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Abstract—This paper presents a bottom-up approach that higher level tasks such as generating audio-visual suresari
combines audio and video to simultaneously locate individual gnd meeting transcripts.
speakers in the video (2-D source localization) and segment their The semantic analysis of meetings is receiving considerabl
speech (speaker diarization), in meetings recorded by a single . . -
stationary camera and a single microphone. The novelty lies in interest, sparking evaluations S,UCh as the ones bY NIST _[7]
using motion information from the entire body rather than just and CLEAR [22], where meetings are recorded in special
the face to perform these tasks, which permits processing non- rooms rigged with multiple microphones and cameras. How-
frontal views unlike previous work. Since body-movements do ever, this work focuses on meetings recorded by a simple
not exhibit instantaneous signal-level synchrony with speech, the setup consisting of aingle cameraand asingle microphone

approach targets long term co-occurrences between audio and . . . .
video subspaces. First, temporal clustering of the audio produce because of its broader applicability. As everyday devicehs

a large number of intermediate clusters, each containing speech as laptops, PDAs and cell phones have become capable of
from only a single speaker. Then, spatial clustering is performed video recordings, such devices can be used to record a group
in the video frames of each cluster by a novel eigen-analysis meeting, effectively converting any location into a megtin
method to find the region of dominant motion. This region is o5 Also, techniques developed for this constrainedpsetu

associated with the speech assuming that a speaker exhibits b d f il licati h !
more movement than the listeners. Thus partial diarization can be used lor surveillance applications, where covesines

and localization is obtained from the intermediate clusters. requires using a simple portable recorder.

Speech from an intermediate cluster is modeled by a mixture  In previous work on speaker diarization and localization
of Gaussians and the speaker’s location is represented by anin the single camera, single microphone scenario, the prob-
eigen-blob model. In the ensuing iterative clustering stage, the |, js posed as one of detecting synchronous audio-visual
diarization and localization results are progressively refined by . .

merging the closest pair of clusters and updating the models until events. Mutual information (_MI) _base_d approaches have been
a stop criterion is met. Ideally, each final cluster contains all the Successfully demonstrated in situations where the faces ar
speech from a single speaker and the corresponding eigen-blobfrontal and have a high resolution. Since the speaker’'sdade
model localizes the speaker in the image. Experiments COﬂdUCted|ipS are clearly visible when speech is heard, an instaotase

on 21 hours of real data indicate that the proposed localization synchrony exists between the audio and video, which is
approach leads to a relative improvement of 40% over Mutual full loited by Ml based h

Information based localization and that speaker diarization successiully exp (_)'e y . ase appr_oac_es. .
improves by 16% by incorporating visual information. The However, meeting room videos are quite different as multi-

proposed approach does not require training and does not rely ple persons are seated facing each other and not the camera.

on a priori hand/face/person detection. Thus the faces are not necessarily frontal. Also, since the
Index Terms—Audio-visual association, Meeting analysis, c@mera is placed much farther from the participants, faces

Speaker localization, Speaker diarization. have a low resolution. As a result, a person’s lips may not

be clearly visible when they speak. Additionally, partaips

often exhibit a high degree of movement for short intervals

even when they do not speak such as when taking notes,

EETINGS are an integral part of our daily lives, wher&ipping coffee, or swiveling in a chair, and such movements
information is disseminated, ideas are discussed aftf falsely associated with the speech. For these reasens, w
decisions are taken. Consequently, many organizations h&®d that Ml based approaches do not perform well on meeting
begun archiving their meetings for future review. However, datasets [24].
be of practical use, these large and constantly growing\esh ~ We propose a different framework for audio-visual inte-
should be comprehensively indexed so that they may supp@f@tion motivated by the following observations. A strong
a variety of queries such as query for a discussion topic, ®nchrony exists between the lip movements of a speaker and
for an individual's comments, or for specific activities buas the resultant speech which has been exploited in Ml based
presentations and note-taking. Determining who spoke whe@rks. There also exists a loose association between ar®@rso
(speaker diarization) and locating the current speakeralegr SPeech and head/hand gestures which has been demonstrated

localization) are prerequisites for such queries, as wefioa N works such as [19], [25]. In addition to the relation of
speech with lips and gestures, we observe that in general a
The work was supported in part by the USF Computational Toofs fperson exhibits more movement during speech. To maintain
Discovery Thrust. , . _eye contact, the head turns from one listener to the other
Copyright (c) 2008 IEEE. Personal use of this material is piechi d IV bob dd duri hb fi
However, permission to use this material for any other purpasest be &MNd Usually bobs up and down auring speech because or jaw

obtained from the IEEE by sending an email to pubs-permis@ieese.org. movements. Also, the speaker’s hands and shoulders move

I. INTRODUCTION



Featul_'e F— isegmentatlong—ﬁCIustering of F—— Data ——: Distance
iBdraction: joint 1 BIC) i Atomic  iaTpg (Gsc) } Intermediate iModeling: audio, : Computation
Feature Temporal tearsmsaseantensnsnnnin® * Clusters A Video [ A <
Stream Primitives Models
(ATPs) Mer
ge .
closest C'I:l::irs

Yes

pair?

Fig. 1. System Flowchart: Audio and video features are fusefrm a joint feature stream which is partitioned using Bayesian Information Criterion
(BIC) into atomic temporal primitives (ATPs). ATPs are groupatb intermediate clusters by Graph Spectral Clusterings T followed by an iterative
clustering stage that produces one cluster per speaker.

involuntarily when an idea is expressed. signal processing communities, respectively. Latelyreheas
Such movements are not synchronized with speech, it@en much emphasis on integrating audio and video to jointly
there does not exist an instantaneous mapping between aymidorm these tasks in meeting rooms [3], [6], [11]. Pro-
and video features. Rather, there exists a long term arams such as th®ich Transcription evaluation (RT]7]
occurrence of speech and movement, i.e. over longer dagatioand theCLassification of Events Activities and Relationships
people exhibit more body movements when speaking th@BLEAR)[22] aim to further such research. Their focus is on
when listening. We exploit this phenomenon of co-occureendata collected irsmart roomsrigged with multiple sensors.
of speech and body movements to perform speaker diarizatiddditionally, there is significant work on diarization and
and localization, assuming that in general a speaker movesalization in the single camera and/or single microphone
more than a listener. scenario, which we review here.

The flowchart in Figure 1 illustrates our approach. Audio Speaker diarization and localization has been performed
and video features are concatenated to obtain a joint fQ%ing only a single camera when the speaker’s face is frontal
ture stream. The Bayesian information criterion (BIC) findgnoccluded, and exhibits more movement than other faces in
changepoints in this stream, which are frames where thérg image. The approach involves using a face detector to
is a discontinuity in the audio-visual pattern, signaling mcate all faces in the image and then using motion in the
change in speaker. These changepoints partition the stré@am region around the face [14] or mouth [17] to determine the
contiguous atomic temporal primitives (ATPs) that are afrsh speaker. Speaker diarization using a single audio chaalie$r
durations and have homogeneous audio-visual charaasriston the phenomenon that speech from different persons have

In the next step, graph spectral clustering (GSC), grouggferent spectral characteristics and diarization isfqrened
together ATPs based on their audio content into intermediajy unsupervised clustering of audio features [23].
clusters, which are further processed in an iterative fraonie. The multimodal approach (single camera and single mi-

Audio and video models are built from the intermediatgrophone) has usually been demonstrated in scenarios where
clusters and used to compute distances between each @il speakers are facing the camera such as in broadcast news
of clusters. In each iteration, the closest pair of ClUS®®S \ijeos or on the CUAVE [16] database. As a result, the faces
merged and new models are built from it. Since the mergegs frontal, and an instantaneous synchrony between thie aud
cluster is of longer duration, a video model built from it Wil 3¢ video signals exists. The problem is typically formedat
lead to better speaker localization, which in turn will gively 55 finding projections that maximize the mutual information
influence the clustering procedure in the next iterations Thyetween the projected audio and video signals. Works in this
clustering-modeling cycle continues till a stop criterisrmet, category [5], [8], [10], [12], [21] differ based on the cheiof
resulting in the final clusters. Ideally, each of the finalstis  5,dip and video representations, whether or not the feature
contains all the speech from a single person, effectivelye projected onto a learned subspace before modelinghand t
performing speaker diarization and the cluster’s video ‘Bho%aradigm used to model the audio, video, and joint signals.

localizes the speaker in the wdep. . The audio signal is typically represented by MFCCs, LPCs,
The outline of the rest of this paper is as follows. Th . ; ; .
i f 2 foint feat i dit fitioning AT r a spectrogram. The video signal is represented by image
creation of & joint fealure stream and IS paritioning S intensity, image differences, or DCT coefficients. The audi

ETgisﬁlrgg?gtéTmS:;g?: c!lllljstsefgt:\): d I::]ediilrzt\i’zghaﬁgﬂg:'nand video features are either modeled directly or training
ata is used to learn an optimal subspace that maximizes

.clust.erllng _framewprk. Secthn v 'presents the 'mprovemengis/nchrony between the projected features. Either parametr
in diarization by incorporating video and compares eige

R : usually Gaussian) or non-parametric models have been used
blob and MI based localization results. Section VI carries trZ Y ) P

conclusions while the next section surveys related work to model the signals. In works such as [1], [13], audio-visua
y " association is performed based on short-term co-occugsenc

between audio and video primitives.
All of the above works model relationships between the
Person detection/tracking and speaker diarization ake tagudio and video signals by finding image regions that are
that have been heavily studied by the computer vision, asgnchronized with the audio. Their assumption is that the

II. RELATED WORK



underlying cause which produces the audio and video signdisundaries are found from a joint feature stream produced

always expresses itself in both modalities and that thia-reby concatenating audio and video features. Mel-Frequency

tionship is instantaneous. Although the assumption hadds fCepstral coefficents (MFCCs), are used as the audio features

cases where two people are facing the camera and taking turhe MFCCs are extracted using 32 filters with the bandwidth

at speaking or when the object generating the sound is gjsibdanging from 166 Hz to 4000 Hz. The MFCCg) are then

it does not hold for meetings captured by a single camera @®jected onto a PCA space to obtain a low dimensional

all faces are not frontal. This leads to the poor performancepresentationA).

of such approaches for meeting scenarios. The video features which intend to capture motion, are
Audio-only speaker diarization involves unsupervisedgseluobtained using image differences (three frames apart). The

tering of audio features and video-only person detection idifference images are thresholded to suppress jitter datédi

volves clustering pixels in the images space based on appdnra 3 x 3 circular mask to enhance regions of motion. The

ance and/or motion models. On the other hand, audio-visuialages are then downsampled from their original size of 480

synchrony methods seek correlations between speechdesati20 to 48x 72 and vectorized. The video featurdsg)(are then

and image pixels, without explicitly clustering in individl projected onto their PCA space to obtain their projecti®fis (

sub-spaces. The proposed approach seeks to combine tiegsnt audio-visual subspace is obtained by concatenatirg

three facets - by first over-clustering in the audio subspape&ojections using

to find longer temporal durations when a person is speaking.

Next, clustering is performed in the video-space by grogpin X(t) = [ st - A(t) } 1)
pixels with high covariance in frames from these durations. V(t)
The audio and video cIusFers thus obtalne.d are ass.oue}tbd.m Here A = [At).Asb),.... A )], where
the same person, assuming that the dominant motion in wdglo(t) Aot Aq,(t) are the PCA coefficients of the audio
H 3, ) 1000 A
frames is due to the speaker's movements. features. Similarly,V/(t) = [Vi(t),Va(t), ..., Vg, (t)]T, where
Vi(t),Vot,..., Vg, (1) are the PCA coefficients of the video
I11. ATOMIC TEMPORAL PRIMITIVES features. The indek represents the frame numbeg, and dy

' . L represent the dimensionality of the audio and video feafure
The first step of our approach involves partitioning the . . . . :
oo ; . respectively anddx = da + dy is the dimensionality of the
meeting into contiguous durations that we term as Atomi¢_" .~ - )
L résulting joint feature X). In our experimentsda and dy
Temporal Primitives (ATPs). The ATPs should be homoge- . o
. . were chosen as 8 and 24, respectively, retaining 90% of the
neous - i.e. each ATP should contain speech and movement

: : N . original variance. The scaling factsf is set to+/|Zv|/|Zal,
from only a single speaker. This partitioning step is Ver%hgereZA andXy are the covgriances of the auc‘iio |a/r|1d \|/ideo
similar to the segmentation task in speaker diarizatiorgreh

. . ; . 7 features, respectively. The scaling ensures that bothuriest
changepoints are sought in the audio stream that indicate a. . o
contribute equally to the joint feature stream.

change in speaker. The BIC framework [4] which has proven The joint feature stream is the partitioned into ATPs using

effective for "’.‘“di.o segmgntation, is used in this work to ﬁnﬁi1e Bayesian Information Criterion (BIC). For the mathemat
ATgosvoelig:a\r,lzs;Tséh?ngptgf;teur\i dset:)e?nr?(;rmation o detei?al and implementation details of BIC, we refer the reader

' . rp . €% [24], and provide an intuitive explanation here. The BIC
such changepoints, motivated by the following observatio a}sed segmentation operates on the principle that a sudden

A change in speaker is indicated by a change in the mo %ange in the feature space is caused by a change in the

prc;?u_ct;ng ;heBI?:Ud'O rfeatﬁreéﬂw:'ga is the hprr(]amlsii of thlé (rjerlying model. A change in speaker, implies a changesin th
audio-base approach. e €S, @ change In Speagily;, n,qel. Also, as mentioned earlier, there will be a gean
is also reflected by a change in the video dynamics. After.a., . . ; . .
. in the image region where motion occurs. Since the diffezenc
person stops speaking, they often change posture - by tpanin ; . .
back further into their chair indicating throuah a non-arb Images are projected as a low-dimensional vector and medele
ur ' ' I Indicating through . by a unimodal multivariate Gaussian (across time), a change
mechanism that the floor is open. Similarly, just prior to

speaking. a person attemots to oain their audience’s 'amtentm the image region will be modeled by a different Gaussian
P 9. ap pts 10 gain : model. The joint Gaussian is more sensitive to speaker @sang
by leaning forward or extending their arm into the commo

| ) I ilt for eith i i lone. This h
space to indicate a desire to hold the floor. Thus a chan{htgm models built for either audio or video alone. This hosvev

. . ) . . comes at the cost of increased false detections due to tke vid
in speaker is also reflected by a change in the image region

where motion occurs and this phenomenon can be ex Ioite§uch as when a person reaches out fo grab a cup when
IS p POl meone else is speaking. However, since ATPs can be merged
to detect speaker changepoints.

. . . . in the clustering stage, false detects are not as expensive a
Prior to performing segmentation, a speech/silence date g stag P

CL..

is run to eliminate durations of silence from the recordifige ttmssed detects.
elimination of silence frames is necessary as video inftiona
during silence adversely affects the segmentation peeoos
since motion during these frames is spurious in nature ahd noOnce the feature stream has been split into ATPs, the
related to speech activity . Secondly, since some meetirays nmext goal is to merge all ATPs containing speech from the
have extended durations of silence, eliminating thesedsamsame individual. The localization task involves determgni

speeds up processing. After eliminating silence segmAmt, the image region in the video frames of those ATPs where

IV. CLUSTERING AND LOCALIZATION



the speaker is seated. These two tasks can be perforrdejonal covariance matrices learned using the Expentatio

sequentially - speaker diarization can be performed firistgus Maximization (EM) algorithm.

only the audio and then video frames from the final clusters From this UBM, we obtain GMMsb' = {w}, 1, =L}, for

can be analyzed to locate the speaker. Alternatively, dinee each intermediate audio clusir by adapting only the means

video contains information about the current speaker, babh®" by amaximum a posterioffMAP) adaptation [2]. Since

audio and video features can be used from the ATPs to jointlyeans of thek" component of all intermediate clusters are

perform diarization and localization. adapted from the same meau), there exists a one-one corre-
However, since individual ATPs tend to be of short duraspondence between them. This allows us to efficiently coeput

tions, the visual information in them is not very consistenthe distance between the audio models of two intermediate

For example, where a person utters just a few sentences, chesters,a; anda; as

observe that there is little accompanying motion and thigt th

situation exacerbates when the person is facing away from 1 j

the camera. Similarly an ATP can contain speech from one d(ai.aj) = Z w( “k “k T (%)~ (M= 1) @

person but motion from more than one individual - as occurs

when someone is taking notes. The hypothesis on which thigvherepj, andp}, represent the means of thé component

work is based, is that on an average, a speaker exhibits meféntermediate audio clustegs anda;, respectively, and is

movement than a listener and this holds when considerilitf transpose operator. It was shown in [2] that this distanc

longer time durations. Thus, instead of obtaining video eted is highly correlated with a Monte Carlo estimation of the KL2

from the ATPs, the ATPs are first clustered using only th@istance, with the added advantage that it is much cheaper to

audio to obtain fewer large clusters. Video models can §@mpute.

reliably estimated from these larger intermediate clsstend ~ The intermediate clusters also serve as the starting pmint f

then be used to influence diarization in the iterative daiim- Speaker localization. A video model is built from the video

localization process. features /) of each intermediate cluster by analyzing the
The rest of this section is structured as follows. Subsegigenvectors of its video features. Letrepresent the set of

tion IV-A, describes the grouping of ATPs into intermediat¥ideo features from an intermediate video cluster anczigt

clusters. Subsection IV-B, deals with modeling the audig@present its covariance. Solving

and video features of these intermediate clusters and sub-

section IV-C describes the iterative diarization-locafian 2 E=AE (3)

procedure.

we obtain the eigen-vectors &f; as the column entries of
E, whereA is the corresponding eigen-value matrix.
A. Intermediate Clusters Since eigen-vectors are projections that reduce the covari
The initial clustering of ATPs is performed using only audi@nce of the projected variables, they effectively groupelsix
by modeling its MFCCs by a unimodal Gaussian with a fufhat move together. If the dominant speaker moves the most
covariance matrix. The clustering problem is formulated 48 the set of frames, the primary eigenvector partitions the
a graph partitioning problem. Each ATP is represented adnaage into two regions - one belonging to the speaker and the
node and théBIC distance distance [26] between each pair ¢ither to spurious background movements. However, it cannot
ATPs, serves as the edge weights to obtain a completely c88- determined which of the two regions corresponds to the
nected graph_ A recursive graph bi_partitioning a|gorim] Speaker from Only the primary eigenvector. Since the Second
is then used to group ATPs into sixteen clusters, motivated Bigenvector is orthogonal to the first, it splits the dominan
the observation that meetings usually contain less thamesix component of the first eigenvector - which is the region that
speakers and so the data is not under-clustered. Also aesixtrepresents the speaker’s location.
clusters, we find for our dataset that each intermediateerlus Mathematically, ife; is the largest eigenvector ameglis the

contains sufficient data to robustly estimate audio andovidéecond largest eigenvector of frames from the intermediate
models. video clusterv;, then the part; which represents the selected

region ofe; is given by

B. Audio and Video Models T T T
Once the ATPs have been grouped into intermediate clus- ri —{ |e£| 'I \e%eﬁ < |e,%e£\ } (4)

ters, audio models are built from them using the UBM-GMM el i e | <lee]
technique described in [18]. The features used for buildingwhere € and e; are the positive and negative parts of
the models are the PCA projections of the MFC@§. (In the primary eigenvector, antl is the transpose operator. The
this technique, first a Universal Background Model (UBMygominant regiorr; is then normalized so that it sums to unity
is built using the entire speech in the meeting. The UBMnNd serves as the eigen-blob model for the video clusgter
is essentially a Gaussian mixture model with mixtures, This eigen-blob modelr() is basically a probability density
oY = {wy, 1, 2}, wherewy! represent the weights (with thefunction representing the likelihood of a pixel belonging t
constraint 3., wy = 1), W represents thela dimensional the speakers location.
mean vectors andy are theda x da covariance matrices. In  Figure 2 illustrates the eigen-blob localization for two
our implementation, the UBM consists of eight Gaussiank wiintermediate clusters from a meeting of four people. The



(b) (f) (b) (d)

Fig. 3. Localization using mutual information (Ml). (a) showssample

image where the person in the top left is speaking and (c) slosample

image where the person on the bottom left is speaking. (b) dnhdhiow the
’ \ Ml images for (a) and (c), respectively.

variablesx and ¢ is given by

(XG9)=Y Z'Og(m

XeEXyey
where p(x,y) is the joint probability distribution angb(x)
and p(y) are the marginal distributions.
Similar to [14], we compute the MI between the audio
featuresA, and each pixell}y of the video featurel. The
(d) (h) MI is computed every frame using a two second window to

Fig. 2. Localization by the eigen-blob method. (a) and (e)slsample €stimate the probability distributiong(x), p(y) and p(x,y)
images from two intermediate clusters in which the speakendatéd at which are assumed to be Gaussian.

the top-left and bottom-left, respectively. (b) and (f) shtwe respective - : P :
principal eigenvectors. The second eigenvectors showm)irarfd (g), split Figure 3 illustrates sr?lmple results of localization USIhg t
the dominant region (positive or negative) of the primary eigetors. The MI approach. The MI is computed between the audio and
dominant regions shown in (d) and (h) represent the spealoesgion. each image pixel. Pixels that are highly synchronized with t
audio have a higher MI value. The MI image is thresholded

] ) _ to discard low value pixels and the filtered image is dispdaye
first eigenvector has non-zero components correspondlngiﬁo(b) and (d). The localization output is considered as the

the moving parts of the image; in addition, the sign of thgonnected component with the largest average MI.

eigenvector further divides the moving portions into twatpa  The representative MI localization images in Figure 3 show
(shown by two different colors). The second eigenvectfat M| performs better when the speaker is facing the camera
whlch captures the next d(_)mlna_mt mode of.mot|on cor_relau% seen in (b) than when the person is facing away from the
and is orthogonal to the first eigenvector, is used to idgntifymera as in (d). Interestingly, (d) shows that even when the

the portion from the speaker. face is not visible, there are regions around the speakedg b
Intermediate clusters belonging to the same speaker shoylg: are associated with the speech. Compared to Figure 3 (b)

have similar video characteristics. Specifically, the Bilg®b  anq (q), the localization results are better in Figure 2 (@) a
models should overlap, and the degree of overlap can §#§. we believe that this is because the MI approach seeks
considered as a measure of similarity. Since the eigen-blgkiantaneous associations between the pixels and thetspee
models are non-parametric densities signifying the sp&ake. 5 re|ation which is non-robust in the meeting domain wherea
location within the image, the distance between two modejge eigen-blob approach seeks correlated pixels in frames
is computed using the symmetric Kullback-Leibler (KL2khat are determined to belong to the same speaker using the
measure as audio channel. Since the eigen-blob approach considegeton
d(vi,v;) = % (Zri(a)log rr.((g)) N er(a)log?((:())> 5) durations, spurious movements by non-speakers are aderage
a J a !

out leading to better localization results.
wherea is the variable that spans the eigen-space. ) )
As a comparison to the eigen-blob localization approach; Iterative Clustering
we also implemented the mutual information (MI) based lo- Once audio and video models have been built, the inter-
calization technique. The Ml between two multivariate rmd mediate clusters are merged using an agglomerative dhgpter

) (6)




framework in which the audio and video models are refinembmbined use of audio and video leads to a more robust
at each iteration. The procedure involves merging the stosstopping criterion.
pair of clusters into a new cluster and obtaining a new

audio and a new video model for that cluster. Since the

merged cluster contains more data than either of the inaid

clusters, models derived from it would be more robust and The proposed audio and audio-visual speaker diarization
representative of the speaker’s audio-visual charatitwis ~ and localization approaches are tested on sixteen meetings

The distance between a pair of clustecs,and cj, is from the NIST pilot meeting room corpus [9]. For each

computed by combining distances between the audio and vidéeeting, four camera feeds are available (one camera on each
models as wall of the room). The videos have a spatial resolution of 720

x 480 sampled at 29.97 Hz. There are two audio channels
packaged with each video; one is a gain-normalized mix of
d(ci,cj) =(2—Bj) d(a.,aj) + Bij d(vi,vj) (7) the head microphones worn by the participants, and the decon
- . . ; is a gain-normalized mix of distant microphones placed en th
an\gh;i%%hag ?ggs é\é't’i\\//é?ya;?ﬁgoirsgu\tsgi ;ﬁtllrr]% fgrl:st:ﬁgtzcentral table and the wall. The audio data is sampled at 44 kHz
determines the influence of video on the overall distanc%r?fj.has a resolupon of 16 bits per sample. Elght audio-isua
calculated using pairings are congldered for each meeting by pairing eadheof_t
four cameras with each of the two audio channels, resulting
. in 128 (16 x 8) meeting clips. From each clip, the first 30
Bij = min(@i,B;) where Bi =5 riy (8) secondé are di)scarded,ganollD the next 10 minFL)Jtes are chosen
Equation 8 requires some explanation. The eigen-blé@sulting in approximately 21 hours of data.
modelr; for a cluster is sometimes fragmented over multiple In the meetings, participants are seated around a central
persons. This happens because of consistent co-occurfiggle and interact casually. Depending on the type of the-mee
motion such as hand movements of a person who takeg, the participants discuss a given topic, plan eveny pl
notes when someone else is speaking. Such fragmentag@mes or attend presentations. From time to time, partitspa
incorrectly reduces the distance between video models rofly take notes, stretch, and sip drinks. The audio and video
the involved persons, and negatively influences the climgter signals from these meetings are quite complex because the
procedure. Letrjy be the connected component nf that meetings are unscripted and of long durations. Since only
represents the maximum fraction of, i.e. it is the blob a single camera view is considered at a time, most faces
that captures the maximum fraction of the pdf. Th@, are non-frontal and sometimes participants are only pigrtia
which is the sum over; can be considered a fragmentatiorvisible. In some meetings, a participant may not be visiltle a
measuref; will be one ifrj is not fragmented, and low if  all in a particular camera view. Similarly, the audio sigisl
is severely fragmented. The weighting tefim represents the complex, consisting of short utterances, frequent overiap
confidence in the computed video distance. If either of the tvpeech, and non-speech sounds such as wheezing, laughing,
eigen-blob models is fragmentef,; will have a low value, coughing, etc. Additionally, in some of the meetings (5 and
reflecting lesser confidence in the localization and reduci®-12), participants leave their chairs to use the whiterth@a
the contribution ofd(v;,v;) to the inter-cluster distance. distribute materials. Sample images of four clips from tWo o
Equation 7 is used to compute the pairwise distance betwdba camera views are shown in Figure 4.
all of the intermediate clusters and the pair with the lowest To quantify the localization performance, the groundkrut
distance is merged. GMMs for speech and eigen-blob modésisdefined by static boxes around each person. Eigen-blob
for video are now built from the merged cluster and thkcalization outputs a dominant blaf) for each of the final
iterative procedure continues till a stopping criterionrist.  clusters. This is a static region in the image which localize
Ideally, the stopping criterion should terminate the itieras the person in all meeting frames where the person spoke. The
when the number of final clusters is equal to the number e@itput of Ml localization is the connected component of the
speakers. In previous work dealing with audio-only diaicaa Ml image with the highest average Ml and so this region varies
the ABIC criterion has been extensively used [15] as thigom frame to frame. For a frante a hit occurs if more than
stopping criterion. In our experiments we found that usintyo 50% of the region output by a localization method for that
the ABIC, tends to result in lesser clusters than the numb&ame S(t), intersects with the ground-truth box around the
of participants. This occurs when clusters from two speakespeakerB(t). Mathematically, a hit is defined as
are incorrectly merged if the speaker's have similar vocal
characteristics or if the clusters are impure, i_.e. theytaion 1 it |S{t)NB(t)| > 0.5|S(t)]
speech from more than one speaker. Since eigen-blob models h(t) = { }
built from the intermediate clusters localize the speatigien-
models for different speakers lie on different regions of th where|S(t)| is the number of pixels in the system output,
image. Thus, if the eigen-blob models for two clusters do nanhd |S(t) N B(t)| are the number of pixels in the overlap
overlap, the clusters are most likely from different speske between the system output and the ground truth bounding box.
Taking video into account, the stopping criterion termésat For eigen-blob localizationS(t) = r;y, the dominant blob of
the iterations if eitherinr; =0, or ABIC(a;,a;) > 0. This the eigen-model for the clustei) that contains frame. For

V. RESULTS

9)

0 otherwise



one speaker is incorrectly attributed to another speakissad
ATP boundaries, imperfect clustering and incorrect stogpi
contribute to this error.

A. Localization

Figures 5 and 6 illustrate the eigen-blob models for some of
the final clusters in meetings 3 and 6. Meeting 3 is a planning
meeting with frequent note taking activity, while meetings6
a card game scenario with participants frequently reacbirg
to the center of the table to pick and drop cards. Figures 5 (a-
d) show the eigen-blob models ) for the four final clusters
of meeting 3 and (e-h) show the models for four of the six
clusters of meeting 6 in the first camera view. The models lie
only on the speakers (green boxes) for the two easy cases (b)
and (g) where the speaker is frontal and also for the difficult
cases (a), (c) and (e) where the speakers are non-frontal or
partially hidden. In (d), (f) and (h), we see that fragmerits o
the models lie on non-speakers (red boxes). However, for (f)
and (h), the dominant blobr;() still lies on the speaker.

Figure 6 shows the eigen-blob models for the same data
in the second camera view where the participants appear in
profile view. The models lie only on the speaker in most
cases, but blobs lie on non-speakers in (c), (d) and (f). In
general, we find that when is not fragmented, it usually
lies on the correct speaker and even wheis fragmented,
the dominant blobr{,) still localizes the speaker correctly.
However, when a non-speaker exhibits consistent motion tha

(d) (h) exceeds the speaker’s motiay, incorrectly localizes the non-

Fig. 4. Sample images from two views for four of the meetings. kesag speaker, as occurs in 5(d) ahd 6(d).
(a-d) are from a camera that captures the frontal and panetal of the Figure 7 compares the localization performances of the Ml
participants. Images (e-h) are from a camera that shows madstipants in g p p

profile view. The other two other cameras provide similar views and eigen-blob methods using th#itRatio metric defined
in Equation 10. Each audio channel is paired with the four
cameras and the localization result is presented as the mean
MI based localization, S(t) is the blob with the highest ager of the fourHitRatioswith error bars indicating the maximum
Ml in framet. and minimum of the four values. The localization results for
Only non-overlapping speech frames where the speakefiig two audio channels are shown separately for the two
visible (completely or partially) in a camera view are eedld |ocalization methods resulting in four bars per meeting: Fo
for localization. Representing the subset of frames ovdchvh ggch meeting, the subset of framigver which theHitRatio
localization is scored ag, the hit ratio is computed as thejs computed may differ if all speakers are not visible in all

ratio of hits to the number of frames iy as camera views.
HitRatio= " h(t)/|Te| (10) From Figure 7 we observe that the eigen-blob localization
t;e procedure works well in most meetings but performs poorly

on a subset of meetings (5, 9-12). As mentioned earlier,
tion error rate DER) defined in [9]. Only non-overlappin Zﬂ”%ese meetings violate the assumption that the partiGay
) y bping seated, which leads to poor localization results. This ¢abse

speech frgmgs are scored. To compute DER a one- .thc? eigen-blob models are split between the true speaker and
one mapping is performed between the system clusters (fina

clusters) and the reference clusters (ground-truth), thattthe a moving participant. The large motion magnltude gene rated
. o ; by a moving person, causes theblob to localize the moving
mapping maximizes the total number of frames in agreement. . )
) person instead of the speaker. Incidentally, these arerilye o
The DERis then computed as . o .
meetings where MI based localization performs better. This
is because the Ml is computed over short time windows and
hence unaffected by a change in speaker location.
where Eyss is the percentage of scored frames where The averagéHitRatio across the dataset for the eigen-blob
speech is classified as silence dagh is the percentage of localization method is 65.24% and 62.04% for channel 1 and
scored frames where silence is classified as speech. Th2seespectively which is substantially higher than the %4.3
errors occur due to imperfect speech/silence classifitatiand 49.54% obtained using MI. If the five meetings (5, 9-

Espkr is the percentage of scored frames where speech frd) are dropped, the difference is even more pronounced,

The diarization performance is measured using the diari

DER= Emiss+ Era+ Espkr (11)



(d) h (d) (h)

Fig. 5. Localization of speakers in the first camera view.(()shows Fig. 6. Localization of speakers in the second camera viewdjashows
localization of the four speakers from meeting 3 and (e)-{loys localization localization of four persons from meeting 3 and (e)-(h) shtweslization of
of four of the six speakers from meeting 6. A green box showsrtleespeaker four of the six participants of meeting 6. In (c), (d), and @indgments of the
and a red box indicates where a non-speaker is covered by tdelma eigen-blob model lie on the non-speakers.

(d), (f), and (h), fragments of the eigen-blob model lie on ta-speakers.
However, except in (d), the dominant blob correctly localitiee speaker.

Localization Performance: Eigen-blob vs Mutual Information
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with eigen-blob localization yielding 73.8% and 69.97% fo
channels 1 and 2, respectively compared to Ml's 52.34% a
50.9% for the respective channels. Comparing across clgnn
we observe that the localization methods tend to perforr = 7
better with channel 1 as it's speech quality is better thanhah 30 -
channel 2. We also see that the variation of performancesacr 20 L I
cameras is much lower for the eigen-blob method than the | 234 s e v BC|_ 8 10112 13T 1S 18
method. The MI method performs better when the domina *

speaker faces the camera whereas the eigen-blob methol—<

much more invariant to change in camera views. Fi - _ _
) ) A ig. 7. Localization performance using the eigen-blob andudulnfor-
Errors in eigen-blob localization stem from two sourcesaation (MI) based methods. The blob is considered as the system output
one, an intermediate cluster may contain speech from otfi@rthe eigen-blob method and the region with the highestageml is
. . .considered as the system output for the Ml method. A hit ocfum®re than
speakers and those frames will be marked with the Iocat|g51,/o of the system output overlaps with the speaker’s truatiomg.
of the dominant speaker. Two, non-speakers that exhibit con

tinuous motion over a long duration (swiveling on a chair
throughout the meeting), will cause fragments of the eigefycalizes such movements incurring a drop in performance.
blob model to lie on their location. If the non-speaker mofi® The situation worsens when the speaker is facing away from
consistent and of larger magnitude than the speaker's motighe camera - as motion from the speaker is less visible and
thery blob incorrectly localizes the non-speaker. hence easily overwhelmed by spurious background motion.
Since no audio clustering is performed in the MI based
methods, the method is not affected by diarization errors.
Errors occur when a non-speaker’s movements show stron@er
association with the audio signal, which occurs when arleste  In this subsection, we quantify the influence of video
exhibits significant motion for short durations. Ml incartly on diarization. The framework for audio-only diarizatios i

=N
=

=
= |
=

Hit ratio (%)

‘EI EigenBlob (chn 1) m Mi{chn 1) O EigenBlob (chn 2) O MI (chn 2) ‘

Diarization



Diarization Performance: Audio vs Audio-video inter-cluster distance and preventing poor localizatiommf
50 adversely affecting diarization.

Figure 8 shows that audio-video diarization outperform
audio-only diarization. Since video is incorporated at two
stages in our system - for segmenting the joint feature rstrea

into ATPs and during the iterative clustering stage, we con-
ﬁm ducted experiments to evaluate the influence of video in each

of these stages which are tabulated in Table I.

1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16
Cip TABLE |

IMPACT OF VIDEO ON AUDIO DIARIZATION.

[m Audio 1 D Audio 1 +Video x B Audio 2 0 Audio 2 + Video x|

Use of Video Average DER
Fig. 8. Comparison of diarization performance using audily-and audio- ATP Segmentation Iterative Clustering| Audio 1 | Audio 2
video information. For most meetings, the incorporation ofwidhformation - - 19.15 22.54
results in lowerDER Meetings 5, 9-12 do not gain much improvement by - Vv 17.16 19.31
incorporating video because of poor localization in thesetings. v - 18.46 22.0
v/ 4 16.27 18.42

similar to that of audio-visual diarization, except thatwideo ~ Table | indicates that the major benefit of incorporating
features were used. For each meeting, two audio-only diari¥ideo comes from it's participation in the iterative clustg
tion results are obtained - one for each channel. Similar #29e. This is expected as the intermediate clusters cofatai
localization, four diarization results are obtained fockeaudio More data than the ATPs and so incorrect clustering impacts
channel, by combining each of the four cameras individualffie performance much more than missed ATP boundaries.
with the audio channel. The results are presented as the me@4ever, for a couple of meetings we found that incorrect
of the four results, with error bars indicating the maximurf€gmentation lead to impure ATPs that were subsequently
and minimum of the four results. clustered incorrectly, and significantly impacted the DER.
Figure 8 compares the performance of the diarizatiofus, rather than provide performance gains, the use obvide
scheme when using only audio to that when using both aud®y ATP segmentation imparts robustness to the system.
and video. The averagPERs of audio-only diarization are
19.15% and 22.54% for channels 1 and 2, respectively. The in- VI. SUMMARY AND CONCLUSIONS
corporation of localization results in averaDERsof 16.27% This paper presents a novel approach to perform speaker
and 18.42% which corresponds to relative improvements lotalization and diarization in meetings recorded by alsing
15.0% and 18.02%, respectively. However, video does nedmera and a single microphone. Previous approaches glealin
always improve diarization performance as seen from mgetinwith joint audio-visual analysis in this scenario seek eerr
5 and 9-12. This is because some participants leave theg sdations between the two spaces. These solutions assume that
for short durations leading to fragmented video models atite audio and video signals are instantaneously correlbted
resulting in a low value of3 when computing inter-cluster as demonstrated in this work, the assumption does not hold
distances using Equation 7. If these meetings are elindnaté the meeting domain. In the proposed approach, instead of
the averag®ERsfor channel 1 and 2 are 19.62% and 24.01%rmulating the problem as finding correlations across epac
for audio-only diarization and 15.47% and 17.8% for audiaelustering is performed in individual spaces. The assioriaif
video diarization. This represents relative improvemenits clusters across spaces is based on the assumption thah speec
21.16% and 25.87%, respectively. and body movement co-occur.
Figure 8 reveals that the avera@ER for channel 2 is  The approach is evaluated on a substantially large dataset
higher than that for channel 1. This is expected, since adan21 hours) of unscripted real meetings. The dataset is rddai
1 is obtained from head microphones and thus has better qusl- pairing two audio channels of different sound qualities
ity than channel 2 which is recorded from distant microplsonewith four different camera views. Localization results dist
A similar pattern is found for audio-visual diarizationnse challenging dataset find that the eigen-blob based method
the localization process is essentially guided by the audio outperforms the MI based method by about 40% (relative).
Errors in the audio-only diarization stem from thdn addition, the eigen-blob based localization is less itgas
speech/silence detector, missed ATP boundaries and @utorto changes in camera view.
clustering. In addition to these, poor localization cdmites  The novelty of the diarization process is in its use of motion
to errors in audio-visual diarization. Poor localizatiorayn information from the entire body, rather than just the face.
place fragments of; on a non-speaker, incorrectly reducindgResults obtained by incorporating video information irte t
the video distance between models belonging to differecitistering process leads to a relative improvement of about
speakers. In the extreme case, where the speaker is ndevisits% over that of using audio alone. These are encouraging
in a particular camera - this situation is inevitable. Hoarev results given the nature of the meetings and the video gualit
in such cases, the eigen-blob model is split almost evenlyThe system performance will improve if each participants
amongst the other participants. This results in a low valdace was visible, and the lips were tracked. However, these
of B for rj, reducing the contribution of the video to theresults show that there are cues in the video beyond the face
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that tell of speech activity. This work exploits such videg2] R. Stiefelhagen, K. Bernardin, R. Bowers, J. Garofdlb, Mostefa,

information on a global scale without relying on explicit
face/head/hand detection and without assuming frontastac,s

Also, since the approach does not require training qriori
information, it is readily adaptable to other domains.
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