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Abstract
We present several innovative techniques that can be applied 
in a PPRLM system for language identification (LID). To 
normalize the scores, eliminate the bias in the scores and 
improve the classifier, we compared the bias removal 
technique (up to 19% relative improvement (RI)) and a 
Gaussian classifier (up to 37% RI). Then, we include 
additional sources of information in different feature vectors 
of the Gaussian classifier: the sentence acoustic score (11% 
RI), the average acoustic score for each phoneme (11% RI), 
and the average duration for each phoneme (7.8% RI). The 
use of a multiple-Gaussian classifier with 4 feature vectors 
meant an additional 15.1% RI. Using 4 feature vectors instead 
of just PPRLM provides a 26.1% RI. Finally, we include 
additional acoustic HMMs of the same language with success 
(10% relative improvement). We will show how all these 
improvements have been mostly additive. 
Index Terms: Language identification, PPRLM, Gaussian 
classifier, score normalization, feature selection 

1. Introduction
Automatic Language Identification (LID) has become an 
important issue in recent years. Most dialog systems are 
multilingual, so the language of the caller has to be identified 
as soon as possible in order to use the appropriate recognition 
system specific to that language. 

Many techniques have been suggested in recent years for 
this task. The most widespread technique is the phone-based 
approach, like Parallel phone recognition followed by 
language modeling (PPRLM) [1]-[3], which classifies 
languages based on the statistical characteristics of the 
allophone sequences and has a very good performance. 

Another popular technique is the GMM classifier, which 
we will not consider here. In [4] they present a GMM 
classifier called “GMM tokenizer”, where the output of the 
classifier is used as input to a “language model” (LM) 
module, where the sequence of the different indexes is learnt. 
The performance of this technique is worse than PPRLM, but 
its combination with PPRLM improves the overall result. 

An interesting variant of PPRLM is presented in [5] with 
several proposals: different ways to combine the allophone 
sequence information with the acoustic models, use of 
durations (prosodic information) and a tree-based language 
model. It is remarkable the integration of several sources of 
information. Another approach is to use a lattice instead of 
the allophone sequence [6] and a neural network at the output 
of the classifier, instead of doing the average of the scores. 
This way, there is an improvement in the classifier. In our 
paper we propose a Gaussian classifier instead. 

In [7] they use PPR, include bias removal to improve the 
classification, and include acoustic and allophone sequence 

information in the classifier, using a Gaussian classifier 
similar to the one we propose. In [8] they compare the 
performance of a neural network with a Gaussian classifier as 
ours. The neural network provides slightly better results but 
the use of multiple Gaussians is not mentioned. Another 
recent line of research is the fusion of different sources of 
information, as in [9], which we also address. 

This paper is a continuation of the work done in [2] and 
especially [3]. Results for the inclusion of acoustic 
information are better due to a better construction of the 
Gaussian classifier and the inclusion of a smoothing factor for 
the variances. We also present new experiments including 
more feature vectors in our system for other sources of 
information. This work has been done under project 
INVOCA, for the public company AENA, which manages 
Spanish airports and air navigation systems [17]. 

The paper is organized as follows. We present the setup, a 
brief overview of PPRLM and a summary of previous results 
in Section 2. In Section 3 we describe our Gaussian classifier. 
In Section 4, we include additional sources of information, 
namely acoustic and phoneme duration information. Finally, 
in Section 5 we increase the number of Gaussians in the 
Gaussian classifier. The conclusions are given in Section 6. 

2. System description 

2.1. Database
We use a continuous speech database (referred to Invoca 
database from now on), which consists of very spontaneous 
conversations between controllers and pilots. It is quite a 
difficult database, noisy and very spontaneous. We have one 
big drawback with the database: all speakers are native 
Spanish. So, many of them do not reflect all the phonetic 
variations in English, and they mix Spanish for greetings and 
goodbyes even when the rest of the sentence is in English. 

For the training set, we had some 8 hours of speech for 
Spanish and 6 hours for English. For the validation set, we 
had some 1 hour for both languages and 700 sentences. We 
have considered sentences with a minimum of 0.5 sec., and a 
maximum of 10 sec., with an average duration of just 4.5 sec., 
which is another important complication for the LID task. 

2.2. General conditions of the experiments 
The system uses a front-end with PLP coefficients derived 
from a mel-scale filter bank (MF-PLP), with 13 coefficients 
including c0 and their first and second-order differentials, 
giving a total of 39 parameters per frame. For the phone 
recognizers, we have used context-independent continuous 
HMM models. For Spanish, we have considered 49 different 
allophones and, for English, 61 different allophones. All 
models use 10 Gaussians densities per state per stream. 
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2.3. Brief description of PPRLM 
The main objective of PPRLM (Parallel Phone Recognition 
Language Modeling) is to model the frequency of occurrence 
of different allophone sequences in each language. This 
system has two stages. First, a phone recognizer takes the 
speech utterance and outputs the sequence of allophones 
corresponding to it. Then, the sequence of allophones is used 
as input to a language model (LM) module. In recognition, 
the LM module scores the probability that the sequence of 
allophones corresponds to the language. Interpolated n-gram 
language models are used to approximate the n-gram 
distribution as the weighted sum of the probabilities of the n-
grams considered (weights 1, 2, and 3 for unigram, bigram 
and trigram, respectively). 4-gram LMs provide worse results. 

2.4. Summary of previous initial improvements 
This is a list of the main improvements that we have obtained 
over the basic PPRLM technique in previous works. More 
details can be found in [3]: 

Threshold in score: to smooth the LM, we applied an 
additive factor in the PPRLM formula dependent on the 
average scores in the LM (34% relative improvement). 
Random selection of sentences: to avoid modeling the 
speaker instead of the language, we created new lists 
using a random selection procedure, namely Fisher-
Yates, with a 5% relative improvement. 
Bias removal in the classifier: to suppress bias in LM 
scores, we applied ‘bias removal’: LM score = original 
score minus the average of all LM scores in the training 
database. The improvement can be up to 19%. 

3. Gaussian classifier for LID 
As is described in [7], the general PPRLM approach has a 
flaw: there is the possibility of having a different bias in the 
log-likelihood score for the languages considered. This is 
especially true when phone recognizers have different number 
of units (we have 49 units for Spanish and 61 for English). 
The language with fewer units will have higher probabilities 
in the LM score, and so the classifier will be biased to that 
language. To tackle this issue, we proposed in [3] to use a 
Gaussian classifier instead of the usual PPRLM decision 
formula. With all the scores provided by each LM we prepare 
a score vector. With all the sentences in the training database 
we estimate the Gaussian distribution of their respective score 
vectors (one Gaussian / language). The distance between the 
input vector and the Gaussian distributions for every language 
is computed, using a diagonal covariance matrix, and the 
distribution which is closer to the input vector is the one 
selected as identified language.

To estimate the Gaussian distribution we used the 
acoustic models training list, as this data does not participate 
in the LM estimation. We demonstrated in [3] that it was a 
good option in order to make a better use of the training list, 
as the LM score distribution in this set was very similar to its 
distribution in the test set. One important conclusion of that 
work is that, instead of absolute values, we need to use 
differential scores: the difference between the score obtained 
by the LM of the same language of the acoustic models 
considered (Spa-Spa or Eng-Eng) and the score obtained by 
the other ‘competing’ language(s): SC0 – SC1 and SC3 – SC2 
in Figure 1. So, this score can be computed both in training 
and testing. We applied it to unigram, bigram and trigram 
separately, with 6 features in total that are listed in Table 1. 

Figure 1. PPRLM Scores 

Table 1. Differential score vector 

SCO-SC1 for unigram 
SCO-SC1 for bigram Phonemes-SPA
SCO-SC1 for trigram 
SC3-SC2 for unigram 
SC3-SC2 for bigram Phonemes-ENG
SC3-SC2 for trigram 

We observed that these differential scores are much more 
homogeneous, being the result that the estimated distributions 
exhibit a much smaller overlap with the competing language. 

In a multiple language system the proposal for the 
differential score would be:

SC current language – Average (SC other languages)
One problem that has to be solved is how the weights of 

the n-grams 1, 2, and 3 from the basic PPRLM equation 
(1) can be integrated in this approach, as the scores for 
unigram, bigram, and trigram are independent in our vector.
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We introduce a new contribution not described in [3]: 
instead of multiplying each feature by its weight in the 
distance measure, it was much better to divide the variance of 
the distribution of each score by the corresponding i weight 
(equation (2)). For low i, variances increase and so distances 
are smoothed (good for less discriminative features). This 
smoothing weight is quickly adjusted with good results. 

ii
final

i
original  (2) 

4. Inclusion of new sources of information 
One drawback in PPRLM modeling is that the basic 
technique only takes into account information regarding the 
allophone sequence. We propose the inclusion of acoustic 
information in two complementary ways: the average acoustic 
score of the sentence and the average acoustic score for each 
phoneme. At the same time, phoneme duration generated by 
the phone recognizer can be very different depending on the 
input language, so we can take advantage of that too. For 
these three sources of information we will just add another 
feature vector in our classifier, as we will see in this section. 

4.1. Inclusion of the sentence acoustic score 
First, we will consider the global acoustic score of the 
sentence (normalized by the number of frames, obviously). 
We have a feature vector with two features: the acoustic score 
obtained in the phone recognizers for each language. Again, 
the approach can be easily extended to several languages.  

We observed that the acoustic score values were not 
homogeneous at all, and so, the estimated distributions for 
competing languages had a big overlap. Then, we decided to 
use again the “differential scores” idea: we used the 
difference between the phone recognizer score for Spanish 
and English as feature value. Again, we observed that the 
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overlap between the estimated distributions reduced 
drastically. To extend this approach to several languages: 

AcScore current language – Average (AcScore other languages)
Database considered: Obviously, we need to estimate the 

acoustic score distributions using non-training data. So, the 
dataset chosen for this task is the LM training list. 

LID results using just this feature is 8.13% error rate after 
adjusting the smoothing weight i (0.4 as optimum value). In 
Table 2, we can see the results (classification error rates, with 
relative improvements in parenthesis) using the Gaussian 
classifier with two feature vectors, one for the PPRLM scores 
and the other one for the acoustic scores. As we can see, the 
improvement is remarkable, so the fusion of both feature 
vectors provides an additive improvement. This clearly 
improves the results published in [3], where 3.67 for the 
minimum was reported. As we have already mentioned, the 
difference is due to the inclusion of the smoothing weight i.

Table 2. PPRLM + sentence acoustic score 

 Average Minimum 
PPRLM 5.42 3.74 

+ acoustic score 4.40 (18.8%) 3.31 (11.5%)

4.2. Inclusion of the acoustic score for each phoneme 
We now considered that the acoustic score for each individual 
phoneme could also have a strong variation depending on the 
language. Using our classifier, we modeled the Gaussian 
distribution for the acoustic score of each phoneme.  

For each input sentence we have its corresponding 
sequence of phonemes using the Spanish and English phone 
recognizers. We compute the average score for each phoneme 
appearing in the sentence (averaging the score over all frames 
belonging to that phoneme) obtaining a feature vector with as 
many features as the number of phonemes in the system. 
Obviously, phonemes not appearing in the sentence do not 
contribute to the final score in the classifier. 

Again, the “differential scores” approach is a must, 
because these scores have a strong variability. To normalize, 
for every frame: SC = SCSpanish – SCEnglish, which is added for 
all phoneme frames. This approach is clearly better than 
normalizing using the sentence average score for the 
“competing” language. 

To reduce the size of the feature vector, we grouped some 
allophonic variations and considered 34 different phonemes 
for each language. So, we have a vector of 68 features. This 
vector is obviously too big to have it reliably estimated. In 
this version of our system we decided to apply a feature 
selection algorithm to reduce the dimensionality: we keep the 
n features that maximize the following objective function: 

2
2

2
1

2
21 )(                                                    (2) 

where 1 and 2 are the mean values for the feature 
considering Spanish and English input sentences respectively, 
and 1 and 2 are the respective covariances. A high value in 
this formula means that the feature is very discriminative. 
There is a very strong correlation among this separation 
measure and the final results in LID. For a future version we 
will consider applying LDA to reduce the dimensionality. 
Using these feature reduction techniques, this approach can 
be easily applied to multiple language systems. 

We tested the system using 24, 30, and 35 features, 
obtaining the optimum result for 30 features. In LID the best 

results using just this feature vector and modifying the 
smoothing weight i was 8.78% error rate. 

In Table 3, third row, we can see the results with two 
feature vectors, one for the PPRLM scores and the other one 
for acoustic scores for each phoneme, and, in the last row we 
can see the result using all three vectors together. The nicest 
conclusion is that all 3 feature vectors improve the system, 
which demonstrates that the information they provide is 
complementary. In fact, even though the LID performance of 
the global acoustic score (8.13) is better than for the acoustic 
score per phoneme (8.78), the result of the combination of 
PPRLM and these scores is better for the second case. 

Table 3. PPRLM + ac. score per phoneme + both 

 Average Minimum 
PPRLM 5.42 3.74 

+ ac. score / phoneme 4.30 (20.7%) 3.31 (11.5%) 
+ both acoustic scores 4.14 (23.6%) 3.10 (17.1%)

4.3. Inclusion of the duration for each phoneme 
We considered that phoneme duration could also be different 
depending on the input language, so we thought that it could 
be easy to add just another feature vector to our Gaussian 
classifier. So, we modeled the Gaussian distribution for the 
average duration of each phoneme in our system. For each 
input sentence, we computed the average duration for each 
phoneme and the feature vector had as many features as the 
number of phonemes. 

The bad thing of this feature is that it is quite difficult to 
normalize. The “differential scores” approach that we should 
apply here would be to subtract the average duration for the 
competing language, but, as the phoneme sets are different for 
each language, this subtraction is not possible. We considered 
two normalizations: a) Subtract the average phoneme duration 
of the competing language; b) Subtract the phoneme duration 
of the competing language for the phoneme which had the 
largest part in common with the current one, so it will be the 
most probable “competing” phoneme. B) was a better option.

We reduced the feature vector using the same feature 
selection technique as in the previous section, keeping this 
time 22 features as the optimum value. In LID the best results 
using just this feature vector and modifying the smoothing 
weight i was 22.3% error rate. It is clearly worse than the 
results obtained with acoustic scores, showing that we still 
have a normalization problem with the durations. 

Nevertheless, we checked the performance of this feature 
vector combined with PPRLM (Table 4). The fusion of 
PPRLM and duration still provided an 8% improvement, but 
all vectors together provide similar – slightly better – results.  

Table 4. PPRLM + duration + acoustic scores 

 Average Minimum 
PPRLM 5.42 3.74 

+ duration 5.21 (3.9%) 3.45 (7.8%) 
+ both acoustic scores 4.15 (23.4%) 3.08 (17.6%)

5. Multiple-Gaussian Classifier 
One of the nicest characteristics of a Gaussian classifier is 
that we can grow up to multiple Gaussians to better model the 
distribution that represents our classes. Of course, we will 
need more data to have a reliable estimation of these 
Gaussians. We will show here that with our data we can 
estimate reliable multiple-Gaussian distributions using all 4 
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sources of information. To increase the number of Gaussians 
we have followed the classical HMM modeling approaches 
(Gaussian splitting and Lloyd reestimation after each 
splitting), so we will not describe them here.  

For the sake of simplicity, to demonstrate the 
effectiveness of the multiple-Gaussian classifier, we present 
in Table 5 a summary of results obtained using different 
numbers of Gaussians for the first two feature vectors 
(PPRLM and sentence acoustic scores). In parenthesis, we 
show the improvement relative to the 1-1 Gaussian case. 

Table 5. Multiple-Gaussian Classifier 1 

Number of Gaussians 
LM  Acoustic  Average Minimum 

1 1 4.40 3.31 
2 2 4.09 (7.0%) 3.16 (4.4%) 
3 3 4.01 (8.9%) 2.95 (10.9%) 
4 4 3.97 (9.7%) 2.95 (10.9%) 
5 3 3.92 (11.0%) 2.88 (13.0%) 

We can extract several interesting conclusions: 
The improvements are really remarkable, up to 13% in 
minimum value and 11% in average. 
As we expected, the best system uses more Gaussians 
for LM score than for acoustic score, as the feature 
vector dimension is 6 for LM and 1 for acoustic. 
The difference between Average and Minimum has 
reduced drastically, which reduces the importance of 
the n-gram i weights from equation (1) or (2).

The results using all 4 feature vectors are very difficult to 
present in a paper. So, in Table 6 we decided to present the 
relative improvement of including additional feature vectors 
(only for the minimum results) as a function of the number of 
Gaussians for the first vector (LM), selecting the optimum 
configuration of Gaussians in all cases. All improvements are 
relative to just using PPRLM. The last column shows the 
results using the 4 feature vectors. 

Table 6. Improvements with additional vectors

Gaussians  
in LM 

Sentence 
ac. sc. 

Acoustic sc. 
per phone 

Duration
per phone 

All

1 11.5% 11.5% 7.8% 17.1%
2 17.1% 22.6% 3.7% 24.4%
3 19.0% 19.3% 9.6% 23.0%
4 19.6% 15.8% 4.1% 25.3%
5 21.5% 19.6% 6.0% 26.1%

We can see that in all cases the new sources of 
information provide remarkable improvements, although they 
are not completely additive, as could be expected because 
they are all related to the phone recognizer results. In any 
case, we can see that their combination always provides better 
results than the baseline using just PPRLM or PPLRM plus 
the sentence acoustic scores as in [3]. The best result so far is 
2.81% error rate for the combination of 5-4-5-2 Gaussians, 
although there a lot of combinations with very similar results.  

5.1. Additional acoustic HMMs for the classifier 
We considered the inclusion of new HMM models in our 
system, as it was quite easy with our Gaussian classifier. So 
far, nobody has reported the use of several models of the 
same language but different channel conditions in PPRLM. 

We used SpeechDat, telephone noisy speech, quite different 
from the Invoca database. This is a summary of results: 

Using them with no adaptation, results do not improve. 
Using them with MAP task adaptation (with the Invoca 
training list) the improvements are remarkable: 2.60%
error rate with a 10% relative improvement. (The result 
is comparable to the 2.88% from Table 5). 

6. Conclusions
We have described several improvements in a language 
identification system using PPRLM scores and acoustic 
information. The final error rate has improved to 2.60%. The 
results are outstanding, especially considering that the 
average duration of the sentences is just 4.5 seconds.

The inclusion of the sentence acoustic score in the 
Gaussian classifier provided an 11.5% relative improvement 
(RI), the average acoustic score for each phoneme (11.5% 
RI), and the average duration for each phoneme (7.8% RI). 
The increase in the number of Gaussians in our multiple-
Gaussian classifier with 4 feature vectors provided an 
additional 15.1% RI. Using 4 feature vectors instead of just 
PPRLM provides a 26.1% RI. The inclusion of additional 
HMMs of the same language but different channel conditions 
provides a 10% RI if task adaptation is used. 

As a future line, we will consider fusion techniques to 
weigh each feature vector in our system, as in [9]. 
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