
1382 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 17, NO. 7, SEPTEMBER 2009

An Information Theoretic Approach to Speaker
Diarization of Meeting Data

Deepu Vijayasenan, Student Member, IEEE, Fabio Valente, Member, IEEE, and Hervé Bourlard, Fellow, IEEE

Abstract—A speaker diarization system based on an informa-
tion theoretic framework is described. The problem is formulated
according to the Information Bottleneck (IB) principle. Unlike
other approaches where the distance between speaker segments is
arbitrarily introduced, the IB method seeks the partition that max-
imizes the mutual information between observations and variables
relevant for the problem while minimizing the distortion between
observations. This solves the problem of choosing the distance
between speech segments, which becomes the Jensen–Shannon
divergence as it arises from the IB objective function optimization.
We discuss issues related to speaker diarization using this infor-
mation theoretic framework such as the criteria for inferring the
number of speakers, the tradeoff between quality and compres-
sion achieved by the diarization system, and the algorithms for
optimizing the objective function. Furthermore, we benchmark
the proposed system against a state-of-the-art system on the
NIST RT06 (Rich Transcription) data set for speaker diarization
of meetings. The IB-based system achieves a diarization error
rate of 23.2% compared to 23.6% for the baseline system. This
approach being mainly based on nonparametric clustering, it runs
significantly faster than the baseline HMM/GMM based system,
resulting in faster-than-real-time diarization.

Index Terms—Information bottleneck (IB), meetings data,
speaker diarization.

I. INTRODUCTION

S PEAKER diarization is the task of deciding who spoke
when in an audio stream and is an essential step for sev-

eral applications such as speaker adaptation in large vocabulary
automatic speech recognition (LVCSR) systems and speaker-
based indexing and retrieval. This task involves determining the
number of speakers and identifying the speech segments asso-
ciated with each speaker.

The number of speakers is not a priori known and must
be estimated from data in an unsupervised manner. The most
common approach to speaker diarization remains the one
proposed in [1] which consists of agglomerative bottom-up
clustering of acoustic segments. Speech segments are clustered
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together according to some similarity measure until a stopping
criterion is met. Given that the final number of clusters is un-
known and must be estimated from data, the stopping criterion
is generally related to the complexity of the estimated model.
The use of Bayesian Information Criterion (BIC) [2] as a model
complexity metric has been proposed in [1] and is currently
used in several state-of-the-art diarization systems.

Agglomerative clustering is based on similarity measures be-
tween segments. Several similarity measures have been con-
sidered in the literature based on BIC [1], modified versions
of BIC [3], [4], Generalized Log-Likelihood Ratio [5], Kull-
back–Leibler divergence [6], or cross-likelihood distance [7].
The choice of this distance measure is somewhat arbitrary.

In this paper, we investigate the use of a clustering technique
motivated from an information theoretic framework known as
the Information Bottleneck (IB) [8]. The IB method has been
applied to clustering of different types of data like documents
[9], [10] and images [11]. IB clustering [8], [12] is a distribu-
tional clustering inspired from Rate-Distortion theory [13]. In
contrast to many other clustering techniques, it is based on pre-
serving the relevant information specific to a given problem in-
stead of arbitrarily assuming a distance function between ele-
ments. Furthermore, given a data set to be clustered, IB tries to
find the tradeoff between the most compact representation and
the most informative representation of the data. The first contri-
bution of this paper is the investigation of IB-based clustering
for speaker diarization and its comparison with state-of-the-art
systems based on a hidden Markov model/Gaussian mixture
model (HMM/GMM) framework. We discuss differences and
similarities of the two approaches and benchmark them in a
speaker diarization task for meeting recordings.

Speaker diarization has been applied to several types of
data, e.g., broadcast news recordings, conversational telephone
speech recordings, and meeting recordings. The most recent
efforts in the NIST Rich Transcription campaigns focus on
meeting data acquired in several rooms with different acoustic
properties and with a variable number of speakers. The audio
data is recorded in a nonintrusive manner using multiple dis-
tant microphones (MDM) or a microphone array. Given the
variety of acoustic environments, the conversational nature of
recordings and the use of distant microphones, those recordings
represent a very challenging data set. Progress in the diarization
task for meeting data can be found in [14] and in [15].

Recently, attention has shifted onto faster-than-real-time
diarization systems with low computational complexity (see,
e.g., [16]–[19]). In fact, in the meeting case scenario, faster
than real-time diarization would enable several applications
(meeting browsing, meeting summarization, speaker retrieval)
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on a common desktop machine while the meeting is taking
place.

Conventional systems model the audio stream using a fully
connected HMM in which each state corresponds to a speaker
cluster with emission probabilities represented by GMM proba-
bility density functions [3], [20]. Merging two segments implies
estimating a new GMM model that represents data coming from
both segments as well as the similarity measure between the new
GMM and the remaining speaker clusters. This procedure can
be computationally demanding.

As second contribution, this paper also investigates the IB
clustering for a fast speaker diarization system. IB is a nonpara-
metric framework that does not use any explicit modeling of
speaker clusters. Thus, the algorithm does not need to estimate a
GMM for each cluster, resulting in a considerably reduced com-
putational complexity with similar performance to conventional
systems.

The remainder of the paper is organized as follows. In
Section II, we describe the Information Bottleneck principle.
Sections II-A and II-B, respectively, summarize agglomerative
and sequential optimization of the IB objective functions.
Section III discusses methods for inferring the number of
clusters. Section IV describes the full diarization system, while
Sections V and VI present experiments and benchmark tests.
Finally, Section VII discusses results and conclusions.

II. INFORMATION BOTTLENECK (IB) PRINCIPLE

The IB principle [8], [12] is a distributional clustering frame-
work based on information theoretic principles. It is inspired
from the Rate-Distortion theory [13] in which a set of elements

is organized into a set of clusters minimizing the distor-
tion between and . Unlike the Rate-Distortion theory, the
IB principle does not make any assumption about the distance
between elements of . On the other hand, it introduces the
use of a set of relevance variables which provides mean-
ingful information about the problem. For instance, in a docu-
ment clustering problem, the relevance variables could be repre-
sented by the vocabulary of words. Similarly, in a speech recog-
nition problem, the relevance variables could be represented as
the target sounds. IB tries to find the clustering representation
that conveys as much information as possible about . In this
way, the IB clustering attempts to keep the meaningful informa-
tion with respect to a given problem.

Let be the set of variables of interest associated with
such that and the conditional distribution

is available. Let clusters be a compressed represen-
tation of input data . Thus, the information that contains
about is passed through the compressed representation
(bottleneck) . The IB principle states that this clustering
representation should preserve as much information as possible
about the relevance variables (i.e., maximize ) under
a constraint on the mutual information between and , i.e.,

. Dually, the clustering should minimize the coding
length (or the compression) of using i.e., under
the constraint of preserving the mutual information .
In other words, IB tries to find a tradeoff between the most

compact and most informative representation w.r.t. variables
. This corresponds to maximization of the following criterion:

(1)

where (notation consistent with [8]) is the Lagrange multiplier
representing the trade off between amount of information pre-
served and the compression of the initial representation

.
Let us develop mathematical expressions for and

. The compression of the representation is character-
ized by the mutual information

(2)

The amount of information preserved about in the repre-
sentation is given by

(3)

The objective function must be optimized w.r.t the sto-
chastic mapping that maps each element of the dataset

into the new cluster representation .
This minimization yields the following set of self-consistent

equations that defines the conditional distributions required to
compute mutual informations (2) and (3) (see [8] for details)

(4)

where is a normalization function and repre-
sents the Kullback–Liebler divergence given by

(5)

We can see from the system of (4) that as the sto-
chastic mapping becomes a hard partition of , i.e.,

can take values 0 and 1 only.
Various methods to construct solutions of the IB objective

function include iterative optimization, deterministic annealing,
agglomerative and sequential clustering (for exhaustive review,
see [12]). Here, we focus only on two techniques referred to
as agglomerative and sequential information bottleneck, which
will be briefly presented in the next sections.

A. Agglomerative Information Bottleneck

Agglomerative Information Bottleneck (aIB) [9] is a greedy
approach to maximize the objective function (1). The aIB algo-
rithm creates hard partitions of the data. The algorithm is ini-
tialized with the trivial clustering of clusters, i.e., each data
point is considered as a cluster. Subsequently, elements are iter-
atively merged such that the decrease in the objective function
(1) at each step is minimum.
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The decrease in the objective function obtained by
merging clusters and is given by

(6)

where is given as a combination of two Jensen–Shannon
divergences

(7)

where denotes the Jensen–Shannon (JS) divergence between
two distributions and is defined as

(8)

(9)

with

(10)

(11)

The objective function (1) decreases monotonically with the
number of clusters. The algorithm merges cluster pairs until the
desired number of clusters is attained. The new cluster ob-
tained by merging the individual clusters and is character-
ized by

(12)

(13)

It is interesting to notice that the JS divergence is not an ar-
bitrarily introduced similarity measure between elements but a
measure that naturally arises from the maximization of the ob-
jective function. For completeness we report the full procedure
described in [12] in Fig. 1.

However, at each agglomeration step, the algorithm takes the
merge decision based only on a local criterion. Thus, aIB is a
greedy algorithm and produces only an approximation to the
optimal solution which may not be the global solution to the
objective function.

B. Sequential Information Bottleneck

Sequential Information Bottleneck (sIB) [10] tries to im-
prove the objective function (1) in a given partition. Unlike
agglomerative clustering, it works with a fixed number of
clusters . The algorithm starts with an initial partition of
the space into clusters . Then some element

is drawn out of its cluster and represents a new sin-
gleton cluster. is then merged into the cluster such that

where is as defined in (6).

It can be verified that if then ,
i.e., at each step the objective function (1) either improves

Fig. 1. Agglomerative IB algorithm [12].

or stays unchanged. This is performed for each . This
process is repeated several times until there is no change in
the clustering assignment for any input element. To avoid local
maxima, this procedure can be repeated with several random
initializations. The sIB algorithm is summarized for complete-
ness in Fig. 2.

III. MODEL SELECTION

In typical diarization tasks, the number of speakers in a
given audio stream is not a priori known and must be estimated
from data. This means that the diarization system has to solve
simultaneously two problems: finding the actual number of
speakers and clustering together speech from the same speaker.
This problem is often cast into a model selection problem. The
number of speakers determines the complexity of the model in
terms of number of parameters. The model selection criterion
chooses the model with the right complexity and thus the
number of speakers. Let us consider the theoretical foundation
of model selection.

Consider a dataset , and a set of parametric models
where is a parametric model with param-

eters trained on the data . Model selection aims at finding the
model such that

(14)
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Fig. 2. Sequential IB algorithm [12].

Given that is constant and assuming uniform prior prob-
abilities on models , maximization of (14) only de-
pends on . In case of parametric modeling with param-
eter set , e.g., HMM/GMM, it is possible to write

(15)

This integral cannot be computed in closed form in the case of
complex parametric models with hidden variables (e.g., HMM/
GMM). However, several approximations for (15) are possible,
the most popular one being the Bayesian Information Criterion
(BIC) [2]

(16)

where is the number of free parameters in the model ,
is the MAP estimate of the model computed from data , and

is the number of data samples. The rationale behind (16) is
straightforward: models with larger numbers of parameters will
produce higher values of but will be more pe-
nalized by the term . Thus, the optimal model is the
one that achieves the best tradeoff between data explanation and

complexity in terms of number of parameters. However, BIC is
exact only in the asymptotic limit . It has been shown
[1] that in the finite sample case, like in speaker clustering prob-
lems, the penalty term must be tuned according to a heuristic
threshold. In [3], [4], [21], a modified BIC criterion that needs
no heuristic tuning has been proposed and will be discussed in
more details in Section VI-A.

In the case of IB clustering, there is no parametric model
that represents the data and model selection criteria based on
a Bayesian framework like BIC cannot be applied. Several al-
ternative solutions have been considered in the literature.

Because of the information theoretic basis, it is straightfor-
ward to apply the Minimum Description Length (MDL) prin-
ciple [22]. The MDL principle is a formulation of the model
selection problem from an information theory perspective. The
optimal model minimizes the following criterion:

(17)

where is the code length to encode the model with a fixed
length code and is the code length required to encode
the data given the model. As model complexity increases, the
model explains the data better, resulting in a decrease in number
of bits to encode the data given the model (lower ).
However, the number of bits required to encode the model in-
creases (high ). Thus, MDL selects a model that has the
right balance between the model complexity and data descrip-
tion.

In case of IB clustering, let be the number of input
samples, and the number of clusters. The number
of bits required to code the model and the data given the
model is

(18)

(19)

Since the MDL criterion becomes

(20)

Similar to the BIC criterion, acts like a penalty
term that penalizes codes that uses too many clusters.

When aIB clustering is applied, expression (20) is evaluated
for each stage of the agglomeration that produces different
clustering solutions ranging from each input element considered
as a singleton cluster to all input elements assigned
to one cluster . Then, the number of clusters that
minimizes (20) is selected as the actual number of speakers.

Another way of inferring the right number of clusters
can be based on the Normalized mutual information (NMI)

. The NMI represents the
fraction of original mutual information that is captured by
the current clustering representation. This quantity decreases
monotonically with the number of clusters (see Fig. 3). It can
also be expected that this quantity will decrease more when
dissimilar clusters are merged. Hence, we investigate a simple
thresholding of as a possible choice to de-
termine the number of clusters. The threshold is heuristically
determined on a separate development data set.
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Fig. 3. Normalized mutual information decreases monotonically with the
number of clusters.

IV. APPLYING IB TO DIARIZATION

To apply the Information Bottleneck principle to the diariza-
tion problem, we need to define input variables to be clustered
and the relevance variables representing the meaningful infor-
mation about the input.

In the initial case of document clustering, documents repre-
sent the input variable . The vocabulary of words is selected
as the relevance variable. Associated conditional distributions

are the probability of each word in document .
Documents can be clustered together with IB using the fact that
similar documents will have similar probabilities of containing
the same words.

In this paper, we investigate the use of IB for clustering of
speech segments according to cluster similarity. We define in the
following the input variables , the relevance variables

and the conditional probabilities .

A. Input Variables

The short-time Fourier transform (STFT) of the input audio
signal is computed using 30-ms windows shifted by a step of 10
ms. Nineteen Mel frequency cepstral coefficients (MFCCs) are
extracted from each windowed frame. Let be the
extracted MFCC features. Subsequently, a uniform linear seg-
mentation is performed on the feature sequence to obtain seg-
ments of a fixed length (typically 2.5 s). The input variables

are defined as the set of these segments .
Thus, each segment consists of a sequence of MFCC fea-
tures .

If the length of the segment is small enough, may be con-
sidered as generated by a single speaker. This hypothesis is gen-
erally true in case of Broadcast News audio data. However, in
case of conversational speech with fast speaker change rate and
overlapping speech (like in meeting data), initial segments may
contain speech from several speakers.

B. Relevance Variables

Motivated by the fact that GMMs are widely used in speaker
recognition and verification systems (see, e.g., [23]), we choose
the relevant variables as components of a GMM

estimated from the meeting data. A shared covariance matrix
GMM is estimated from the entire audio file. The number of
components of the GMM is fixed proportional to the length of
the meeting, i.e., the GMM has components where is
the length of the audio stream (in seconds) and is length of
segments (in seconds) defined in Section IV-A.

The computation of conditional probabilities
is straightforward. Consider a GMM

, where is the number of components,
are weights, means, and covariance matrices. It is

possible to project each speech frame onto the space of
Gaussian components of the GMM. Adopting the notation used
in previous sections, the space induced by GMM components
would represent the relevance variable .

Computation of is then simply given by

(21)

The probability estimates the relevance that the
component in the GMM has for speech frame . Since seg-
ment is composed of several speech frames , distribu-
tions can be averaged over the length of the segment
to get the conditional distribution .

In other words, a speech segment is projected into the space
of relevance variables estimating a set of conditional proba-
bilities .

C. Clustering

Given the variables and , the conditional probabilities
, and tradeoff parameter , Information Bottleneck

clustering can be performed. The diarization system involves
two tasks: finding the number of clusters (i.e., speakers) and an
assignment for each speech segment to a given cluster.

The procedure we use is based on the agglomerative IB de-
scribed in Section II-A. The algorithm is initialized with
clusters with and agglomerative clustering is per-
formed, generating a set of possible solutions in between and
1 clusters.

Out of the possible clustering solutions of aIB, we
choose one according to the model selection criteria described
in Section III, i.e., MDL or NMI.

However, agglomerative clustering does not seek the global
optimum of the objective function and can converge to local
minima. For this reason, the sIB algorithm described in
Section II-B can be applied to improve the partition. Given that
sIB works only on fixed cardinality clustering, we propose to
use it to improve the greedy solution obtained with the aIB.

To summarize, we study the following four different types of
clustering/model selection algorithms:

1) agglomerative IB + MDL model selection;
2) agglomerative IB + NMI model selection;
3) agglomerative IB + MDL model selection + sequential IB;
4) agglomerative IB + NMI model selection + sequential IB.

D. Diarization Algorithm

We can summarize the complete diarization algorithm as fol-
lows.
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1) Extract acoustic features from the audio
file.

2) Speech/nonspeech segmentation and reject nonspeech
frames.

3) Uniform segmentation of speech in chunks of fixed size D,
i.e., definition of set .

4) Estimation of GMM with shared diagonal covariance ma-
trix, i.e., definition of set .

5) Estimation of conditional probability .
6) Clustering based on one of the methods described in

Section IV-C.
7) Viterbi realignment using conventional GMM system esti-

mated from previous segmentation.
Steps 1 and 2 are common to all diarization systems. Speech

is segmented into fixed length segments in step 3. This step tries
to obtain speech segments that contain speech from only one
speaker. We use a uniform segmentation in this work though
other solutions like speaker change detection or K-means algo-
rithm could be employed.

Step 4 trains a background GMM model with shared covari-
ance matrix from the entire audio stream. Though we use data
from the same meeting, it is possible to train the GMM on a large
independent dataset, i.e., a universal background model (UBM)
can be used.

Step 5 involves conditional probability estimation. In
step 6, clustering and model selection are performed on the basis
of the Information Bottleneck principle.

Step 7 refines initial uniform segmentation by performing
a set of Viterbi realignments. This step modifies the speaker
boundaries and is discussed in the following section.

E. Viterbi Realignment

As described in Section IV-A, the algorithm clusters speech
segments of a fixed length D. Hence, the cluster boundaries
obtained from the IB are aligned with the endpoints of these
segments. Those endpoints are clearly arbitrary and can be im-
proved by realigning the whole meeting using a Viterbi algo-
rithm.

The Viterbi realignment is performed using an ergodic HMM.
Each state of the HMM represents a speaker cluster. The state
emission probabilities are modeled with GMMs, with a min-
imum duration constraint. Each GMM is initialized with a fixed
number of components.

The IB clustering algorithm infers the number of clusters
and the assignment from segments to clusters. A separate
GMM for each cluster is trained using data assignment produced
by the IB clustering. The whole meeting data is then realigned
using the ergodic HMM/GMM models. During the realignment,
a minimum duration constraint of 2.5 s is used as well.

V. EFFECT OF SYSTEM PARAMETERS

In this section, we study the impact of the tradeoff param-
eter (Section V-B), the performance of the agglomerative and
sequential clustering (Section V-C), the model selection crite-
rion (Section V-D) and the effect of the Viterbi realignment
(Section V-E) on development data.

A. Data Description

The data used for the experiments consist of meeting record-
ings obtained using an array of far-field microphones also
referred as MDMs. Those data contain mainly conversational
speech with high speaker change rate and represent a very
challenging data set.

We study the impact of different system parameters on the
development dataset which contains meetings from previous
years’ NIST evaluations for “Meeting Recognition Diariza-
tion” task [14]. This development dataset contains 12 meeting
recordings each one around 10 min. The best set of parameters
is then used for benchmarking the proposed system against a
state-of-the-art diarization system. Comparison is performed
on the NIST RT06 evaluation data for “Meeting Recogni-
tion Diarization” task. The dataset contains nine meeting
recordings of approximately 30 min each. After evaluation,
the TNO_20041103-1130 was found noisy and was not in-
cluded in the official evaluation. However, results are reported
with/without this meeting in the literature [24], [25]. We
present results with and without this meeting for the purpose of
comparison.

Preprocessing consists of the following steps: signals
recorded with MDMs are filtered using a Wiener filter de-
noising for individual channels followed by a delay-and-sum
beamforming [15], [26]. This was performed using the Beam-
formIt toolkit [27]. Such preprocessing produces a single
enhanced audio signal from individual far-field microphone
channels. Nineteen MFCC features are then extracted from the
beam-formed signal.

The system performance is evaluated in terms of Diarization
Error Rates (DERs). DER is the sum of missed speech errors
(speech classified as nonspeech), false alarm speech error (non-
speech classified as speech), and speaker error [28]. Speech/
nonspeech (spnsp) error is the sum of missed speech and false
alarm speech. For all experiments reported in this paper, we in-
clude the overlapped speech in the evaluation.

Speech/nonspeech segmentation is obtained using a forced
alignment of the reference transcripts on close talking micro-
phone data using the AMI RT06 first pass ASR models [29].
Results are scored against manual references force aligned by an
ASR system. Being interested in comparing the clustering algo-
rithms, the same speech/nonspeech segmentation will be used
across all experiments. The missed speech, false alarm speech
and total speech/nonspeech error for all meetings in the devel-
opment dataset and evaluation dataset are listed in Table I and
Table II, respectively.

B. Tradeoff

The parameter represents the tradeoff between the amount
of information preserved and the level of compression. To de-
termine its value, we studied the diarization error of the IB algo-
rithm in the development dataset. The performance of the algo-
rithm is studied by varying on a log-linear scale and applying
aIB clustering. The optimal number of clusters is chosen ac-
cording to an oracle. Thus, the influence of the parameter can be
studied independently of model selection methods or thresholds.
The Diarization Error Rate (DER) of the development dataset
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TABLE I
MISSED SPEECH, FALSE ALARM, AND TOTAL SPEECH/NONSPEECH

ERROR FOR THE DEVELOPMENT DATASET

TABLE II
MISSED SPEECH, FALSE ALARM, AND TOTAL SPEECH/NONSPEECH

ERROR FOR THE EVALUATION DATASET

Fig. 4. Effect of varying parameter � on the diarization error for the develop-
ment dataset. The optimal � is chosen as � � ��.

for different values of beta is presented in Fig. 4. These re-
sults do not include Viterbi realignment. The value of
produce the lowest DER. In order to understand how the op-
timal value of changes across different meetings, we report in
Table III optimal for each meeting, DER for the optimal and
for . In eight meetings out of the 12, the that produces
the lowest DER is equal to 10. In four meetings the optimal is
different from 10, but only in one (CMU_20050228) the DER is
significantly different from the one obtained using . To
summarize the optimal value of seems to be consistent across
different meetings.

TABLE III
OPTIMAL VALUE FOR � FOR EACH MEETING IN THE DEVELOPMENT DATASET.

DER FOR THE OPTIMAL � AS WELL AS � � �� ARE REPORTED

Fig. 5 shows the DER curve w.r.t. number of clusters for two
meetings (LDC_20011116-1400 and CMU_20050301-1415).
It can be seen that the DER is flat for and does
not decrease with the increase in number of clusters. This
low value of implies more weighting to the regularization
term of the objective function in (1). Thus,
the optimization tries to minimize . The algorithm
uses hard partitions, i.e., , this leads to

and
as a result . Hence,
minimizing is equivalent to minimizing . Thus,

is minimized while clustering with low values of .
This leads to a highly unbalanced distribution where most of
the elements are assigned to one single cluster .
Thus, the algorithm always converges towards one large cluster
followed by several spurious clusters and the DER stays almost
constant. Conversely, when is high (e.g., ), the effect
of this regularization term vanishes. The optimization criterion
focuses only on the relevance variable set regardless
of the data compression. The DER curve thus becomes less
smooth.

For intermediate values of , the clustering seeks the most
informative and compact representation. For the value of

, the region of low DER is almost constant for compara-
tively more values of . In this case, the algorithm forms
large speaker clusters initially. Most of the remaining clusters
are small and merging these clusters does not change the DER
considerably. This results in a regularized DER curve as a func-
tion of number of clusters (see Fig. 5).

C. Agglomerative and Sequential Clustering

In this section, we compare the agglomerative and sequential
clustering described in Sections II-A and II-B on the develop-
ment data. As before, model selection is performed using an or-
acle and the value of is fixed at 10 as found in the previous sec-
tion. Agglomerative clustering achieves a DER of 13.3% while
sequential clustering achieves a DER of 12.4%, i.e., 1% abso-
lute better. Results are presented in Table IV. Improvements are
obtained on eight of the 12 meetings included in the develop-
ment data.

Also the additional computation introduced by the sequential
clustering is small when initialized with aIB output. The sIB
algorithm converges faster in this case than using random initial
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Fig. 5. DER as a function of number of clusters ����� for different values of parameter �.

TABLE IV
DIARIZATION ERROR RATE OF DEVELOPMENT DATA FOR INDIVIDUAL

MEETINGS FOR aIB AND aIB+sIB USING ORACLE MODEL

SELECTION AND WITHOUT VITERBI RE-ALIGNMENT

partitions (four iterations as compared to six iterations on an
average across the development dataset).

D. Model Selection

In this section, we discuss experimental results with the
model selection algorithms presented in Section III. Two
different model selection criteria— NMI and MDL—are in-
vestigated to select the number of clusters. They are compared
with an oracle model selection which manually chooses the
clustering with the lowest DER. The NMI is a monotonically
increasing function with the number of clusters. The NMI
value is compared against a threshold to determine the optimal
number of clusters in the model. Fig. 6 illustrates the change of
overall DER over the whole development dataset for changing
the value of this threshold. The lowest DER is obtained for
the value of 0.3. In order to understand how the optimal value
of the threshold changes across different meetings, we report
in Table V optimal threshold for each meeting, DER for the
optimal threshold and for threshold equal to 0.3. In eight out
the 12 meetings in the development data set, the threshold
that produces the lowest DER is equal to 0.3. Only in two
meetings (ICSI_20000807-1000 and NIST_20030925-1517)
results obtained with the optimal threshold are significantly

Fig. 6. Effect of varying NMI threshold on the diarization error for the devel-
opment dataset. The optimal threshold is fixed as 0.3.

different from those obtained with the value 0.3. To summarize
the optimal value of the threshold seems to be consistent across
different meetings.

The MDL criterion described in (20) is also explored for per-
forming model selection. Speaker error rates corresponding to
both the methods are reported in Table VI. The NMI criterion
outperforms the MDL model selection by 2%. The NMI cri-
terion is 2.5% worse than the oracle model selection.

E. Viterbi Realignment

The Viterbi realignment is carried out using an ergodic HMM
as discussed in Section IV-E. The number of components of
each GMM is fixed at 30 based on experiments on the devel-
opment dataset. The performance after Viterbi realignment is
presented in Table VI. The DER is reduced by roughly 3% ab-
solute for all the different methods. The lowest DER is obtained
using sequential clustering with NMI model selection.

VI. RT06 MEETING DIARIZATION

In this section, we compare the IB system with a state-of-
the-art diarization system based on HMM/GMM. Results are
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TABLE V
OPTIMAL VALUE FOR NMI THRESHOLD FOR EACH MEETING IN THE

DEVELOPMENT DATASET. THE DER IS REPORTED FOR THE OPTIMAL VALUE

AS WELL AS FOR 0.3. THE CLUSTERING IS PERFORMED WITH � � ��

TABLE VI
DIARIZATION ERROR RATES FOR DEV DATASET WITH

NMI, MDL, AND ORACLE MODEL SELECTION

provided for the NIST RT06 evaluation data. Section VI-A de-
scribes the baseline system while Section VI-B describes the
results of the IB-based system. Section VI-C compares the com-
putational complexity of the two systems.

A. Baseline System

The baseline system is an ergodic HMM as described in [3],
[15]. Each HMM state represents a cluster. The state emission
probabilities are modeled by GMMs with a minimum duration
constrain of 2.5 s. Nineteen MFCC coefficients extracted from
the beam-formed signal are used as the input features. The al-
gorithm follows an agglomerative framework, i.e., it starts with
a large number of clusters (hypothesized speakers) and then it-
eratively merges similar clusters until it reaches the best model.
After each merge, data are realigned using a Viterbi algorithm
to refine speaker boundaries.

The initial HMM model is built using uniform linear seg-
mentation and each cluster is modeled with a five-component
GMM. The algorithm then proceeds with bottom-up agglomer-
ative clustering of the initial cluster models [1]. At each step, all
possible cluster merges are compared using a modified version
of the BIC criterion [2], [3] which is described below.

Consider a pair of clusters and with associated data
and , respectively. Also let the number of parameters for
modeling each cluster respectively be and parameterized
by the GMM models and . Assume the new cluster
having data obtained by merging and is modeled with
a GMM model parameterized by Gaussians. The pair of
clusters that results in the maximum increase in the BIC crite-
rion [given by (16)] are merged

BIC BIC BIC (22)

TABLE VII
RESULTS OF THE BASELINE SYSTEM

TABLE VIII
DIARIZATION ERROR RATE FOR RT06 EVALUATION DATA

In [3], the model complexity (i.e., the number of parameters)
before and after the merge is made the same. This is achieved
by keeping the number of Gaussians in the new model the
same, i.e., as the sum of number of Gaussians in and ,
i.e., . Under this condition, (22) reduces to

(23)

This eliminates the need of the penalty term from the BIC. Fol-
lowing the merge, all cluster models are updated using an EM
algorithm. The merge/reestimation continues until no merge re-
sults in any further increase in the BIC criterion. This deter-
mines the number of clusters in the final model. This approach
yields state-of-the art results [15] in several diarization evalu-
ations. The performance of the baseline system is presented in
Table VII. The table lists missed speech, false alarm, speaker
error, and diarization error.1

B. Results

In this section, we benchmark the IB based diarization system
on RT06 data. The same speech/nonspeech segmentation is used
for all methods. According to the results of previous sections the
value of is fixed at 10. The NMI threshold value is fixed at 0.3.
Viterbi realignment of the data is performed after the clustering
with a minimum duration constrain of 2.5 s to refine cluster
boundaries.

Table VIII reports results for aIB and aIB+sIB clustering both
with/without TNO meeting. Conclusions are drawn on the orig-
inal data set. Results for both NMI and MDL criteria are re-
ported. NMI is more effective than MDL by 0.7%. Sequential
clustering (aIB+sIB) outperforms agglomerative clustering by
0.5%. As in the development data, the best results are obtained
by aIB+sIB clustering with NMI model selection. This system
achieves a DER of 23.2% as compared to 23.6% for the baseline
system.

Table IX reports diarization error for individual meetings of
the RT06 evaluation data set. We can observe that overall perfor-
mances are very close to those of the baseline system but results
per meeting are quite different. This difference can be mainly

1We found that one channel of the meeting in RT06 denoted with
VT_20051027-1400 is considerably degraded. This channel was removed
before beamforming. This produces better results for both baseline and IB
systems compared to those presented in [16].
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TABLE IX
DIARIZATION ERROR RATE FOR INDIVIDUAL MEETINGS

USING NMI MODEL SELECTION

TABLE X
ESTIMATED NUMBER OF SPEAKERS BY DIFFERENT

MODEL SELECTION CRITERIA

attributed to the different optimization criteria used by the two
systems—BIC criterion for the baseline system and IB criterion
for the proposed system.

Furthermore, the IB clustering is based on the use of a set
of relevance variables defined as the components of a back-
ground GMM. The GMM is estimated using data from the same
meeting. As variations in signal properties like signal-to-noise-
ratio (SNR) and amount of overlapping speech can deteriorate
the quality of the GMM thus the clustering results. For instance,
the performance of the IB system are comparatively low for
CMU meetings which contain large amounts of overlapping
speech and low SNR. On the other hand, IB performs consider-
ably better then the baseline system on VT meetings that have
high SNR and TNO meeting which has very less overlapping
speech.

Table X shows the number of speakers estimated by different
algorithms for the RT06 eval data. The number of speakers is
mostly higher than the actual. This is due to the presence of
small spurious clusters with very short duration (typically less
than 5 s). However those small clusters does not significantly
affect the final DER.

C. Algorithm Complexity

Both the IB bottleneck algorithm and the baseline
HMM/GMM system use the agglomerative clustering frame-
work. Let the number of clusters at a given step in the
agglomeration be K. At each step, the agglomeration algorithm
needs to calculate the distance measure between each pair of
clusters, i.e., distance calculations. Let us
consider the difference between the two methods.

• In the HMM/GMM model, each distance calculation in-
volves computing the BIC criterion as given by (23). Thus,

TABLE XI
REAL TIME FACTORS FOR DIFFERENT ALGORITHMS ON RT06 EVAL DATA

a new parametric model has to be estimated for every
possible merge. This requires training a GMM model for
every pair of clusters. The training is done using the EM
algorithm which is computationally demanding. In other
words, this method involves the use of EM parameter esti-
mation for every possible cluster merge.

• In the IB framework, the distance measure is the sum of
two Jensen–Shannon divergences as described by (7). The
JS divergence calculation is straightforward and compu-
tationally very efficient. Thus, the distance calculation
in the IB frame work is much faster as compared to the
HMM/GMM approach. The distribution obtained merging
two clusters is given by (12), (13) which simply consists
in averaging distributions of individual clusters.

In summary, while the HMM/GMM systems make intensive use
of the EM algorithm, the IB-based system performs the clus-
tering in the space of discrete distributions using closed form
equations for distance calculation and cluster distribution up-
date. Thus, the proposed approach require less computation than
the baseline.

We perform benchmark experiments on a desktop machine
with AMD Athlon 2.4-GHz 64 X2 Dual Core Processor and 2
GB of RAM. Table XI lists the real time factors for the baseline
and IB-based diarization systems for the RT06 meeting diariza-
tion task. It can be seen that the IB-based systems are signifi-
cantly faster than HMM/GMM-based system. Note that most of
the algorithm time for IB systems is consumed for estimating
the posterior features. The clustering is very fast and takes only
around 30% of the total algorithm time. Also, introducing the se-
quential clustering contributes very little to the total algorithm
time ( 8%). Overall the proposed diarization system is consid-
erably faster than-real time.

VII. DISCUSSIONS AND CONCLUSION

We have presented speaker diarization systems based on the
information theoretic framework known as the Information Bot-
tleneck. This system can achieve Diarization Error rates close
to those obtained with conventional HMM/GMM agglomera-
tive clustering. In the following, we discuss main differences
between this framework and traditional approaches.

• Distance measure: in the literature, several distance mea-
sures have already been proposed for clustering speakers,
e.g., BIC, generalized log-likelihood ratio, KL divergence
and cross-likelihood distances. The IB principle states that
when the clustering seeks the solution that preserves as
much information as possible w.r.t a set of relevance vari-
ables, the optimal distance between clusters is represented
by the Jensen–Shannon divergence [see (8)]. JS divergence
can be written as the sum of two KL divergences and has
many appealing properties related to Bayesian error (see
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[30] for detailed discussion). This similarity measure be-
tween clusters is not arbitrarily introduced but is naturally
derived from the IB objective function (see [9]).

• Regularization: The tradeoff parameter between amount
of mutual information and compression regularizes the
clustering solution as shown in Section V-B. We verified
that this term can reduce the DER and make the DER
curve more smooth against the number of clusters.

• Parametric Speaker Model: HMM/GMM-based systems
build an explicit parametric model for each cluster and
for each possible merge. This assumes that each speaker
provides enough data for estimating such a model. On the
other hand, the system presented here is based on the dis-
tance between clusters in a space of relevance variables
without any explicit speaker model. The set of relevance
variables is defined through a GMM estimated on the entire
audio stream. Furthermore the resulting clustering tech-
niques are significantly faster than conventional systems
given that merges are estimated in a space of discrete prob-
abilities.

• Sequential clustering: Conventional systems based on ag-
glomerative clustering (aIB) can produce suboptimal so-
lutions due to their greedy nature. Conversely, sequential
clustering (sIB) seeks a global optimum of the objective
function. In Sections V-C and VI-B, it is shown that se-
quential clustering outperforms agglomerative clustering
by 1% on development and 0.5% evaluation data sets.
The sequential clustering can be seen as a “purification”
algorithm. In the literature, methods aiming at obtaining
clusters that contain speech from a single speaker are re-
ferred to as “purification” methods. They refine the ag-
glomerative solution according to smoothed log-likelihood
[31] or cross expectation-maximization between models
[32] for finding frames that were wrongly assigned. In case
of sIB, the purification is done according to the same ob-
jective function, and the correct assignment of each speech
segment is based on the amount of mutual information it
conveys on the relevance variables. Furthermore, as re-
ported in Table XI, its computational complexity is only
marginally higher than the one obtained using agglomera-
tive clustering.

In conclusion, the proposed system based on the IB prin-
ciple can achieve on RT06 evaluation data a DER of 23.2%
as compared to 23.6% of HMM/GMM baseline while running

, i.e., significantly faster than the baseline system.
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