated quality factors.

The intermediate feedback must be carefully carried out.
If the information is given too early, it can be based on an
insufficient set of data and normalization can be misleading.
The initial phase of a project is the most irregular one, because
some students have a faster learning curve than others or they
spend more time at the beginning (in order to avoid the stress
of the final dates). On the other hand, if we provide feedback
too late, it is difficult to fix some bad habits of the students.

The frequency of these monitoring tasks is important too.
Instructors must feed back to students at least once during the

semester, but feeding back continuously can be negative
because students can focus excessively on quality aspects or
can try to fool the program in a trial-and-error strategy.

This feedback must not be abstract but specific. For
instance, one must not say “your subroutines are too long” but
“your subroutines are 81 lines long on average while your
fellows average only 51”. One should use precise assertions
such as “you have a very long subroutine named Receiver that
is 215 lines long and more than 50 lines is not advisable for a
subroutine because it is longer than the typical size of the
screen”. This way the student perceive that their specific code
have been automatically analyzed, and so will be for the final
grading. When instructors comments how to improve the
quality of the software, the students will learn how to suppress
specific flaws of their programs.

Although this is the main strategy for improvement, it
needs some previous documentation:
• the assignment document must clearly state the evaluation

criteria: the students must know that a 20% of the grade
will depend on how well they perform in quality-related
features;

• regularly, we must send explanatory information (based
on e-mail or web) on these aspects in order to fix the
general concepts or some rules of quality;

• intermediate software deliveries must be compulsory:
these deliveries provide the data for the automatic
analysis and monitoring, and they are also useful to deter
software plagiarism.

TABLE II
COMPARISON OF THE MAIN FEATURES FOR THE LAST TWO YEARS

Main features Improvement over 2002-2003
Complex addressing modes
Number of different instructions
Number of complex data structures
Number of symbolic constants
Number of subroutines
Number of exit points
Mean subroutine length
Number of interlaced subroutines
Length of the longest subroutine
Number of jumps
Number of commented lines

72%
-2%
26%
64%
54%
23%
49%
74%
69%
3,4%
29%

ANALYSIS OF THE 2003-2004 ACADEMIC YEAR

I. Software quality improvements

In Table 2, we show the improvement of the average value of
the main software features from 2002-2003 to 2003-2004. The
number of lines of code is quite similar (a 5% increase, from
436.5 instructions in 2003 to 460.8 instructions in 2004), so
the assignment in 2003-2004 is comparable to the 2002-2003
assignment in terms of global software complexity.

From these results, we can conclude that:
• There has been a significant improvement in the student

software quality, due to the new automatic tools and
strategies. This improvement has never been reached in
any year before. Although we have increased the
maximum grade assignable just to software quality (as we
did in previous years), and we have written a more

Session S2D

0-7803-9077-6/05/$20.00 © 2005 IEEE October 19 – 22, 2005, Indianapolis, IN
35th ASEE/IEEE Frontiers in Education Conference

S2D-22

specific documentation about it (this strategy was not
new), the real cause for this improvement has been the
availability of automatic tools. These tools assist the
instructors in objective quality analysis and now the
students know that this important factor can be
automatically measured.

• Some concepts that were difficult for the students in
2002-2003, in 2003-2004 were perfectly assimilated by
the students and they should not be used as quality-
discriminating features. They are still important in terms
of software quality, but they are useless for prediction in
2003-2004. Nevertheless, as students change from year to
year, we must repeat the successful strategy in order to
preserve the advances.

II. Evaluation of the student opinion

On 2002-2003 we began making a great emphasis on software
quality and we developed the first release of the tools. We
improved the results of the previous year, but the
improvement was not satisfactory. Only when the full
methodology was used, we were able to reduce the difficulty
of the course significantly while increasing its interest,
worthiness (from 2.44 to 3.22) and global evaluation (from
6.48 to 7.17 in 0-10 scale). The new specific comments on
software quality have helped students develop programs in an
easier way, and this fact has greatly influenced the good
results of the surveys.

CONCLUSIONS

As Project-Based Learning (PBL) needs a great deal of
supervision, advanced diagnosis and feedback tools are
presented and evaluated in this paper. Significant
improvements in student software quality are shown,
especially in non-functional aspects. The tools are the result of
a thorough study of the relationship between the numerical
grades and certain software features.

After this study, we have defined new learning objectives
after an instructors' consensus, and we have developed a set of
automatic tools that help to supervise the degree of
achievement of each objective and to feedback this
information to the students along the course. We have
successfully used these analysis tools in a new course, with a
considerable improvement of software quality factors. In
2003-2004 there were 54,7% more subroutines per program,
with 48,7% fewer lines per subroutine and an increase of
43,6% in the use of the more complex addressing capabilities.

We can distinguish three types of parameters according to
their relevance in software quality prediction: irrelevant
features (their variance has never correlated to the variance of
the grades), relevant saturated features (they have been good
at discriminating in previous courses, but not now) and
relevant unsaturated features (they are still important features
for the discrimination of good and bad pieces of software).

Finally, the students’ opinion about the course has been
improved for all the questions considered.

ACKNOWLEDGMENT

We want to thank José D. Romeral (in memoriam) and the
members of the Departamento de Ingeniería Electrónica at
ETSIT-UPM, for their continuous effort to offer high-quality
education to our students and for all the fruitful comments and
suggestions that made this work possible.

REFERENCES

[1] Solomon, G. (2003). Project-Based Learning: a Primer. Technology and
Learning. Volume 23(6), pp. 20-27.

[2] Chard, S.C. (1992). The Project Approach: A Practical Guide for
Teachers. Edmonton, Alberta: University of Alberta Printing Services.

[3] Vernon, D. T. A. & Blake, R. L. (1993). Does problem-based learning
work? A meta-analysis of evaluation research. Academic Medicine.
Volume 68(7), pp. 550-563.

[4] Hedley, M. (1998). An undergraduate microcontroller systems
laboratory. IEEE Transactions on Education. Volume 41(4), pp. 345-
345.

[5] Ambrose, S.A. & Amon, C.H. (1997) Systematic design of a first-year
mechanical engineering course at Carnegie-Mellon University. Journal
of Engineering Education. Volume 86, pp. 173-182.

[6] Ryser, G. R, Beeler, J. E., & McKenzie, C. M. (1995). Effects of a
Computer-Supported Intentional Learning Environment (CSILE) on
students’ self-concept, self-regulatory behavior, and critical thinking
ability. Journal of Educational Computing Research. Volume 13(4), pp.
375-385.

[7] Coley, R. J., Cradler, J., & Engel, P. K. (1996). Computers and
classrooms: The status of technology in U.S. schools (Policy information
report). Princeton, NJ: Educational Testing Service.

[8] Barros, M. & Verdejo, M. (2000). Analysing student interaction
processes in order to improve collaboration. The DEGREE approach.
International Journal of Artificial Intelligence in Education. Volume 11,
pp. 221-241.

[9] Cheang, B., Kurnia, A., Lim, A. & Oon, W.C. (2003). On automated
grading of programming assignments in an academic institution.
Computers & Education. Volume 41, pp 121-131.

[10] Korhonen, A., Malmi, L., Nikander, J., Tenhunen, P. (2003). Interaction
and Feedback in Automatically Assessed Algorithm Simulation
Exercises. Journal of Information Technology Education. Volume 2, pp.
241-255.

[11] Baillie-de Byl, P. (2004). An Online Assistant for Remote, Distributed
Critiquing of Electronically Submitted Assessment. Educational
Technology & Society. Volume 7. pp 29-41.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

