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Abstract—This paper presents a bottom-up approach that
combines audio and video to simultaneously locate individual
speakers in the video (2-D source localization) and segment their
speech (speaker diarization), in meetings recorded by a single
stationary camera and a single microphone. The novelty lies in
using motion information from the entire body rather than just
the face to perform these tasks, which permits processing non-
frontal views unlike previous work. Since body-movements do
not exhibit instantaneous signal-level synchrony with speech, the
approach targets long term co-occurrences between audio and
video subspaces. First, temporal clustering of the audio produces
a large number of intermediate clusters, each containing speech
from only a single speaker. Then, spatial clustering is performed
in the video frames of each cluster by a novel eigen-analysis
method to find the region of dominant motion. This region is
associated with the speech assuming that a speaker exhibits
more movement than the listeners. Thus partial diarization
and localization is obtained from the intermediate clusters.
Speech from an intermediate cluster is modeled by a mixture
of Gaussians and the speaker’s location is represented by an
eigen-blob model. In the ensuing iterative clustering stage, the
diarization and localization results are progressively refined by
merging the closest pair of clusters and updating the models until
a stop criterion is met. Ideally, each final cluster contains all the
speech from a single speaker and the corresponding eigen-blob
model localizes the speaker in the image. Experiments conducted
on 21 hours of real data indicate that the proposed localization
approach leads to a relative improvement of 40% over Mutual
Information based localization and that speaker diarization
improves by 16% by incorporating visual information. The
proposed approach does not require training and does not rely
on a priori hand/face/person detection.

Index Terms—Audio-visual association, Meeting analysis,
Speaker localization, Speaker diarization.

I. I NTRODUCTION

M EETINGS are an integral part of our daily lives, where
information is disseminated, ideas are discussed and

decisions are taken. Consequently, many organizations have
begun archiving their meetings for future review. However,to
be of practical use, these large and constantly growing archives
should be comprehensively indexed so that they may support
a variety of queries such as query for a discussion topic, or
for an individual’s comments, or for specific activities such as
presentations and note-taking. Determining who spoke when
(speaker diarization) and locating the current speaker (speaker
localization) are prerequisites for such queries, as well as for
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higher level tasks such as generating audio-visual summaries
and meeting transcripts.

The semantic analysis of meetings is receiving considerable
interest, sparking evaluations such as the ones by NIST [7]
and CLEAR [22], where meetings are recorded in special
rooms rigged with multiple microphones and cameras. How-
ever, this work focuses on meetings recorded by a simple
setup consisting of asingle cameraand asingle microphone,
because of its broader applicability. As everyday devices such
as laptops, PDAs and cell phones have become capable of
video recordings, such devices can be used to record a group
meeting, effectively converting any location into a meeting
room. Also, techniques developed for this constrained setup
can be used for surveillance applications, where covertness
requires using a simple portable recorder.

In previous work on speaker diarization and localization
in the single camera, single microphone scenario, the prob-
lem is posed as one of detecting synchronous audio-visual
events. Mutual information (MI) based approaches have been
successfully demonstrated in situations where the faces are
frontal and have a high resolution. Since the speaker’s faceand
lips are clearly visible when speech is heard, an instantaneous
synchrony exists between the audio and video, which is
successfully exploited by MI based approaches.

However, meeting room videos are quite different as multi-
ple persons are seated facing each other and not the camera.
Thus the faces are not necessarily frontal. Also, since the
camera is placed much farther from the participants, faces
have a low resolution. As a result, a person’s lips may not
be clearly visible when they speak. Additionally, participants
often exhibit a high degree of movement for short intervals
even when they do not speak such as when taking notes,
sipping coffee, or swiveling in a chair, and such movements
are falsely associated with the speech. For these reasons, we
find that MI based approaches do not perform well on meeting
datasets [24].

We propose a different framework for audio-visual inte-
gration motivated by the following observations. A strong
synchrony exists between the lip movements of a speaker and
the resultant speech which has been exploited in MI based
works. There also exists a loose association between a person’s
speech and head/hand gestures which has been demonstrated
in works such as [19], [25]. In addition to the relation of
speech with lips and gestures, we observe that in general a
person exhibits more movement during speech. To maintain
eye contact, the head turns from one listener to the other
and usually bobs up and down during speech because of jaw
movements. Also, the speaker’s hands and shoulders move
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Fig. 1. System Flowchart: Audio and video features are fusedto form a joint feature stream which is partitioned using theBayesian Information Criterion
(BIC) into atomic temporal primitives (ATPs). ATPs are groupedinto intermediate clusters by Graph Spectral Clustering. This is followed by an iterative
clustering stage that produces one cluster per speaker.

involuntarily when an idea is expressed.
Such movements are not synchronized with speech, i.e.

there does not exist an instantaneous mapping between audio
and video features. Rather, there exists a long term co-
occurrence of speech and movement, i.e. over longer durations,
people exhibit more body movements when speaking than
when listening. We exploit this phenomenon of co-occurrence
of speech and body movements to perform speaker diarization
and localization, assuming that in general a speaker moves
more than a listener.

The flowchart in Figure 1 illustrates our approach. Audio
and video features are concatenated to obtain a joint fea-
ture stream. The Bayesian information criterion (BIC) finds
changepoints in this stream, which are frames where there
is a discontinuity in the audio-visual pattern, signaling a
change in speaker. These changepoints partition the streaminto
contiguous atomic temporal primitives (ATPs) that are of short
durations and have homogeneous audio-visual characteristics.

In the next step, graph spectral clustering (GSC), groups
together ATPs based on their audio content into intermediate
clusters, which are further processed in an iterative framework.
Audio and video models are built from the intermediate
clusters and used to compute distances between each pair
of clusters. In each iteration, the closest pair of clustersare
merged and new models are built from it. Since the merged
cluster is of longer duration, a video model built from it will
lead to better speaker localization, which in turn will positively
influence the clustering procedure in the next iteration. This
clustering-modeling cycle continues till a stop criterionis met,
resulting in the final clusters. Ideally, each of the final clusters
contains all the speech from a single person, effectively
performing speaker diarization and the cluster’s video model
localizes the speaker in the video.

The outline of the rest of this paper is as follows. The
creation of a joint feature stream and its partitioning intoATPs
is described in section III. Section IV deals with clustering
ATPs into intermediate clusters and the iterative audio-visual
clustering framework. Section V presents the improvements
in diarization by incorporating video and compares eigen-
blob and MI based localization results. Section VI carries the
conclusions while the next section surveys related work.

II. RELATED WORK

Person detection/tracking and speaker diarization are tasks
that have been heavily studied by the computer vision, and

signal processing communities, respectively. Lately, there has
been much emphasis on integrating audio and video to jointly
perform these tasks in meeting rooms [3], [6], [11]. Pro-
grams such as theRich Transcription evaluation (RT)[7]
and theCLassification of Events Activities and Relationships
(CLEAR)[22] aim to further such research. Their focus is on
data collected insmart rooms, rigged with multiple sensors.
Additionally, there is significant work on diarization and
localization in the single camera and/or single microphone
scenario, which we review here.

Speaker diarization and localization has been performed
using only a single camera when the speaker’s face is frontal,
unoccluded, and exhibits more movement than other faces in
the image. The approach involves using a face detector to
locate all faces in the image and then using motion in the
region around the face [14] or mouth [17] to determine the
speaker. Speaker diarization using a single audio channel relies
on the phenomenon that speech from different persons have
different spectral characteristics and diarization is performed
by unsupervised clustering of audio features [23].

The multimodal approach (single camera and single mi-
crophone) has usually been demonstrated in scenarios where
the speakers are facing the camera such as in broadcast news
videos or on the CUAVE [16] database. As a result, the faces
are frontal, and an instantaneous synchrony between the audio
and video signals exists. The problem is typically formulated
as finding projections that maximize the mutual information
between the projected audio and video signals. Works in this
category [5], [8], [10], [12], [21] differ based on the choice of
audio and video representations, whether or not the features
are projected onto a learned subspace before modeling, and the
paradigm used to model the audio, video, and joint signals.

The audio signal is typically represented by MFCCs, LPCs,
or a spectrogram. The video signal is represented by image
intensity, image differences, or DCT coefficients. The audio
and video features are either modeled directly or training
data is used to learn an optimal subspace that maximizes
synchrony between the projected features. Either parametric
(usually Gaussian) or non-parametric models have been used
to model the signals. In works such as [1], [13], audio-visual
association is performed based on short-term co-occurrences
between audio and video primitives.

All of the above works model relationships between the
audio and video signals by finding image regions that are
synchronized with the audio. Their assumption is that the
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underlying cause which produces the audio and video signals,
always expresses itself in both modalities and that this rela-
tionship is instantaneous. Although the assumption holds for
cases where two people are facing the camera and taking turns
at speaking or when the object generating the sound is visible,
it does not hold for meetings captured by a single camera as
all faces are not frontal. This leads to the poor performance
of such approaches for meeting scenarios.

Audio-only speaker diarization involves unsupervised clus-
tering of audio features and video-only person detection in-
volves clustering pixels in the images space based on appear-
ance and/or motion models. On the other hand, audio-visual
synchrony methods seek correlations between speech features
and image pixels, without explicitly clustering in individual
sub-spaces. The proposed approach seeks to combine these
three facets - by first over-clustering in the audio subspace
to find longer temporal durations when a person is speaking.
Next, clustering is performed in the video-space by grouping
pixels with high covariance in frames from these durations.
The audio and video clusters thus obtained are associated with
the same person, assuming that the dominant motion in video
frames is due to the speaker’s movements.

III. A TOMIC TEMPORAL PRIMITIVES

The first step of our approach involves partitioning the
meeting into contiguous durations that we term as Atomic
Temporal Primitives (ATPs). The ATPs should be homoge-
neous - i.e. each ATP should contain speech and movement
from only a single speaker. This partitioning step is very
similar to the segmentation task in speaker diarization, where
changepoints are sought in the audio stream that indicate a
change in speaker. The BIC framework [4] which has proven
effective for audio segmentation, is used in this work to find
ATP boundaries in the joint-feature stream.

However, we also incorporate video information to detect
such changepoints, motivated by the following observation:
A change in speaker is indicated by a change in the model
producing the audio features which is the premise of the
audio-based BIC approach. Often times, a change in speaker
is also reflected by a change in the video dynamics. After a
person stops speaking, they often change posture - by leaning
back further into their chair indicating through a non-verbal
mechanism that the floor is open. Similarly, just prior to
speaking, a person attempts to gain their audience’s attention
by leaning forward or extending their arm into the common
space to indicate a desire to hold the floor. Thus a change
in speaker is also reflected by a change in the image regions
where motion occurs and this phenomenon can be exploited
to detect speaker changepoints.

Prior to performing segmentation, a speech/silence detector
is run to eliminate durations of silence from the recording.The
elimination of silence frames is necessary as video information
during silence adversely affects the segmentation performance
since motion during these frames is spurious in nature and not
related to speech activity . Secondly, since some meetings may
have extended durations of silence, eliminating these frames,
speeds up processing. After eliminating silence segments,ATP

boundaries are found from a joint feature stream produced
by concatenating audio and video features. Mel-Frequency
Cepstral coefficents (MFCCs), are used as the audio features.
The MFCCs are extracted using 32 filters with the bandwidth
ranging from 166 Hz to 4000 Hz. The MFCCs (A) are then
projected onto a PCA space to obtain a low dimensional
representation (A).

The video features which intend to capture motion, are
obtained using image differences (three frames apart). The
difference images are thresholded to suppress jitter and dilated
by a 3× 3 circular mask to enhance regions of motion. The
images are then downsampled from their original size of 480×
720 to 48× 72 and vectorized. The video features (V ) are then
projected onto their PCA space to obtain their projections (V).
A joint audio-visual subspace is obtained by concatenatingthe
projections using

X(t) =

[

sf ·A(t)
V(t)

]

(1)

Here A(t) = [A1(t),A2(t), . . . ,AdA(t)]T , where
A1(t),A2t, . . . ,AdA(t) are the PCA coefficients of the audio
features. Similarly,V(t) = [V1(t),V2(t), . . . ,VdV (t)]T , where
V1(t),V2t, . . . ,VdV (t) are the PCA coefficients of the video
features. The indext represents the frame number,dA anddV

represent the dimensionality of the audio and video features,
respectively anddX = dA + dV is the dimensionality of the
resulting joint feature (X). In our experiments,dA and dV

were chosen as 8 and 24, respectively, retaining 90% of the
original variance. The scaling factorsf is set to

√

|ΣV |/|ΣA|,
whereΣA and ΣV are the covariances of the audio and video
features, respectively. The scaling ensures that both features
contribute equally to the joint feature stream.

The joint feature stream is the partitioned into ATPs using
the Bayesian Information Criterion (BIC). For the mathemat-
ical and implementation details of BIC, we refer the reader
to [24], and provide an intuitive explanation here. The BIC
based segmentation operates on the principle that a sudden
change in the feature space is caused by a change in the
underlying model. A change in speaker, implies a change in the
audio model. Also, as mentioned earlier, there will be a change
in the image region where motion occurs. Since the difference
images are projected as a low-dimensional vector and modeled
by a unimodal multivariate Gaussian (across time), a change
in the image region will be modeled by a different Gaussian
model. The joint Gaussian is more sensitive to speaker changes
than models built for either audio or video alone. This however
comes at the cost of increased false detections due to the video
- such as when a person reaches out to grab a cup when
someone else is speaking. However, since ATPs can be merged
in the clustering stage, false detects are not as expensive as
missed detects.

IV. CLUSTERING AND LOCALIZATION

Once the feature stream has been split into ATPs, the
next goal is to merge all ATPs containing speech from the
same individual. The localization task involves determining
the image region in the video frames of those ATPs where
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the speaker is seated. These two tasks can be performed
sequentially - speaker diarization can be performed first using
only the audio and then video frames from the final clusters
can be analyzed to locate the speaker. Alternatively, sincethe
video contains information about the current speaker, both
audio and video features can be used from the ATPs to jointly
perform diarization and localization.

However, since individual ATPs tend to be of short dura-
tions, the visual information in them is not very consistent.
For example, where a person utters just a few sentences, we
observe that there is little accompanying motion and that this
situation exacerbates when the person is facing away from
the camera. Similarly an ATP can contain speech from one
person but motion from more than one individual - as occurs
when someone is taking notes. The hypothesis on which this
work is based, is that on an average, a speaker exhibits more
movement than a listener and this holds when considering
longer time durations. Thus, instead of obtaining video models
from the ATPs, the ATPs are first clustered using only the
audio to obtain fewer large clusters. Video models can be
reliably estimated from these larger intermediate clusters, and
then be used to influence diarization in the iterative diarization-
localization process.

The rest of this section is structured as follows. Subsec-
tion IV-A, describes the grouping of ATPs into intermediate
clusters. Subsection IV-B, deals with modeling the audio
and video features of these intermediate clusters and sub-
section IV-C describes the iterative diarization-localization
procedure.

A. Intermediate Clusters

The initial clustering of ATPs is performed using only audio
by modeling its MFCCs by a unimodal Gaussian with a full
covariance matrix. The clustering problem is formulated as
a graph partitioning problem. Each ATP is represented as a
node and the∆BIC distance distance [26] between each pair of
ATPs, serves as the edge weights to obtain a completely con-
nected graph. A recursive graph bi-partitioning algorithm[20]
is then used to group ATPs into sixteen clusters, motivated by
the observation that meetings usually contain less than sixteen
speakers and so the data is not under-clustered. Also at sixteen
clusters, we find for our dataset that each intermediate cluster
contains sufficient data to robustly estimate audio and video
models.

B. Audio and Video Models

Once the ATPs have been grouped into intermediate clus-
ters, audio models are built from them using the UBM-GMM
technique described in [18]. The features used for building
the models are the PCA projections of the MFCCs (A). In
this technique, first a Universal Background Model (UBM)
is built using the entire speech in the meeting. The UBM
is essentially a Gaussian mixture model withK mixtures,
Φu = {ωu

k,µ
u
k,Σ

u
k}, whereωu

k represent the weights (with the
constraint ∑K

k=1 ωu
k = 1), µu

k represents thedA dimensional
mean vectors andΣu

k are thedA×dA covariance matrices. In
our implementation, the UBM consists of eight Gaussians with

diagonal covariance matrices learned using the Expectation
Maximization (EM) algorithm.

From this UBM, we obtain GMMsΦi = {ωi
k,µ

i
k,Σ

i
k}, for

each intermediate audio clusterai , by adapting only the means
of Φu by amaximum a posteriori(MAP) adaptation [2]. Since
means of thekth component of all intermediate clusters are
adapted from the same mean (µu

k), there exists a one-one corre-
spondence between them. This allows us to efficiently compute
the distance between the audio models of two intermediate
clusters,ai anda j as

d(ai ,a j) =

√

K

∑
k=1

ωu
k(µ

i
k−µj

k)
T(Σu

k)
−1(µi

k−µj
k) (2)

whereµi
k andµj

k represent the means of thekth component
of intermediate audio clustersai anda j , respectively, andT is
the transpose operator. It was shown in [2] that this distance
is highly correlated with a Monte Carlo estimation of the KL2
distance, with the added advantage that it is much cheaper to
compute.

The intermediate clusters also serve as the starting point for
speaker localization. A video model is built from the video
features (V ) of each intermediate cluster by analyzing the
eigenvectors of its video features. Letvi represent the set of
video features from an intermediate video cluster and letΣvi

represent its covariance. Solving

Σvi E = ΛE (3)

we obtain the eigen-vectors ofΣvi as the column entries of
E, whereΛ is the corresponding eigen-value matrix.

Since eigen-vectors are projections that reduce the covari-
ance of the projected variables, they effectively group pixels
that move together. If the dominant speaker moves the most
in the set of frames, the primary eigenvector partitions the
image into two regions - one belonging to the speaker and the
other to spurious background movements. However, it cannot
be determined which of the two regions corresponds to the
speaker from only the primary eigenvector. Since the second
eigenvector is orthogonal to the first, it splits the dominant
component of the first eigenvector - which is the region that
represents the speaker’s location.

Mathematically, ife1 is the largest eigenvector ande2 is the
second largest eigenvector of frames from the intermediate
video clustervi , then the partr i which represents the selected
region ofe1 is given by

r i =

{

|e+
1 | if |eT

2 e+
1 | < |eT

2 e−1 |
|e−1 | if |eT

2 e−1 | < |eT
2 e+

1 |

}

(4)

where e+
1 and e−1 are the positive and negative parts of

the primary eigenvector, andT is the transpose operator. The
dominant regionr i is then normalized so that it sums to unity
and serves as the eigen-blob model for the video clustervi .
This eigen-blob model (r i) is basically a probability density
function representing the likelihood of a pixel belonging to
the speakers location.

Figure 2 illustrates the eigen-blob localization for two
intermediate clusters from a meeting of four people. The
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Fig. 2. Localization by the eigen-blob method. (a) and (e) show sample
images from two intermediate clusters in which the speaker is located at
the top-left and bottom-left, respectively. (b) and (f) showthe respective
principal eigenvectors. The second eigenvectors shown in (c) and (g), split
the dominant region (positive or negative) of the primary eigenvectors. The
dominant regions shown in (d) and (h) represent the speaker’slocation.

first eigenvector has non-zero components corresponding to
the moving parts of the image; in addition, the sign of the
eigenvector further divides the moving portions into two parts
(shown by two different colors). The second eigenvector,
which captures the next dominant mode of motion correlation
and is orthogonal to the first eigenvector, is used to identify
the portion from the speaker.

Intermediate clusters belonging to the same speaker should
have similar video characteristics. Specifically, the eigen-blob
models should overlap, and the degree of overlap can be
considered as a measure of similarity. Since the eigen-blob
models are non-parametric densities signifying the speaker’s
location within the image, the distance between two models
is computed using the symmetric Kullback-Leibler (KL2)
measure as

d(vi ,v j) =
1
2

(

∑
α

r i(α) log
r i(α)

r j(α)
+∑

α
r j(α) log

r j(α)

r i(α)

)

(5)

whereα is the variable that spans the eigen-space.
As a comparison to the eigen-blob localization approach,

we also implemented the mutual information (MI) based lo-
calization technique. The MI between two multivariate random
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Fig. 3. Localization using mutual information (MI). (a) showsa sample
image where the person in the top left is speaking and (c) showsa sample
image where the person on the bottom left is speaking. (b) and (d) show the
MI images for (a) and (c), respectively.

variablesX andY is given by

I(X ;Y ) = ∑
x∈X

∑
y∈Y

log(
p(x,y)

p(x)p(y)
) (6)

where p(x,y) is the joint probability distribution andp(x)
and p(y) are the marginal distributions.

Similar to [14], we compute the MI between the audio
featuresA, and each pixelVx,y of the video featureV . The
MI is computed every frame using a two second window to
estimate the probability distributionsp(x), p(y) and p(x,y)
which are assumed to be Gaussian.

Figure 3 illustrates sample results of localization using the
MI approach. The MI is computed between the audio and
each image pixel. Pixels that are highly synchronized with the
audio have a higher MI value. The MI image is thresholded
to discard low value pixels and the filtered image is displayed
in (b) and (d). The localization output is considered as the
connected component with the largest average MI.

The representative MI localization images in Figure 3 show
that MI performs better when the speaker is facing the camera
as seen in (b) than when the person is facing away from the
camera as in (d). Interestingly, (d) shows that even when the
face is not visible, there are regions around the speaker’s body
that are associated with the speech. Compared to Figure 3 (b)
and (d), the localization results are better in Figure 2 (d) and
(h). We believe that this is because the MI approach seeks
instantaneous associations between the pixels and the speech
- a relation which is non-robust in the meeting domain whereas
the eigen-blob approach seeks correlated pixels in frames
that are determined to belong to the same speaker using the
audio channel. Since the eigen-blob approach considers longer
durations, spurious movements by non-speakers are averaged
out leading to better localization results.

C. Iterative Clustering

Once audio and video models have been built, the inter-
mediate clusters are merged using an agglomerative clustering
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framework in which the audio and video models are refined
at each iteration. The procedure involves merging the closest
pair of clusters into a new cluster and obtaining a new
audio and a new video model for that cluster. Since the
merged cluster contains more data than either of the individual
clusters, models derived from it would be more robust and
representative of the speaker’s audio-visual characteristics.

The distance between a pair of clusters,ci and c j , is
computed by combining distances between the audio and video
models as

d(ci ,c j) = (2−βi j ) d(ai ,a j) + βi j d(vi ,v j) (7)

whered(ai ,a j) andd(vi ,v j) are computed using Equation 2
and Equation 5, respectively andβi j is a weighting term that
determines the influence of video on the overall distance,
calculated using

βi j = min(βi ,β j) where βi = ∑ r i,γ (8)

Equation 8 requires some explanation. The eigen-blob
model r i for a cluster is sometimes fragmented over multiple
persons. This happens because of consistent co-occurring
motion such as hand movements of a person who takes
notes when someone else is speaking. Such fragmentation
incorrectly reduces the distance between video models of
the involved persons, and negatively influences the clustering
procedure. Letr i,γ be the connected component ofr i that
represents the maximum fraction ofr i , i.e. it is the blob
that captures the maximum fraction of the pdf. Then,βi ,
which is the sum overr i,γ can be considered a fragmentation
measure;βi will be one if r i is not fragmented, and low ifr i

is severely fragmented. The weighting termβi j represents the
confidence in the computed video distance. If either of the two
eigen-blob models is fragmented,βi j will have a low value,
reflecting lesser confidence in the localization and reducing
the contribution ofd(vi ,v j) to the inter-cluster distance.

Equation 7 is used to compute the pairwise distance between
all of the intermediate clusters and the pair with the lowest
distance is merged. GMMs for speech and eigen-blob models
for video are now built from the merged cluster and the
iterative procedure continues till a stopping criterion ismet.

Ideally, the stopping criterion should terminate the iterations
when the number of final clusters is equal to the number of
speakers. In previous work dealing with audio-only diarization,
the ∆BIC criterion has been extensively used [15] as the
stopping criterion. In our experiments we found that using only
the ∆BIC, tends to result in lesser clusters than the number
of participants. This occurs when clusters from two speakers
are incorrectly merged if the speaker’s have similar vocal
characteristics or if the clusters are impure, i.e. they contain
speech from more than one speaker. Since eigen-blob models
built from the intermediate clusters localize the speaker,eigen-
models for different speakers lie on different regions of the
image. Thus, if the eigen-blob models for two clusters do not
overlap, the clusters are most likely from different speakers.
Taking video into account, the stopping criterion terminates
the iterations if eitherr i ∩ r j = /0, or ∆BIC(ai ,a j) > 0. This

combined use of audio and video leads to a more robust
stopping criterion.

V. RESULTS

The proposed audio and audio-visual speaker diarization
and localization approaches are tested on sixteen meetings
from the NIST pilot meeting room corpus [9]. For each
meeting, four camera feeds are available (one camera on each
wall of the room). The videos have a spatial resolution of 720
x 480 sampled at 29.97 Hz. There are two audio channels
packaged with each video; one is a gain-normalized mix of
the head microphones worn by the participants, and the second
is a gain-normalized mix of distant microphones placed on the
central table and the wall. The audio data is sampled at 44 kHz
and has a resolution of 16 bits per sample. Eight audio-visual
pairings are considered for each meeting by pairing each of the
four cameras with each of the two audio channels, resulting
in 128 (16 x 8) meeting clips. From each clip, the first 30
seconds are discarded, and the next 10 minutes are chosen
resulting in approximately 21 hours of data.

In the meetings, participants are seated around a central
table and interact casually. Depending on the type of the meet-
ing, the participants discuss a given topic, plan events, play
games or attend presentations. From time to time, participants
may take notes, stretch, and sip drinks. The audio and video
signals from these meetings are quite complex because the
meetings are unscripted and of long durations. Since only
a single camera view is considered at a time, most faces
are non-frontal and sometimes participants are only partially
visible. In some meetings, a participant may not be visible at
all in a particular camera view. Similarly, the audio signalis
complex, consisting of short utterances, frequent overlaps in
speech, and non-speech sounds such as wheezing, laughing,
coughing, etc. Additionally, in some of the meetings (5 and
9-12), participants leave their chairs to use the white-board or
distribute materials. Sample images of four clips from two of
the camera views are shown in Figure 4.

To quantify the localization performance, the ground-truth
is defined by static boxes around each person. Eigen-blob
localization outputs a dominant blobrγ for each of the final
clusters. This is a static region in the image which localizes
the person in all meeting frames where the person spoke. The
output of MI localization is the connected component of the
MI image with the highest average MI and so this region varies
from frame to frame. For a framet, a hit occurs if more than
50% of the region output by a localization method for that
frame S(t), intersects with the ground-truth box around the
speakerB(t). Mathematically, a hit is defined as

h(t) =

{

1 if |S(t)∩B(t)| > 0.5|S(t)|
0 otherwise

}

(9)

where |S(t)| is the number of pixels in the system output,
and |S(t) ∩ B(t)| are the number of pixels in the overlap
between the system output and the ground truth bounding box.
For eigen-blob localization,S(t) = r i,γ, the dominant blob of
the eigen-model for the cluster (i) that contains framet. For
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 4. Sample images from two views for four of the meetings. Images
(a-d) are from a camera that captures the frontal and parietalview of the
participants. Images (e-h) are from a camera that shows most participants in
profile view. The other two other cameras provide similar views.

MI based localization, S(t) is the blob with the highest average
MI in frame t.

Only non-overlapping speech frames where the speaker is
visible (completely or partially) in a camera view are evaluated
for localization. Representing the subset of frames over which
localization is scored asTe, the hit ratio is computed as the
ratio of hits to the number of frames inTe as

HitRatio= ∑
t∈Te

h(t)/|Te| (10)

The diarization performance is measured using the diariza-
tion error rate (DER) defined in [9]. Only non-overlapping
speech frames are scored. To compute theDER, a one-
one mapping is performed between the system clusters (final
clusters) and the reference clusters (ground-truth), suchthat the
mapping maximizes the total number of frames in agreement.
The DER is then computed as

DER= EMISS+EFA +Espkr (11)

where EMISS is the percentage of scored frames where
speech is classified as silence andEFA is the percentage of
scored frames where silence is classified as speech. These
errors occur due to imperfect speech/silence classification.
Espkr is the percentage of scored frames where speech from

one speaker is incorrectly attributed to another speaker. Missed
ATP boundaries, imperfect clustering and incorrect stopping
contribute to this error.

A. Localization

Figures 5 and 6 illustrate the eigen-blob models for some of
the final clusters in meetings 3 and 6. Meeting 3 is a planning
meeting with frequent note taking activity, while meeting 6is
a card game scenario with participants frequently reachingout
to the center of the table to pick and drop cards. Figures 5 (a-
d) show the eigen-blob models (r i) for the four final clusters
of meeting 3 and (e-h) show the models for four of the six
clusters of meeting 6 in the first camera view. The models lie
only on the speakers (green boxes) for the two easy cases (b)
and (g) where the speaker is frontal and also for the difficult
cases (a), (c) and (e) where the speakers are non-frontal or
partially hidden. In (d), (f) and (h), we see that fragments of
the models lie on non-speakers (red boxes). However, for (f)
and (h), the dominant blob, (r i,γ) still lies on the speaker.

Figure 6 shows the eigen-blob models for the same data
in the second camera view where the participants appear in
profile view. The models lie only on the speaker in most
cases, but blobs lie on non-speakers in (c), (d) and (f). In
general, we find that whenr i is not fragmented, it usually
lies on the correct speaker and even whenr i is fragmented,
the dominant blob (r i,γ) still localizes the speaker correctly.
However, when a non-speaker exhibits consistent motion that
exceeds the speaker’s motion,r i,γ incorrectly localizes the non-
speaker, as occurs in 5(d) and 6(d).

Figure 7 compares the localization performances of the MI
and eigen-blob methods using theHitRatio metric defined
in Equation 10. Each audio channel is paired with the four
cameras and the localization result is presented as the mean
of the fourHitRatioswith error bars indicating the maximum
and minimum of the four values. The localization results for
the two audio channels are shown separately for the two
localization methods resulting in four bars per meeting. For
each meeting, the subset of framesTe over which theHitRatio
is computed may differ if all speakers are not visible in all
camera views.

From Figure 7 we observe that the eigen-blob localization
procedure works well in most meetings but performs poorly
on a subset of meetings (5, 9-12). As mentioned earlier,
these meetings violate the assumption that the participants stay
seated, which leads to poor localization results. This is because
the eigen-blob models are split between the true speaker and
a moving participant. The large motion magnitude generated
by a moving person, causes therγ blob to localize the moving
person instead of the speaker. Incidentally, these are the only
meetings where MI based localization performs better. This
is because the MI is computed over short time windows and
hence unaffected by a change in speaker location.

The averageHitRatio across the dataset for the eigen-blob
localization method is 65.24% and 62.04% for channel 1 and
2, respectively which is substantially higher than the 51.3%
and 49.54% obtained using MI. If the five meetings (5, 9-
12) are dropped, the difference is even more pronounced,
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 5. Localization of speakers in the first camera view. (a)-(d) shows
localization of the four speakers from meeting 3 and (e)-(h) shows localization
of four of the six speakers from meeting 6. A green box shows thetrue speaker
and a red box indicates where a non-speaker is covered by the model. In
(d), (f), and (h), fragments of the eigen-blob model lie on the non-speakers.
However, except in (d), the dominant blob correctly localizes the speaker.

with eigen-blob localization yielding 73.8% and 69.97% for
channels 1 and 2, respectively compared to MI’s 52.34% and
50.9% for the respective channels. Comparing across channels,
we observe that the localization methods tend to performs
better with channel 1 as it’s speech quality is better than that of
channel 2. We also see that the variation of performance across
cameras is much lower for the eigen-blob method than the MI
method. The MI method performs better when the dominant
speaker faces the camera whereas the eigen-blob method is
much more invariant to change in camera views.

Errors in eigen-blob localization stem from two sources:
one, an intermediate cluster may contain speech from other
speakers and those frames will be marked with the location
of the dominant speaker. Two, non-speakers that exhibit con-
tinuous motion over a long duration (swiveling on a chair
throughout the meeting), will cause fragments of the eigen-
blob model to lie on their location. If the non-speaker motion is
consistent and of larger magnitude than the speaker’s motion,
the rγ blob incorrectly localizes the non-speaker.

Since no audio clustering is performed in the MI based
methods, the method is not affected by diarization errors.
Errors occur when a non-speaker’s movements show stronger
association with the audio signal, which occurs when a listener
exhibits significant motion for short durations. MI incorrectly

(a) (e)

(b) (f)

(c) (g)

(d) (h)

Fig. 6. Localization of speakers in the second camera view. (a)-(d) shows
localization of four persons from meeting 3 and (e)-(h) showslocalization of
four of the six participants of meeting 6. In (c), (d), and (h),fragments of the
eigen-blob model lie on the non-speakers.

Fig. 7. Localization performance using the eigen-blob and Mutual Infor-
mation (MI) based methods. Therγ blob is considered as the system output
for the eigen-blob method and the region with the highest average MI is
considered as the system output for the MI method. A hit occursif more than
50% of the system output overlaps with the speaker’s true location.

localizes such movements incurring a drop in performance.
The situation worsens when the speaker is facing away from
the camera - as motion from the speaker is less visible and
hence easily overwhelmed by spurious background motion.

B. Diarization

In this subsection, we quantify the influence of video
on diarization. The framework for audio-only diarization is
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Fig. 8. Comparison of diarization performance using audio-only and audio-
video information. For most meetings, the incorporation of video information
results in lowerDER. Meetings 5, 9-12 do not gain much improvement by
incorporating video because of poor localization in these meetings.

similar to that of audio-visual diarization, except that novideo
features were used. For each meeting, two audio-only diariza-
tion results are obtained - one for each channel. Similar to
localization, four diarization results are obtained for each audio
channel, by combining each of the four cameras individually
with the audio channel. The results are presented as the mean
of the four results, with error bars indicating the maximum
and minimum of the four results.

Figure 8 compares the performance of the diarization
scheme when using only audio to that when using both audio
and video. The averageDERs of audio-only diarization are
19.15% and 22.54% for channels 1 and 2, respectively. The in-
corporation of localization results in averageDERsof 16.27%
and 18.42% which corresponds to relative improvements of
15.0% and 18.02%, respectively. However, video does not
always improve diarization performance as seen from meetings
5 and 9-12. This is because some participants leave their seats
for short durations leading to fragmented video models and
resulting in a low value ofβ when computing inter-cluster
distances using Equation 7. If these meetings are eliminated,
the averageDERsfor channel 1 and 2 are 19.62% and 24.01%
for audio-only diarization and 15.47% and 17.8% for audio-
video diarization. This represents relative improvementsof
21.16% and 25.87%, respectively.

Figure 8 reveals that the averageDER for channel 2 is
higher than that for channel 1. This is expected, since channel
1 is obtained from head microphones and thus has better qual-
ity than channel 2 which is recorded from distant microphones.
A similar pattern is found for audio-visual diarization, since
the localization process is essentially guided by the audio.

Errors in the audio-only diarization stem from the
speech/silence detector, missed ATP boundaries and incorrect
clustering. In addition to these, poor localization contributes
to errors in audio-visual diarization. Poor localization may
place fragments ofr i on a non-speaker, incorrectly reducing
the video distance between models belonging to different
speakers. In the extreme case, where the speaker is not visible
in a particular camera - this situation is inevitable. However,
in such cases, the eigen-blob model is split almost evenly
amongst the other participants. This results in a low value
of β for r i , reducing the contribution of the video to the

inter-cluster distance and preventing poor localization from
adversely affecting diarization.

Figure 8 shows that audio-video diarization outperform
audio-only diarization. Since video is incorporated at two
stages in our system - for segmenting the joint feature stream
into ATPs and during the iterative clustering stage, we con-
ducted experiments to evaluate the influence of video in each
of these stages which are tabulated in Table I.

TABLE I
IMPACT OF VIDEO ON AUDIO DIARIZATION.

Use of Video Average DER
ATP Segmentation Iterative Clustering Audio 1 Audio 2

- - 19.15 22.54
-

√
17.16 19.31√

- 18.46 22.0√ √
16.27 18.42

Table I indicates that the major benefit of incorporating
video comes from it’s participation in the iterative clustering
stage. This is expected as the intermediate clusters contain far
more data than the ATPs and so incorrect clustering impacts
the performance much more than missed ATP boundaries.
However, for a couple of meetings we found that incorrect
segmentation lead to impure ATPs that were subsequently
clustered incorrectly, and significantly impacted the DER.
Thus, rather than provide performance gains, the use of video
for ATP segmentation imparts robustness to the system.

VI. SUMMARY AND CONCLUSIONS

This paper presents a novel approach to perform speaker
localization and diarization in meetings recorded by a single
camera and a single microphone. Previous approaches dealing
with joint audio-visual analysis in this scenario seek corre-
lations between the two spaces. These solutions assume that
the audio and video signals are instantaneously correlated, but
as demonstrated in this work, the assumption does not hold
in the meeting domain. In the proposed approach, instead of
formulating the problem as finding correlations across spaces,
clustering is performed in individual spaces. The association of
clusters across spaces is based on the assumption that speech
and body movement co-occur.

The approach is evaluated on a substantially large dataset
(21 hours) of unscripted real meetings. The dataset is obtained
by pairing two audio channels of different sound qualities
with four different camera views. Localization results on this
challenging dataset find that the eigen-blob based method
outperforms the MI based method by about 40% (relative).
In addition, the eigen-blob based localization is less sensitive
to changes in camera view.

The novelty of the diarization process is in its use of motion
information from the entire body, rather than just the face.
Results obtained by incorporating video information into the
clustering process leads to a relative improvement of about
16% over that of using audio alone. These are encouraging
results given the nature of the meetings and the video quality.

The system performance will improve if each participants
face was visible, and the lips were tracked. However, these
results show that there are cues in the video beyond the face
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that tell of speech activity. This work exploits such video
information on a global scale without relying on explicit
face/head/hand detection and without assuming frontal faces.
Also, since the approach does not require training ora priori
information, it is readily adaptable to other domains.
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