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Abstract

In spite of the advances accomplished throughout the last decades, automatic speech
recognition (ASR) is still a challenging and di$cult task. In particular, recognition systems
based on hidden Markov models (HMMs) are e!ective under many circumstances, but do
su!er from some major limitations that limit applicability of ASR technology in real-world
environments. Attempts were made to overcome these limitations with the adoption of arti"cial
neural networks (ANN) as an alternative paradigm for ASR, but ANN were unsuccessful in
dealing with long time-sequences of speech signals. Between the end of the 1980s and the
beginning of the 1990s, some researchers began exploring a new research area, by combining
HMMs and ANNswithin a single, hybrid architecture. The goal in hybrid systems for ASR is to
take advantage from the properties of both HMMs and ANNs, improving #exibility and
recognition performance. A variety of di!erent architectures and novel training algorithms have
been proposed in literature. This paper reviews a number of signi"cant hybrid models for ASR,
putting together approaches and techniques from a highly specialistic and non-homogeneous
literature. E!orts concentrate on describing and referencing architectures and algorithms, their
advantages and limitations, as well as on categorizing them into broad classes. Early attempts
to emulate HMMs by ANNs are "rst described. Then we focus on ANNs to estimate posterior
probabilities of the states of an HMM and on `globala optimization, where a single, overall
training criterion is de"ned over the HMM and the ANNs. Connectionist vector quantization
for discrete HMMs, and other more recent approaches are also reviewed. It is pointed out that,
in addition to their theoretical interest, hybrid systems have been allowing for tangible
improvements in recognition performance over the standard HMMs in di$cult and signi"cant
benchmark tasks. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Automatic speech recognition (ASR) [100,29,69,62,28] has been the most investi-
gated topic in speech processing along the last few decades. Broadly speaking, it can
be formulated as the problem of recognizing (not understanding) the words from
a given dictionary uttered by a speaker, relying only on the information contained in
the uttered speech signal and on prior knowledge on the problem domain. In the
1950s, when the research on ASR began, many researchers believed that the incoming
new computer technologies would have made ASR rather an easy task. Unfortunate-
ly, a few decades later, we are realizing that the conjecture was false. ASR emerged to
be a very hard problem, and nowadays many di$culties and open questions are far
from being solved, in spite of the e!orts of a number of long-termed research groups
throughout the world. Di$culties are related to increasing dictionary size (e.g. more
than 50,000 words), continuous speech recognition versus isolately uttered words,
number and vocal characteristics of speakers in speaker-independent (SI) recognizers
(versus simpler speaker-dependent (SD) systems, capable to recognize only speech
uttered by the speaker whose acoustic material was used to train the recognizer itself),
spontaneous speech phenomena (um's, ah's, false starts, out-of-vocabulary words,
etc.), robustness to environmental conditions (noise and distortion over the channel,
multiple microphones spread throughout the room to allow hands-free dictation, etc.),
and so on. Most of these problems arise when moving from the laboratory, where
simulation experiments often allow for excellent recognition performance, to real-world
conditions, where a dramatic degradation in performance is far from being an exception.
Nonetheless, ASR has resulted highly e!ective in a variety of applicative scenarios:
dictation, that is automatic generation of written text from the speech signal, access to
databases, human}machine interface, access to remote automatic services on the
telephone line, and control of machines.
The ASR problem can be formulated as a statistical classixcation problem, accord-
ing to classical pattern recognition [30,40]. Once the classes have been de"ned as
sequencies= of allowable words from a `closeda dictionary, a parametric representa-
tion of the speech signal has been chosen (e.g. a sequence of acoustic feature vectors
X), and a Maximum a Posteriori (MAP) criterion has been adopted, the classi"cation
problem can then be stated as "nding the sequence of words=I which maximizes the
quantity Pr(= �X). The latter is usually factorized using Bayes' theorem [30] as

Pr(= �X)"
Pr(X �=)Pr(=)

Pr(X)
. (1)

Given an acoustic observation sequence X, the e!orts on the maximization of
Pr(=�X) can be moved to the search for the class=I which maximizes the numerator
of the right-hand side of Eq. (1), i.e. Pr(X �=)Pr(=). The quantity Pr(=), usually
referred to as the language model (LM) [103] depends on high-level constraints and
linguistic knowledge about allowed word strings for the speci"c task. The quantity
Pr(X �=) is known as the acoustic model. It describes the statistics of sequencies of
parametrized acoustic observations in the feature space given the corresponding
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Fig. 1. Time-delay neural network. Input is fed into the leftmost set of input units (I
�
) at time t. Previous

inputs (I
���
, I

���
) are shifted to the right, with unit delays represented by boxes labeled with �. A similar

mechanism holds in the hidden layer (H
�
,2). An integration over time of the input sequence is carried out

by the leftmost set of hidden units, while the output layer of the net integrates over time the activations of
the hidden units.

uttered words (e.g. certain phonemes). Hidden Markov models (HMM) [101,52] are
the most popular (parametric) model at the acoustic level. A brief review of HMMs is
presented in Section 2. Although HMMs are e!ective approaches to the problem of
acoustic modeling in ASR, allowing for good recognition performance under many
circumstances, they also su!er from some limitations. These limitations, discussed at
the end of Section 2, are the rationale behind the research for di!erent paradigms.
Starting from the late 1980s, many researchers began to use arti"cial neural
networks (ANN) for ASR. Neural nets were expected to carry out the recognition task
(e.g. classi"cation of phonemes or words) when discriminatively trained on acoustic
features. Milestones in this respect are [120}122,42,45,3,39,23,46,118,112,24,110,
10,111], among the others. Lippmann [75] wrote a comprehensive survey of the state
of the art in connectionist speech recognition at the end of the Eighties. The topic was
of crucial interest in classic conferences and workshops traditionally dedicated to
speech recognition and even in specialized workshops.
To take the temporal dependencies typical of speech signals into account, two
major classes of neural networks were proposed, namely time-delay neural network,
and recurrent neural networks. Time-delay neural networks (TDNNs) [120,121,148],
also known as tapped delay lines, represent an e!ective attempt to train a static
multilayer perceptron (MLP) [114] for time-sequence processing, by converting the
temporal sequence into a spatial sequence over corresponding units. The idea was
applied in a variety of ASR applications, mostly for phoneme recognition
[120,121,13]. An example of a TDNN is shown in Fig. 1. The input layer has been

E. Trentin, M. Gori / Neurocomputing 37 (2001) 91}126 93



Fig. 2. Generic recurrent neural network.

enlarged to accept as many input patterns as the ("xed) sequence length to be
processed at each time step. Input vectors enter the network from the leftmost set of
input units. At each time step, inputs are shifted to the right through the unit delay line
that links each set of input units to the right-adjacent one, and the next input pattern
is fed into the leftmost position. The same extension can also be applied to subsequent
layers, introducing a tapped-delay mechanism between hidden units (e.g. only the "rst
block of units in the tapped line actually receives input from the previous layer), giving
the ability to deal with more complicated time dependencies. The backpropagation
(BP) [123,114,67] algorithm can be used to train such a network.
Using TDNNs, Lang and Hinton [66] obtained a 7.8% error rate in multi talker
classi"cation of the isolated letters `B, D, E, Va, using acoustic material collected
among 100 male speakers. Waibel et al. [122] were able to recognize isolated
consonants uttered by a Japanese speaker with a low error rate (4.1%), using
a combination of specialized TDNNs. A signi"cant 1.4% error rate in vowel recogni-
tion was obtained in the same experiments. As illustrated in the next Sections,
TDNNs are often adopted instead of MLPs within hybrid paradigms.
Recurrent neural networks (RNN) provide a powerful extension of feed-forward
connectionist models by allowing to introduce connections between arbitrary pairs of
units, independently from their position within the topology of the network. Self-
recurrent loops of a unit onto itself, as well as backward connections to previous
layers, or lateral links between units belonging to the same layer are all allowed. An
example of a generic RNN architecture is given in Fig. 2, to "x ideas.
RNNs behave like dynamical systems. Once fed with an input, the recurrent
connections are responsible for an evolution in time of the internal state of the
network. RNNs are particularly suited for sequence processing, due to their ability to
keep an internal trace, or memory, of the past. This memory is combined with the
current input to provide a context-dependent output. Several RNN architectures were
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proposed in literature [60,33,90], along with a variety of training algorithms, mostly
based on gradient-descent techniques. Among the latter ones, particularly remarkable
are recurrent back propagation [98], back-propagation for sequences (BPS) [42],
real-time recurrent learning [127,126], Time-dependent recurrent back-propagation
[124,95,115] and the most popular back-propagation through time [83,114].
As examples of application of RNNs to ASR problems, particularly remarkable are
the results obtained for SI phoneme recognition by Robinson et al. [109,112,111],
where RNNs are used as state-space machines, capable to compute an output and the
next state, given the input and the current state. This results in a non-linear extension
of linear control theory. A recurrent network for plosive recognition was successfully
applied in [7,34]. In some cases, as described in the next sections, RNNs are combined
with HMMs within hybrid architectures.
In spite of their ability to classify short-time acoustic-phonetic units, such as
individual phonemes, ANNs failed as a general framework for ASR, especially with
long sequencies of acoustic observations like those required in order to represent
words from a dictionary or whole sentences. This is mainly due to the lack of ability to
model long-term dependencies in ANNs, even when recurrent architectures are
considered. The theoretical motivations underlying this problem were well analyzed
by [11]. In the early 1990s this fact led to the idea of combining HMMs and
ANNs within a single, novel model, broadly known as hybrid HMM/ANN [38,70,15,
87,93,44,118,8]. A recently published survey paper [125] investigates the `bordera
between ANNs and Markovian models (HMMs for ASR and Markov random
xelds for image processing), summarizing approaches where ANNs emulate Markov
models and vice versa, and reporting hybrid architectures. The hybrid paradigm
relies on maintaining an underlying HMM structure, capable of modeling long-
term dependencies, with the integration of ANNs, which provide non-parametric
universal approximation, probability estimation, discriminative training algo-
rithms, fewer parameters to estimate than those usually required in standard
HMMs, e$cient computation of outputs at recognition time, and e$cient hardware
implementability.
Di!erent hybrid architectures and training/decoding algorithms have been pro-
posed in the literature, according to the nature of the ASR task, to the type of HMM,
or to the speci"c role of the ANN within the system. The hybrid approach often
allowed for signi"cant improvements in performance with respect to standard ap-
proaches to di$cult ASR tasks. This paper is a survey of hybrid HMM/ANN systems
for ASR, putting together approaches and techniques from a highly specialistic and
non-homogeneous literature. E!orts concentrate on describing and referencing archi-
tectures and algorithms, their advantages and limitations, as well as on categorizing
them into broad classes.
After a brief review of basic HMM concepts and typologies (Section 2) the
paper reports the theoretical aspects and the performance obtained with di!erent
models (Section 3), which have been categorized according to their architecture
(Sections 3.1}3.5). These categories are summarized in Table 1, with pointers to the
respective sections. Experimental results are reported from literature in terms of
recognition rate on speci"c test databases, which are usually public-domain. The most
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Table 1
Categorization of hybrid models according to their architectures and nature, along with brief description of
characterizing features and pointer to corresponding Section in the paper

Category Brief description Section

Early attempts Approaches that relied on ANN 3.1
architectures that attempted to emulate HMMs.

ANNs to estimate the
HMM state-posterior
probabilities

A probabilistic interpretation of the ANN outputs is given,
e.g. ANNs perform an estimate of the posterior probability
of CDHMM states given the acoustic observations.

3.2

Global optimization Introduction of a training scheme aimed at the optimization
of a `globala criterion function, de"ned at the whole-system
(i.e., ANN and HMM simultaneously) level.

3.3

Networks as vector
quantizers for discrete
HMMs

Unsupervised ANNs are used to perform a quantization
in the acoustic feature space for discrete HMMs.

3.4

Other approaches Hybrid systems based on particular combination techniques
between ANNs and HMMs, not belonging to any of the
previous categories, and often focused on speci"c tasks.

3.5

common evaluation criterion in the case of connected or continuous speech recogni-
tion is the word error rate (WER), that is de"ned as

WER"100(Ins#Del#Sub)/N
�����
, (2)

whereN
�����

is the total number of words in the uttered text, and the number of errors
of the recognizer is expressed counting out word insertions (Ins), deletions (Del) or
substitutions (Sub), respectively.
Although state-of-the-art hybrid models seem to yield a gain in performance with
respect to standard HMM recognizers under many circumstances, several open
problems in ASR still remain far from being solved. Some of them and a sketch of
challenging future issues are brie#y discussed in Section 4, where concluding remarks
are also drawn.

2. Hidden Markov models

An HMM is a pair of stochastic processes: an hidden Markov chain and an
observable process which is a probabilistic function of the states of the former. This
means that observable events in the real world (e.g., acoustic observations) are
modeled with (possibly continuous) probability distributions, that are the observable
part of the model, associated with individual states of a discrete-time, "rst-order
Markovian process. In general, the latter is not ergodic. The semantics of the model
(conceptual correspondence with physical phenomena) is usually encapsulated in the
hidden part: for instance, in ASR an HMM can be used to model a word in the
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task-dependent vocabulary, where each state of the hidden part represents a phoneme
(or sub-phonetical unit), whereas the observable part accounts for the statistical
characteristics of the corresponding acoustic events in a given feature space (e.g.
sampled acoustic signal, represented in a proper way).
More precisely, an HMM is de"ned by:

(1) A set S of Q states, S"�S
�
,2,S

�
�, which are the distinct values that the discrete,

hidden stochastic process can take.
(2) An initial state probability distribution, i.e. �"�Pr(S

�
� t"0), S

�
3S�, where t is

a discrete time index.
(3) A probability distribution that characterizes the allowed transitions between
states, that is a

��
"�Pr(S

�
at time t � S

�
at time t!1), S

�
3S, S

�
3S� where the

transition probabilities a
��
are assumed to be independent of time t.

(4) An observation or feature space F, which is a discrete or continuous universe of all
possible observable events (usually a subset of R�, where d is the dimensionality of
the observations).

(5) A set of probability distributions (referred to as emission or output probabilities)
that describes the statistical properties of the observations for each state of the
model: bx"�b

�
(x)"Pr(x �S

�
), S

�
3S, x3F�.

HMMs represent a learning paradigm, in the sense that examples of the event that is
to be modeled can be collected and used in conjunction with a training algorithm in
order to learn proper estimates of �, a and bx . The most popular of such algorithms are
the forward}backward (or Baum}Welch) [101] and the Viterbi [101] algorithms.
Whenever continuous emission probabilities are considered, both of them are based
on the general maximum-likelihood (ML) criterion, i.e. they aim at maximizing the
probability of the samples given the model at hand. In particular, the Viterbi
algorithm concentrates only on the most alike path throughout all the possible
sequences of states in the model.
These algorithms belong to the class of unsupervised learning techniques, since they
perform unsupervised parameter estimation of the probability distributions without
requiring any prior labeling of individual observations (within the sequences used for
training) as belonging to speci"c states.
Once training has been accomplished, the HMM can be used for decoding or

recognition. Two di!erent instances occur according to the speci"c task. Whenever
N di!erent HMMs* corresponding to models ofN di!erent events or classes de"ned
in the feature space* are used (e.g. in ASR), decoding (classi"cation) means assigning
each new sequence of observations to the most alike model. On the contrary, when
a single HMM is used, decoding (recognition) means "nding out the most alike path
of states within the model and assigning each individual observation to a given state
within the model. If the ML criterion is used, the forward}backward or the Viterbi
algorithms are still suitable for the recognition task.
One major distinction has to be made between discrete HMMs and continuous

densityHMMs (CDHMMs) [52]. The former use discrete probability distributions to
model the emission probabilities, i.e. they rely on the assumption of a "nite alphabet of
symbols in input or, equivalently, they require a quantization of a continuous input
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space, e.g. via any clustering [30] technique, into a "nite size codebook. CDHMMs, on
the other side, use continuous probability density functions (pdfs), usually referred to
as likelihoods, to describe statistics of the acoustic features within the HMM states,
and are usually best suited for very di$cult ASR tasks (i.e, continuous speech
dictation with large vocabularies), since they exhibit better modeling accuracy. Gaus-
sian or mixtures of Gaussian components are the most popular and e!ective choices
of pdf 's for CDHMMs.
HMMs have been successfully applied in a variety of tasks, mainly in speech
recognition. Unfortunately, standard HMMs in conjunction with the above-men-
tioned training and decoding algorithms su!er from some major intrinsic limitations.
The combination of ANNs with HMMs is intended here as an attempt to overcome
some of these limitations (see for instance [13]). Standard CDHMMs, trained with
forward}backward or Viterbi algorithms, present poor discriminative power among
di!erent models, since they are based on the ML criterion, which is itself non-
discriminative. The classical HMMs rely on strong assumptions on the statistical
properties of the phenomenon at hand. For instance, the stochastic processes involved
are modeled by "rst-order Markov chains, and the parametric form of the probability
density functions that represent the emission probabilities associated with all
states is heavily constraining. In addition, the number of parameters in HMMs
do strongly limit their implementability in hardware. Given these limitations, the
use of ANNs with their discriminative training, their capability to perform non-
parametric estimation over whole sequences of patterns, and their limited number of
parameters (which allows for e!ective development of neural microchips) appear
de"nitely promising.

3. State of the art of hybrid ASR systems

Whereas standard HMMs have a consolidated and homogeneous theoretical
framework, hybrid ANN/HMM systems are a recent research "eld with no uni"ed
formulation. A variety of di!erent architectural and algorithmic solutions have been
proposed in the literature. The following sections are organized according to four
major categories:

(1) Early attempts. Early approaches (between the late 1980s and the beginning of the
1990s) relied on ANN architectures that attempted to emulate HMMs [16,93].
Some of them incorporated the dynamic programming (DP) algorithm [5] within
the ANN itself [44,71]. These approaches strengthened the idea that ANNs could
be e!ectively used for ASR, but the straight emulation of standard HMMs did not
allow to overcome limitations of the latter (summarized in the previous section).

(2) ANNs to estimate the HMM state-posterior probabilities. Some ANN/HMM
hybrids assume that the output of an ANN is sent to an HMM for ASR
[70,38,44,118]. The architectures proposed by Bourlard et al. rely on a probabilis-
tic interpretation of the ANN outputs [13,88]. Each output unit of the ANN is
trained to perform a non-parametric estimate of the posterior probability of
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a CDHMM state given the acoustic observations (and, possibly, given the
previous state). This represents a fundamental class of hybrid models, which had
a strong in#uence over a number of following approaches. Points of strength of
this paradigm are the relative ease of implementation, due to a training scheme
that rely on alternating between BP and a standard Viterbi alignment, as well as
a discriminative training criterion that may allow for improved recognition
performance. Weakness of the approach comes from the unavailability of an
analytically motivated global optimization scheme de"ned at the whole-
system level, and also from the requirement of huge ANNs architectures
(possibly with millions of connection weights) to be trained for the most com-
plicated ASR problems, e.g., SI continuous speech recognition with large
vocabularies.

(3) Global optimization. The ANN and the HMM are often trained separately, but
techniques have also been proposed in which a simultaneous training is accomp-
lished. In [5,8], the ANN is used to transform a vector of acoustic features into
more e!ective observations for CDHMMs, according to a `global optimizationa
of the parameters of the combined system. Apart from the feature extraction
aspect, what is more relevant in this case is the introduction of an analytically
motivated training scheme aimed at the optimization of a global criterion func-
tion, the latter being de"ned at the whole-system (i.e., recognition) level. Other
researchers proposed di!erent globally optimized hybrids in recent years. A brief
comparison of hybrid architectures relying on global discriminative training
algorithms can be found in [58].

(4) Networks as vector quantizers for discrete HMM. As mentioned in Section 2,
discrete HMMs assume that a "nite alphabet of input symbols has to be modeled.
Since in ASR the assumption does not hold, a quantization in the acoustic feature
space is required. Instead of using standard clustering algorithms, unsupervised
ANNs can be e!ectively used as vector quantizers. This class of hybrids is
characterized by distinct training steps for the ANN and for the HMM. Lack of
a combined, global optimization scheme is compensated by the reduced complex-
ity of the overall machine (mainly due to the ease of use of discrete HMMs versus
CDHMMs) and by good recognition performance, the latter being close to that
yielded by CDHMMs in some small-scale ASR tasks. Examples can be found in
[64,55,106].

(5) Other approaches. Along with the architectures introduced so forth, during
the Nineties several researchers proposed hybrid systems relying on particular
combination techniques between ANNs and HMMs. Such techniques do not
properly belong to any of the previous categories, and often focused on speci"c
tasks, e.g. rescoring or word-spotting. In [5,44,118], the ANN outputs are
interpreted as `scoresa which are used within a DP algorithm to perform align-
ment and segmentation. As an alternative, the ANN can be used for re-scoring
the N-best hypotheses produced with an HMM [130]. Although a uniform
treatment of these approaches does not appear feasible, Section 3.5 provides
a summary of major architectures, algorithms and experimental results reported
from literature.
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3.1. Early attempts (Viterbi Net, Alpha Net)

In 1987 Lippmann and Gold [76] proposed a recurrent neural network architec-
ture, implemented in VLSI, able to mimic the decoding behavior of the continuous-
density Viterbi algorithm, which was for the recognition of isolated words. It was
called the Viterbi net. Although the recognition performance did not represent any
improvement with respect to what could be achieved with standard HMMs, this
connectionist architecture is remarkable for historical reasons.
The structure of the Viterbi net has as many input units as the dimensionality of the
acoustic vectors. Acoustic observations are fed into the network in sequence, one at
a time. Inputs are propagated forward through a single, fully connected layer, and
summed up before being passed to each one of a set of state units representing the
states of a corresponding left-to-right HMM. A Viterbi network is built for each word
model of the HMM. The state units have a threshold-logic activation and a "xed
delay on the output, and are laterally connected (each of them to the following one) in
a way that resembles the topology of the left-to-right HMM. In addition to the
summed inputs, each state unit also receives a feedback input from an associated
subnetwork, which is able to select the maximum between the output from the state
unit itself and the output from the adjacent state unit on the left.
There is no actual training procedure for the Viterbi net, and this is one of its major
limitations. It is initialized using the parameters of the correspondingHMM, obtained
using the Baum}Welch algorithm. After the initialization, when fed with a sequence of
input vectors, the recurrent dynamics of the net result in a parallel version of Viterbi
decoding, producing as the "nal output the logarithm of the likelihood of the input
sequence (and most likely state path) given the model.
Experimental results on isolated word recognition tasks, performed using 12 MEL
cepstral coe$cients [27] and 13 di!erentialMEL cepstra as features, were satisfactory
and comparable with those obtained with state-of-the-art HMMs.
In 1990 Bridle [16] proposed a connectionist architecture which was able to behave
like an HMM for ASR. The idea underlying his approach was to look at the forward
and backward computation of the probabilities in HMMs, and to give them an
interpretation in terms of a neural network. The model was called Alpha Net, because
of the way its architecture and dynamics were calibrated to resemble the forward
computation of the alphas in the Baum}Welch algorithm.
The Alpha net is a recurrent neural network. As for the Viterbi net, its parameters
are the same as those of the corresponding HMM, but a complete forward estimation
of the likelihood of the observations given the models is accomplished, instead of
a single best-path search as occurs with the Viterbi algorithm. Furthermore, a learning
procedure, derived from the backward step of the Baum}Welch algorithm, is avail-
able. This procedure is based on a discriminant cost function (maximum mutual
information) and backpropagation of its partial derivatives. A recurrent architecture
is built for each unit (word) to be included in the model. The neurons are organized in
order to represent the states of the HMM. For instance, in the most common case of
left-to-right HMMs, each unit (neuron) is connected with a recurrent connection to
itself, and with a forward connection to the unit representing the following adjacent
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state in the HMM. The weights of these connections are equal to the state transition
probabilities between the corresponding pairs of states. The likelihoods of the emis-
sion probabilities are fed into the recurrent loops from another, distinct part of the
network, and are multiplied instead of summed. The units are linear, with a unit delay,
thus resulting in the computation of the product of the joint probability of transition
and emission for that state at each time step. In so doing, the overall behavior is
consistent with the probabilistic framework of the HMM. The separate network that
is responsible for the computation of these likelihoods is supposed to rely, for
example, on multipliers and exponentials in order to approximate as closely as
possible the likelihoods generated by the Gaussian or mixture of Gaussians associated
to the states of the corresponding HMM. The "nal output of such an architecture is
the actual likelihood of the input acoustic sequence given the model, summed over all
possible paths within the network.

3.2. ANNs to estimate the state posterior probabilities

Bourlard et al. [15,87,12,13] proposed HMM/ANN hybrids for continuous ASR in
which a MLPwas trained to estimate the posterior probabilities of HMM states, with
the ultimate objective of maximizing the posterior probability of a given (left-to-right)
Markov modelM

�
given an acoustic observation sequence X. Posterior probabilities

can be written as

Pr(M
�
�X)"�

�
�
�

Pr(q�
�
,M

�
�X)

"�
�
�
�

Pr(q�
�

�X)Pr(M
�
� q�

�
,X)

"�
�
�
�

Pr(q�
�

�X)Pr(M
�
� q�

�
), (3)

where the model M
�
is supposed to have Q states S

�
,2,S

�
, and the acoustic

observation sequenceX"(x
�
,2,x

�
) is assumed to be of length ¸. In Eq. (3) the sums

are extended over all possible sequences q�
�
of states.

The quantity Pr(M
�
� q�

�
) does not depend on the acoustics (observation sequence

X), but only on higher-level choices made in the de"nition of the models and can thus
be computed separately.
Repeatedly applying the properties of joint probabilities, Eq. (3) can be rewritten as

Pr(M
�
�X)"�

�
�
�

Pr(q
�

�X)Pr(q
�

�X, q
�
)

2Pr(q
�

�X, q
�
,2, q

���
)Pr(M

�
� q�

�
)

"�
�
�
�
�

�
�
l��

Pr(ql �X, ql��
�
)�Pr(M

�
� q�

�
). (4)

Attempts to determine analytical developments for the present formulation, similar to
those adopted in the forward}backward algorithm for maximization of the likelihood
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Fig. 3. Basic hybrid architecture where a 2-layer feedforward ANN estimates the posterior probabilities of
states S

�
,S

�
, S

�
of a left-to-right HMM given an hypothetic acoustic observation x"(x

�
, x

�
,x

�
).

of the observations given the model, are not practicable. This is due to the constraint
�

�
Pr(M

�
�X)"1 that must be satis"ed within the present maximum a posteriori

discriminant framework. Bourlard and Morgan's idea was then to use feedforward
neural networks as estimators of the posterior probabilities of states given the
observations and the previous state sequence. In so doing, advantages are taken from
ANNs discriminant training and from their capability to estimate Bayesian posterior
probabilities when trained by BP on a mean-squared-error (MSE) criterion. The basic
architecture is schematically represented in Fig. 3.
Actually, approximate versions of Eq. (4) are used, e.g., by taking

Pr(M
�
�X)+�

�
�
�
�

�
�
l��

Pr(ql � xl��
,2, xl	�

, ql��
)�Pr(M

�
� q�

�
), (5)

that is to say, the network is trained to estimate the state posterior, called conditional
transition probability, Pr(ql � xl��

,2, xl	�
, ql��

) given a "xed number 2k#1 of
acoustic vectors xl��

,2, xl	�
(a window or context of size k centered in the current

acoustic observation xl) and the previous state. This is accomplished using the BP
algorithm on a MLP, which has an output unit for each state, that represents the
estimate of the state posterior probability. Other attempts were made to use the MLP
to estimate the posteriors in di!erent ways, for example as a function of the current
observation and of the previous state only, or as a function also of previous MLP
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outputs (previous states). In any case, the speech recognition performance of the
resulting overall system was surprisingly poor in many experiments [14]. This was
attributed to a mismatch between the priors estimated from relative frequencies over
the training data, and priors implicitly constrained by the topology of the models.
A step backward was then made by moving the system back to likelihoods. This issue
was pursued by using a somewhat standard version of the HMM, in conjunction with
neural networks. The latter were trained to perform exactly the same probability
estimation as in Eq. (5), but with their outputs divided by the a priori probabilities of
the corresponding states, in order to reduce probabilities to scaled likelihoods,
normalized by the unconditional likelihood of each observation (using Bayes' the-
orem). Priors can be computed apart, from the training data or from statistical
considerations on the constraints given by the speci"c task. This solution was e!ective
and allowed the system to reach the recognition performance of state-of-the-art
HMM recognizers on large vocabulary continuous speech tasks, but at the expense of
the original theoretical framework.
One central point raised with this approach concerns the training procedure.
Indeed, networks are trained by BP, which would require knowledge of target values
for the outputs in order to compute the gradient of the cost function. With the
exception of toy tasks, no supervised labeling of acoustic frames is actually available
(labeling by hand in real-sized databases is not feasible). Bourlard et al. suggested an
iterative training procedure that starts up with an initial segmentation of the acoustic
observations, performs training of the networks according to that segmentation, then
uses the Viterbi algorithm, in conjunction with the newly trained networks as
estimators of the state-posterior probabilities, in order to produce a new and more
reliable segmentation of the data, that in turn is used to train again the networks, and
so on in an iterative fashion. The initial segmentation may be obtained using
a standard HMM, or by dividing the observation sequence into equally sized seg-
ments; each segment is associated to the corresponding state in the correct HMM
state-sequence. An analogous training scheme was proposed also in [38].
The approach by Bourlard et al. was successfully adopted in [105] for the DARPA
resource management (RM) SI, continuous speech task, with a vocabulary size of 991.
AnHMMwith 2 or 3 states left-to-right phone models was used, with parameter tying
of the pdfs associated to the states of a given model.
The performance of the hybrid system was compared with that of Decipher, an
HMM-based recognizer where emission probabilities are modeled with mixtures of
Gaussian components. Decipher was also used to bootstrap the hybrid, i.e. to obtain
the initial segmentation of acoustic observations used for the "rst training step of
the MLP.
Experimental results obtained averaging on the three data sets used for testing,
using 12 MEL plus energy and the corresponding "rst-order time-derivatives and
a word-pair grammar (that reduced the perplexity to 60), yielded an average error of
8.7% for the context-independent hybrid, a 7.0% for the context-dependent HMM
and a 5.5% for the interpolation of the two models. Moreover, results on one of the
test sets (February91) showed considerably better performance of the context-inde-
pendent hybrid (5.8%) with respect to the context-independent HMM (11.0%).
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Singer and Lippmann [116] used radial basis function (RBF) [99] networks instead
of MLPs as Bayesian probability estimators; the resulting hybrid was used in an
isolated word recognition task.
Recently, Hennebert et al. [47] have proposed a reinforcement of the theoretical
framework originally formulated by Bourlard, Morgan et al., by generalizing the local
connectionist estimates of posterior probabilities to global posterior of models,
formulating also a novel training algorithm within that framework.
An extension to the hybrid paradigm based on connectionist estimation of state
posterior probabilities was proposed by Franco et al. [36], where the basic context-
independent HMM scheme was replaced by a model capable to take into account
acoustic contexts. The introduction of context dependency is accomplished using
Bayes' theorem to obtain the following factorization:

p(X � q
�
, c

�
)"

Pr(q
�
�X, c

�
)p(X � c

�
)

Pr(q
�
� c

�
)

, (6)

where X is an acoustic observation, q
�
is a state of the HMM, and c

�
is a certain

context (k"1,2,K).
In Eq. (6) the quantity Pr(q

�
�X, c

�
) is estimated by an MLP. Bourlard et al. used

a single MLP to estimate all state posteriors Pr(q
�
�X), q

�
3S; [36] adoptsKMLPs if

K is the number of contexts to be modeled. The kthMLP is trained as an estimator for
Pr(q

�
�X, c

�
), for all q

�
3S, applying BP on the feature vectors embedded within kth

context in the training sequencies.
The quantity p(X � c

�
) is expanded using Bayes' theorem again, writing a further

factorization of the form

p(X � c
�
)"

Pr(c
�
�X)p(X)

Pr(c
�
)
, (7)

where Pr(c
�
�X) is estimated by an MLP in Bourlard's way. The other quantities

involved in Eq. (7) are directly computable from statistical evaluations (analysis of
relative frequencies) on the training data, otherwise they come out to be irrelevant in
Viterbi search for the optimal path.
Franco et al. [36] used 2-layer, context-dependent MLPs with sigmoidal activa-
tions. The connection weights between input and hidden layer were shared among all
the networks associated to a given phone class, independently of the context
c
�
, k"1,2,K, and only the weights of connections between hidden and output layer
were specialized on the speci"c context. In so doing, the complexity of the system
(number of free parameters) was considerably reduced, thus limiting the e!ect of
reduction of available training data for individual networks as the number K of
contexts increased. A novel training procedure was introduced for this architecture.
Experimental results, carried out on a continuous speech, SI task (DARPA RM)
using generalized biphone phonetic contexts, showed a 28.0% relative WER reduc-
tion with respect to the context-independent hybrid. When adopting a word-pair
grammar and averaging over three di!erent test sets, performance improved from
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8.8% WER to 6.3% WER, whereas a standard context-dependent HMM scored
a 7.0% WER.
Connectionist estimate of posterior probabilities is also adopted in [37], where the
estimation is accomplished using a MLP which takes in input a time-window of
previous acoustic observations, in addition to the current acoustic vector, so as to take
the correlations among adjacent observations into account.
Robinson et al. [111,50,49] extended Bourlard's approach with the introduction
of a recurrent network instead of a static MLP to estimate state-posteriors. Their
system, called ABBOT, successfully participated to November 1993 ARPA Wall
Street Journal Test. ABBOT is a continuous speech, SI recognition system for large
vocabularies (more than 10,000 words). In [50] the basic system was improved by
providing:

(1) Combination of neural models. Di!erent recurrent nets are trained on di!erent
acoustic features, namely MEL and PLP coe$cients. Furthermore, `backward
recurrenta networks (i.e. models that start processing from the end of an input
sequence back to the beginning) are introduced in addition to the conventional
`forward recurrentamodels, thus resulting in four parallel probability estimators.
These models are then combined, either in a linear fashion (averaging on the
corresponding probability estimates), or averaging in the log-domain (the latter
choice allowing for a further gain in performance).

(2) Introduction of a `posterior-directed path pruninga. Pruning of the search space is
accomplished relying, for each new input frame, on the connectionist probability
estimates of individual phones. Paths containing phones, the posterior probabil-
ity of which is below a given threshold, are immediately pruned.

Further improvements in performance for the ABBOT system are presented in
[49], which discusses more sophisticated combination strategies for the recurrent
models and improved techniques for phone-duration modeling.
Another approach which is conceptually analogous to that by Bourlard et al. is
presented in [129], which does not use an HMM explicitly, but a Viterbi alignment
strategy is rather applied on state scores computed as the output values of the second
hidden layer of a feed-forward ANN.
A variant on hybrid systems where the ANNS are used as state-posterior probabil-
ity estimators is described in [20]. The output of the networks is interpreted as
a discriminant function (for instance, applying Bayes' theorem and assuming that all
the states of the HMM share the same prior probability) capable to discriminate
among the states of the model, i.e. a classical classi"cation task. In this perspective, the
approach of [20] consists in training MLPs as `state recognizersa, relying on the
discriminative training capabilities of feedforward nets, combining then the MLPs
into a sequence (sequential multilayer perceptron: SMLP) with the aim of modeling
and recognizing isolated words, within a DP scheme.
The system models the words in the vocabulary with such a sequence of MLPs,
using a left-to-right chain of as many nets as the number of states in the corresponding
underlying HMM. Each net has an output unit for each of the classes (words) to be
recognized. The input sequence of acoustic features is fed through the networks,
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producing sequences of scores for each class. A decoding engine based on Viterbi
algorithm is run on the scores obtained this way.
The training is in two steps:

(1) Each MLP is roughly trained by BP on pre-labeled sequences (e.g. the label for
a given acoustic observation may represent the corresponding phoneme).

(2) Fine-tuning of MLPs parameters is accomplished using an optimization scheme
based on Generalized Probabilistic Descent (GPD) [63,18] and BP of partial
derivatives throughout the layers of the net.

Another variant to Bourlard's approach can be found in [104]. In that paper RBF
networks, instead of MLPs, are used to estimate state-posterior probabilities. The
training takes place again in two steps:

(1) RBF models are trained by BP over a training set which was previously labeled
by a standard HMM.

(2) A global discriminative training of the hybrid, based on GPD with the minimum
classi"cation error criterion [61], is accomplished.

Also in [128] ANNs are used to estimate state posteriors, but a novelty is proposed
in the training scheme. Instead of considering only the strict values `0a and `1a as
targets for output units, according to Viterbi segmentation of training sequencies, the
probability targets in the continuous range (0,1) generated within the forward}back-
ward mechanism are considered. The training technique was evaluated on a recogni-
tion task of continuous digits collected over the telephone channel, where the novel
hybrid scored a 4.9%WER, whereas the hybrid with standard training yielded a 6.0%
WER, and a standard CDHMM scored a 5.0% WER.
Table 2 summarizes the main hybrid models of the present category, giving
references, brief description and experimental results, in order to allow for a concise
comparison.

3.3. The **global optimization++ approach

The hybrid model described in [4,5,8] is based on the simultaneous estimation of all
the parameters for both the HMM and the ANN according to the joint optimization
of a single criterion, de"ned at the sequence level (e.g., word or sentence). The
approach was originally inspired from the Alpha net (see Section 3.1).
The ANN is trained as a feature extractor for a CDHMM, with the goal to
transform input acoustic representations into compact, but signi"cant, low-dimen-
sional representations that are more suitable to be modeled by the emission probabil-
ities of the HMM than standard acoustic parameters. In so doing, an increased
recognition rate is expected.
The ANN maps a raw input sequence u�

�
onto a low-dimensional observation

sequence x �
�
. An assumption is made that the optimization criterion C used to train

the HMM is a continuous and di!erentiable function of the observations
x
�
, t"1,2,¸, so that a gradient descent optimization method can be applied. The
partial derivatives �C/�x

�
(here x

�
denotes a generic component of tth observation x

�
)
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Table 2
Summary of main hybrid architectures based on a connectionist estimate of posterior probability of HMM
states (Section 3.2). First column identi"es the model, giving the bibliographic reference. Second column
provides a brief description. Last column reports experimental results from literature

Model Brief description Performance

Reference model
[12,13,105]

A MLP is trained with BP over a window
of acoustic frames to estimate the posterior
probabilities of CDHMM states given an
acoustic observation sequence. A
discriminative maximum a posteriori
criterion is considered

DARPA resource management (RM)
`February91a test set, SI, continuous
speech task, vocabulary size of 991:
5.8% WER (standard CDHMM:
11.0% WER)

Replacing MLP
with RNN
[111,50,49]

Extension of the approach relying
on RNNs, instead of static MLPs,
to estimate posterior probabilities

The system, called ABBOT,
successfully participated in November
1993 ARPA Wall Street Journal Test.
In 1994 a 8.8% WER on Nov93 hub
2 test set, using a trigram LM, was
reported

Explicit context
modeling [36]

Acoustic context is explicitly considered:
the criterion is the likelihood of
observations given the HMM state
and the context. The latter is computed
from the posterior probability of states
given the observations and the context.
MLPs (one for each context) are trained
to estimate such probability, using a variant
of BP with sharing of input-to-hidden
weights among the nets

DARPA RM, SI, continuous speech
task, averaging over three test sets:
6.3% WER (context-independent
hybrid: 8.8% WER; standard
CDHMM: 7.0% WER)

Continuous target
outputs [128]

Variant in the training scheme: instead
of the strict targets `0a and `1a,
probability targets in the continuous
range (0,1) (generated within the
forward}backward mechanism) are
considered

Recognition task of connected digits
collected over the telephone channel:
4.9%WER (hybrid with Bourlard et al.
training scheme: 6.0% WER; standard
CDHMM: 5.0% WER)

�For notational convenience, we write b
���
instead of b

�
(x

�
) to denote emission probability of state S

�
at

time t, keeping in mind that the observation sequence x�
�
is under consideration.

can then be computed and used (along with the chain rule) to train the weights w of the
ANN. The training scheme is sketched in Fig. 4.
Interestingly, the computation of �C/�x

�
is very simple, since the forward}back-

ward algorithm implicitly computes the derivative of the HMM likelihood Pr(x �
�

�>)
with respect to the emission probabilities b

���
"Pr(x

�
� q

�
"S

�
).�

Beering in mind the de"nitions and the notation introduced in Section 2 and
referring to [101] for details, it can be stated that in the forward pass the Baum}Welch
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Fig. 4. Training scheme of Bengio's `global optimizationa approach. A gradient-ascent learning rule for
weight w of the ANN (which transforms raw input acoustic representations into low-dimensional, signi"-
cant features) is obtained by taking partial derivatives of the likelihood¸ of the acoustic observations given
the model. Quantities involved in the calculations, namely �'s and 	's at each time t"1,2,¹ and for each
HMM state i (a 4-state left-to-right HMM is shown), are backpropgated from the usual forward}backward
algorithm applied to the standard trellis structure shown in the upper part of the "gure.

algorithm computes

�
���

"b
���

�
�

a
��
�
�����
, (8)

where �
���

"Pr(q
�
"S

�
, x�

�
). It can be shown [101] that the likelihood Pr(x�

�
) can be

obtained from the �'s at the last time step, for the setF of `"nala states of the HMM,
as follows:

Pr(x �
�
)" �

��F
�
���
. (9)

The backward pass is initialized as follows:

	
���

"1 if i3F, 0 otherwise, (10)
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where 	
���

"Pr(x �
�	�

� q
�
"S

�
). These are computed recursively as

	
���

"�
�

a
��
	
���	�

b
���	�
. (11)

Note that from Eqs. (9) and (10) �Pr(x �
�
)/��

���
"	

���
. From Eqs. (11) and (8) and

proceeding by induction (applying also the chain rule), it is possible to write

�Pr(x �
�
)

��
���

"	
���
. (12)

Derivatives with respect to the emission probabilities can now be obtained from
Eq. (8):

�Pr(x �
�
)

�b
���

"

�
���

	
���

b
���

. (13)

When considering the case in which the training criterion C is the likelihood of the
observations, and using an HMM constrained by the correct word sequence >, the
gradient of the criterion C with respect to the emission probabilities can be immedi-
ately obtained from Eq. (13). To compute the gradient with respect to the ANN
outputs and thus, via chain rule, with respect to the ANN weights, the computation of
the partial derivatives of the emission density function with respect to the observa-
tions is needed. Bengio et al. [5,8] give an example in the case of Gaussians or
Gaussian mixtures emission pdfs.
It should be noted that in the above scheme an in"nite value of the likelihood can be
obtained whenever the ANN produces a constant output, since in this case the
Gaussian mixtures can converge to zero variance, and the emission probabilities
increase towards in"nity, as well as the likelihood Pr(x �

�
). This troublesome behavior

is the same that occurs when training standard Gaussian mixtures to maximize the
likelihood when a Gaussian concentrates on one point. The problem did not occur in
the experiments discussed in [5,8]. However, the problem can be de"nitely tackled by
adopting discriminant training criteria, such as maximum mutual information or
maximum a posteriori [5].
The basic model described above was further developed with the combination of
multiple, specialized ANNs, trained on speci"c acoustic classes (e.g. plosives) with
a class-dependent set of acoustic features. A gathing network that combined the
outputs of specialized ANNs was initialized to perform principal component analysis.
The whole HMM/multiple ANNs hybrid was then "ne-trained with the global
optimization technique.
Experimental results showed that training the ANN jointly with the HMM in the
proposed hybrid architecture improved recognition performance over the standard
CDHMM [5,8], lowering the error rate on a plosive recognition task from 19%
to 14%.
In [59,57] the global optimization technique was used to train an MLP
as an extractor of `adjointa input features for an HMM relying on the Maximal
Mutual Information criterion.
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Recently, Riis and Krogh [108] proposed a more general framework for the global
optimization approach, which extends the application of ANNs from feature extrac-
tion to the estimation of HMM parameters, obtaining encouraging experimental
results in recognition of "ve broad phonetic classes when compared to a discrete
HMM and a discriminative conditional ML training criterion was adopted.
As a "nal consideration, it should be noted that also the approaches where a joint
optimization of the HMM and of the ANN is performed according to the GPD
method (and that are described throughout the other Sections of this Survey) are, in
general, instances of `globally optimizeda architectures.

3.4. Networks as vector quantizers for discrete HMM

Starting from the late 1980s, a number of researchers began to apply ANNs to the
problem of generating codebooks for discrete HMMs (see for instance [64,55]). Most
of those works relied on Kohonen's learning vector quantization (LVQ) [65,79] as an
e!ective neural alternative to standard clustering algorithms.
A good example of the principles and motivations underlying the present approach
can be found in [106]. The latter proposed a new neural architecture to perform
vector quantization (VQ) on the acoustic features for a discrete HMM. The novelty of
the approach concerned the training of the ANN. The latter was a feedforward net
trained with an unsupervised algorithm based on the maximal mutual information
(MMI) criterion, having de"ned the mutual information (MI) as

MI(>,=)"H(>)!H(> �=), (14)

where H( ) ) denotes entropy, > is the sequence of labels (codewords) produced by the
vector quantizer on the input feature stream, and = is the corresponding words
string.
The proposed network topology is basically a 1-layer MLP with activations:

z
�
"��w

�
!x��"

�
�
���

(w
��

!x
�
)�, (15)

which somehow express a `distancea between input vector x"(x
�
,2,x

�
) and the jth

`codeworda (or prototype) of the codebook, represented by the connection weights for
jth output unit (see also competitive neural networks [48] used for clustering).
The training algorithm iteratively modi"es the weights of the winner unit in order
to increase quantity (14). Ref. [106] extends also the procedure to the cases of
multilayer nets and multiple input features.
Experimental results obtained by initializing the weights of the ANN with the

k-means (or isodata) [30] clustering algorithm, in a SD task of 18 isolated Japanese
phonemes from the ATR speech database, using a codebook size of 100, showed
a 25.0% relative error reduction over the VQ based on k-means, averaging over
5 di!erent speakers and using the same discrete HMM. Further improvements to the
system were presented in [107,92,113], where evolutions of ANN architecture and
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training were discussed, along with experimental results that compare well with those
obtained with a CDHMM.
Jang and Un [56] present an hybrid system for SI isolated words recognition. The
system is constituted by a connectionist fuzzy-vector quantizer (FVQ), the output of
which is fed into a discrete HMM. The proposed FVQ is a modular combination of
TDNNs, where the nets are trained by BP on a training set labeled by hand. The
TDNNs are used as phoneme classi"ers. Two additional nets are trained to discrimi-
nate between vowels and consonants.
Instead of feeding the outputs of the networks into the HMM, the latter takes in
input the internal representations (activations of the second hidden layer) of the
acoustic features that the TDNNs develop. The internal representation is thought of
as the (nonlinear) projection of the feature space over a transformed space, replacing
the standard vector quantization process. The HMM is separately trained on the
transformed space, using standard HMM-training algorithms.
In order to improve performance of the system and to allow training of the system
with few data, a smoothing technique [102] is used. Emission probabilities are
smoothed relying on a `smoothing matrixa computed from the average values of the
activation vectors of the second hidden layer of the TDNNs.
A 44.9% relative WER reduction with respect to the discrete HMM with a #oor-
smoothing technique was gained in a SI (5 males for training, 2 males for test), isolated
Korean words (75 words dictionary) recognition task, when 12 LPC MEL-cepstral
coe$cients were used.
Strictly related to the idea of using ANNs as vector quantizers for discrete HMMs is
the concept of neural labelers [77,17]. In its basic version, this system is based on an
MLP (or TDNN), fed with input acoustic features, with an output unit per each
phonetic class. The actual output value can be 0 or 1, according to the membership of
the input observation to the class or not. The output from the MLP is passed on to
a standard discrete HMM that uses it as a class label within a Viterbi decoding
paradigm. Training is supervised, relying on BP over a phonetically balanced training
set that is pre-labeled by means of a standard discrete HMM.
The system turns out to be useful mainly for small vocabularies, where a model for
each word is used (instead of phoneme models). The main advantage over approaches
based on the estimation of state posterior probabilities is that no implicit requirement
is made of reaching the global minimum of the error functional to keep consistency
with the theoretical framework.
The basic model was then extended [17] with the introduction of N-Top, that is to
say, the N-best (highest) MLP outputs are considered (not only the winner label) and
passed on to the HMM. This is of particular interest in the regions of the feature space
in proximity of separation surfaces between pairs of adjacent acoustic classes, where
misclassi"cation is more alike. Other improvements concerned the use of parallel MLPs
trained on di!erent acoustic features (e.g. bare coe$cients, their "rst- and second order
derivatives, energy) and the introduction of a fuzzy vector quantization scheme.
The system was evaluated on a SI, isolated Flemish digits task over the telephone
line. Results reported in [17] are di$cult to interpret, since they miss a direct
comparison with a standard CDHMM; nonetheless, using MLP as labelers

E. Trentin, M. Gori / Neurocomputing 37 (2001) 91}126 111



Table 3
Summary of main hybrid architectures based on a connectionist vector quantization of acoustic feature
space for discrete HMMs (Section 3.4)

Model Brief description Performance

VQ based on maximal
mutual information
(MMI) [106,107,92]

A feedforward net (1- or multi-layer
Perceptron) is trained to perform
VQ for a discrete HMM with a novel
unsupervised algorithm based on the
MMI criterion. Output activation
functions somehow express a `distancea
between acoustic input vector and
codewords of the discretized codebook
of input symbols

ATR speech database, SD task of
18 isolated Japanese phonemes,
codebook size of 100, averaging
over "ve di!erent speakers: 25.0%
relative error reduction over the
VQ based on k-means (using the
same discrete HMM)

Connectionist fuzzy-
vector quantizer
(FVQ) [56]

A FVQ is used. It is a modular
combination of TDNNs, where the
nets are trained as phoneme classi"ers
by BP on a training set labeled
by hand. TDNNs internal
representations (activations of the
second hidden layer) of the
acoustic features are used as inputs
for a discrete HMM, the latter being
separately trained using standard
algorithms

SI ("ve males for training, two
males for test), isolated Korean
words (75 words dictionary)
recognition task: 44.9% relative
WER reduction with respect to the
standard discrete HMM

Neural labelers
[77,17]

An MLP (or TDNN) with an output
unit per each phonetic class is
trained to yield output values equal
to 0 or 1, according to the membership
of the input observation to the class
or not. The output from the MLP
is passed on to a standard discrete
HMM that uses it as a class label
within a Viterbi decoding
paradigm. Training is supervised,
relying on BP over a pre-labeled
training set

SI, isolated Flemish digits task
(over the telephone line); using
MLP as labelers performed better
than VQ based on standard
clustering techniques, and yielded
recognition rates comparable to
those obtained with an hybrid
HMM/ANN system with
connectionist probability
estimation

performed better than vector quantization based on standard clustering techniques,
and yielded recognition rates comparable to those obtained with an hybrid
HMM/ANN system with connectionist probability estimation.
Main hybrid architectures based on a connectionist vector quantization of acoustic
feature space for discrete HMMs are summarized in Table 3.

3.5. Other approaches

One important topic is related to the concept of connectionist rescoring. The idea,
proposed in [130], is developed in [132], where a connectionist approach is applied to
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the problem of rescoring the hypothesis generated by an HMMwhich uses anN-best
strategy. In this case the network does not compute scores on individual acoustic
frames, but on whole segments (sub-sequencies) of frames, corresponding to pho-
nemes. In this way, correlations between frames that are close in time * and that
correspond to the same phoneme * are exploited, thus overcoming the usual
limitations following the assumption of independence made in standard HMMs.
The connectionist model used for this purpose is called segmental neural network
(SNN) [1]. It takes a given acoustic segment in input, and produces an estimation of
the posterior probability of a certain frame given that segment. The overall score,
which is actually used in the rescoring process of a whole sentence is obtained by
multiplying the scores of the segments in which the sentence has been segmented by
the HMM. The score obtained this way is then linearly combined with that computed
by the HMM, yielding a total score for the sentence given a speci"c segmentation. The
weights for the linear combination are empirically determined by cross-validation on
a development set.
Since the input layer of the networks has "xed size, while the segments are made up
of a variable number of frames, two alternative techniques of `normalizationa of the
length of the input window are proposed. The former is a semilinear temporal
sampling, which drops some of the original frames if the segment is longer than the
input dimensionality, or replicates some of them if the segment is shorter. The
alternative is a discrete cosine transform (DCT) applied to the whole segment,
retaining as many parameters as it is necessary to "ll the input layer.
Training of the system is accomplished using a segmentation performed by the
HMM, possibly considering the "rst N-best hypothesis of segmentation * where
segmentations from the 2nd best down to theNth best are used as negative examples.
Networks are trained on a relative entropy criterion; the outputs are normalized in
order to "t the probabilistic framework.
Di!erent neural architectures were tried (1-layer perceptron, MLP, HyperBF)
[132] without signi"cant #uctuations in performance. They were also combined
altogether to obtain a more robust rescoring process.
The system was evaluated on the DARPA RM, SI, continuous speech task, with
a 1000 words vocabulary and a bigrams grammar (perplexity 60), using also duration
modeling, one left context (at the segment level) and a regularization technique to
improve performance. The rescoring approach obtained combining HMM, SNN
based on MLP and HyperBF, improved the WER of the bare HMM from 3.4% to
2.7% on the test set RM Feb91, and from 6.0% to 5.5% averaging on the two test sets
RM Sep92.
Another application of ANNs for rescoring of a standard HMM with N-best
strategy can be found in [89].
Connectionist wordspotting was discussed, for instance, in [86,72,74].
Somewhat similar to connectionist rescoring of HMM hypothesis is the technique
by [78]. In this case, a standard HMM with N-best is used for connected speech
recognition with confusable words (e.g. acoustically similar words). The neural nets
are applied after the HMM has generated the N-best word-sequence hypothesis, to
`correcta (or con"rm) those individual words that belong to speci"c `confusablea
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classes. For each such a class, an MLP is trained to produce output scores for all the
words of the given class. The MLP is fed with an input vector of acoustic features
(MEL frequency scaled cepstral coe$cients) extracted in an ad hoc manner, according
to a prior knowledge concerning which position within an acoustic segment is more
likely to allow for better discrimination among words of a certain class. Training of
theMLPs is accomplished using BP. The proposed technique allowed for a signi"cant
gain in performance for some classes of confusable letters (e.g., `Ba, `Da, and `Va),
from 491 spellings of names collected over the telephone channel.
The approach proposed by [31] is not truly a hybrid, since it uses a standard HMM
(trained with Viterbi algorithm on the ML criterion), which is used in parallel with
connectionist models by combining the estimates of the emission probabilities (likeli-
hoods) provided by the HMM with the normalized scores obtained with the ANNs.
The linear combination scheme is the following:

logP"
 logP
�		

#(1!
)Q
�	


(16)

where logP is used as the combined emission log-likelihood estimate for a given state
of the HMM, P

�		
is the usual emission likelihood yielded by the standard HMM,

Q
�	

is the properly normalized output of the ANNs (a score assigned to the same state

of the HMM) and 
 is a tuned weighting linear coe$cient in the range (0.0,1.0).
The combined value obtained from Eq. (16) is used within a Viterbi decoding
strategy.
The ANNs are a hierarchical mixture of TDNNs, with a gather (root of the
one-level tree which de"nes the hierarchy) which is trained, along with the experts of
the mixture (the leaves of the hierarchy), to assign each acoustic frame to the proper
TDNN. Each TDNN expert is specialized on subsets of phonemes, in order to reduce
the complexity of training on whole corpora of continuous-speech data.
The networks are trained with the usual MSE criterion, instead of ML, and the
approach is expected to improve the baseline Markovian recognizer thanks to the
combination of the di!erent training criteria.
In fact, the hierarchical TDNNs mixture, trained and tested on the DARPA RM
SD corpus signi"cantly worsened the performance of the HMM (test was carried out
by averaging on three di!erent reference speakers), while the results obtained with the
TDNN/HMM combination (1.7% average WER) were slightly better then those
provided by the HMM alone (2.0% average WER), that is a 15% relative WER
reduction at the expense of only 10% increase in the number of free parameters to be
estimated during training.
In [43] the classical framework of an HMM-based recognizer where ANNs are
used as preprocessors (feature extractors, VQs, etc.), or probability estimators, is
inverted. The HMM is used as a preprocessor for an ANN, the latter being the
classi"er. The HMM maps sequencies of acoustic features into subsequencies
(the normalized means of the Gaussian emission probabilities of the states associated
to the observation sequence according to Viterbi alignment) of "xed length (the
number of states within the corresponding left-to-right model). The subsequence
obtained this way is then passed in input to the ANN which, in turn, carries out the
classi"cation.
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In [53]MLPs are trained by BP to estimate the class-dependent probability density
functions associated to the states of a SCHMM.
A di!erent approach is discussed in [22]. In the latter, ANNs are used for weighting
the emission probabilities (likelihoods) associated to the states of a CDHMM for
continuous speech recognition. The system relies on a CDHMM with mixtures of
Gaussian components. The HMM is trained and used for decoding of speech signals
using conventional algorithms (e.g. Viterbi), but an MLP (with an input window of
three left contexts and three right contexts, i.e. a basic TDNN) is associated to each
state of the HMM in order to estimate a state `weighta (or credit), given the current
acoustic observations. Performance improvement is expected from the combination of
HMM capabilities to classify long sequencies, with discriminative training properties
of ANNs.
In practice, [22] used a pair of MLPs for each phoneme, one for the acoustic
features (LPC cepstral coe$cients) and the other for the corresponding time deriva-
tives; each net was `splita over the three adjacent states of 3-state, left-to-right HMMs
that modeled phonemes.
The training algorithm is a three-step procedure:

(1) Training of the CDHMM, using a conventional algorithm.
(2) Training of the MLPs as phoneme classi"ers, using BP.
(3) Re-training of theMLPs with an iterative scheme in which the models obtained at
steps 1 and 2 above are used (the re-trained MLPs are then used during the
successive iterations) to classify the training data, evaluating a di!erentiable,
discriminative criterion function aimed at minimizing the error rate (GPD). The
partial derivatives of the criterion with respect to the weights of the MLPs are
then backpropagated within the networks to obtain new weight values, and the
next iteration is started.

The system was experimentally evaluated over a continuous speech, SI (16 speakers
for training, 10 for testing) task, with vocabulary of 102 Korean words. The best
results were obtained using mixtures of four Gaussian components: WER on the test
set was reduced from 15.9% (HMM) to 15.1% (HMMwith non-retrainedMLPs), and
"nally down to a signi"cant 11.1% (HMM with retrained MLPs).
In [21] another approach is presented, which extends the idea of neural prediction
model (NPM) [54] by integrating non-linear neural predictors within an hybrid
framework. Each predictor is a 2-layer MLP, with a hidden layer of sigmoids
and a linear output layer, trained by BP. The MLP is fed with acoustic features, and
produces in output the prediction for the acoustic frame at time t, given a time window
of the acoustic observations which immediately precede and follow the tth frame.
Such predictors are associated to the states of a CDHMM, where mixtures of
Gaussian components are used to model the distributions of the prediction errors.
The major advantages of this system are the capability of the networks to take into
account the temporal correlations between adjacent acoustic observations and the
global optimization of the system. The latter relies on a GPD-based algorithm that
simultaneously trains the HMM and the ANNs (the latter ones acting as feature
extractors for the HMM).
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Two training techniques are proposed, based on ML and on a discriminative
criterion (minimum classi"cation error), respectively. Experiments accomplished on
a database consisting of 102 Korean words, in a continuous speech, SI (16 speakers for
training and 27 speakers for testing) task, using 12 LPC plus energy and their
"rst-order time-derivatives, showed a 22.8%WER for the hybrid architecture trained
with ML criterion, and a 11.1%WER when the discriminative training criterion was
used, while the standard HMM resulted in a 16.0% WER.
In [96,97] a novel neural model, called OWE (orthogonal weight estimator), is used
in order to face the problem of context dependence. TheOWE is applied after a step of
standard context-dependent HMM (or, alternatively, to feed a second-order HMM
with transformed input frames) in recognition tasks from the TIMIT database.
Recently, [84] have proposed a novel approach based on the joint optimization of
models and feature space in order to improve robustness to noise in a standard
HMM. The approach is based on the principle of inversion of a neural network [73],
although no strict integration between HMM and ANN is adopted.
The inversion principle refers to the duality which holds between the weights of an
ANN and the values of the inputs in the computation of the gradient of the criterion
(error) function. Indeed, analogously to the calculation of the delta rule [94] for
weight updating in the BP algorithm [114], it is possible to obtain an updating rule
for the current d-dimensional input x"(x

�
,2,x�

) of an ANN by writing

x�
�
"x

�
!�

�C
�x

�

(17)

for i"1,2, d, where x�"(x�
�
,2,x�

�
) is the updated feature vector, i.e. a transformed

input which is made more suitable to the ANN (the parameters of the latter are kept
"xed) in order to extremize the training criterion, and C is the criterion itself (e.g.
MSE). The e!ective calculation of the partial derivatives in Eq. (17) is accomplished by
repeatedly applying the chain rule and backpropagating them throughout the layers
of the network, like in the standard BP case. [84] apply the same approach for
inversion of an HMM, writing

x�
��
"x

��
#�

�C
�		

�x
��

(18)

where x
��
is ith coe$cient of tth acoustic frame in the input sequence x, x�

��
is the same

coe$cient after the transformation has been applied, and C
�		
is the criterion to be

optimized to increase performance of the HMM. For instance, if a ML training
criterion is used, then C

�		
"logPr (x�
)"log �


��
(log-likelihood), where 
 is the

vector of parameters of the HMM and �

��
is the usual forward probability term [101]

used in the forward}backward algorithm, for the "nal state S


, assuming an input

sequence of length ¸. It should be noticed that in the ML case a maximization is to be
carried out, instead of a minimization of a cost (error) function as in ANNs, and this
motivates the presence of the sign `#a in Eq. (18).
In addition to the application of the gradient method, Moon and Hwang [84]
propose also an inversion technique directly based on the Baum}Welch algorithm, as
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well as a combined scheme where the HMM inversion is combined with a MINIM-
AX-based [82] model parameter adaptation [68]. Parameter adaptation can be
accomplished in a batch manner, as well as alternating it with an inversion step, in an
iterative fashion. Experimental results on isolated digits with noise of the TI database
with 16 speakers, using CDHMMs with seven states (a model for each digit) and
mixtures of four Gaussian components de"ned over the 12-dimensional LPC space,
showed that the combined scheme yields an improvement over the standard HMM,
increasing the recognition rate from 25.73% to 54.90% with signal-to-noise ratio
(SNR) of 5 dB, and from 76.63% to 89.27% with SNR of 20 dB.
[81] and [80] use time-space neural network (TSNN), a variant of TDNN, for
probability estimation of phonemes given the acoustic observations. Di!erent tech-
niques for the integration within an HMM are presented, featuring the adoption of
fuzzy-probabilistic information in a continuous speech, SD task.
Finally, other approaches are those by [41], where a di!erent kind of acoustic units
(named stationary}transitional units) is successfully used within an hybrid with
connectionist estimates of the emission probabilities, by [32], and by [9,6]; the latter
introduces a novel paradigm, namely the input}output HMM, which extends the
concept of HMM by allowing for generation of sequences of output values in front of
sequences in input.
Table 4 summarizes the main approaches discussed throughout the present section.

4. Some future issues

Hybrid speech recognizers allowed for signi"cant gain in performance with respect
to standard HMMs in a variety of situations. In addition to the scienti"c interest
related to their theoretical framework, hybrid systems appear to be a #exible and
e$cient alternative paradigm, to be taken into full consideration by the speech
community in the next years to face open ASR problems.
This paper surveyed di!erent combination techniques that have been proposed in
literature, highlighting a number of opportunities to take advantage from both
HMMs and ANNs. One future issue concerns merging some of these techniques
together, e.g. globally optimized connectionist feature extraction (as in Bengio's
approach) for an hybrid system where ANNs perform probability estimation (as in
Bourlard and Morgan's paradigm). ANNs properties can be exploited by combining
neural models at di!erent levels within the ASR system, increasing robustness of the
latter, its acoustic modeling capabilities and supporting integration with the LM.
Increase in robustness to acoustic variability is expected as a consequence of the
generalization ability of ANNs, as well as from selective (adaptive) extraction of
relevant acoustic features. Accuracy in acoustic modeling is expected due to the
universal approximation property of ANNS [25], potentially suitable to model any
form of the emission pdfs associated with HMM states. A di!erent perspective [12] is
to consider ANNs as optimal non-parametric estimators of Bayesian classi"ers.
Finally, integration with the LM is sought whenever connectionist approaches to
language modeling [85], in addition to acoustic modeling, are used: under these
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Table 4
Summary of main `other approachesa discussed in Section 3.5

Model Brief description Performance

Connectionist rescoring
[130,132]

A segmental neural network computes
scores on whole segments of frames,
corresponding to phonemes, for
re-scoring the segmentation hypothesis
yielded by an HMM which uses
an N-best strategy.

DARPA RM, SI, continuous
speech task (vocabulary size of
1000): 2.7%WER on Feb91 test set
(standard CDHMM; 3.4% WER);
5.5%WER averaging on Sep92 test
sets (standard CDHMM; 6.0%
WER).

Rescoring of
`confusable wordsa
[78]

MLPs are applied after the HMM has
generated the N-best word-sequence
hypothesis, to `correcta (or con"rm)
those individual words that belong
to speci"c `confusablea classes.

A signi"cant gain in performance
for some classes of confusable
letters (e.g. `Ba, `Da, and `Va), from
491 spellings of names collected
over the telephone channel.

Parallel ANN/HMM
state-probability
estiamtes [31]

HMM estimates of the emission
probabilities are linearly combined
with scores obtained with a
hierarchical mixture of TDNNs.

DARPA RM SD task, averaging
on three di!erent reference
speakers: 1.7% WER (standard
HMM alone: 2.0% WER).

Connectionist
weighting of state-
mission probabilities
[22]

ANNs are associated with HMM
states to estimate a state `weighta
(or credit), given the current acoustic
observations. Training combines BP
and GPD.

Continuous speech, SI (16 speakers
for training, 10 for testing) task,
vocabulary of 102 Korean words:
11.1% WER (standard CDHMM:
15.9% WER).

Hybrid HMM/neural
prediction model
(NPM) [21]

MLPs are fed with a time window
of acoustic observations centered in
the tth frame and predict the acoustic
frame at time t. The pdfs associated
with the states of a CDHMM are
used to model the distributions of the
prediction errors.

Continuous speech, SI (16 speakers
for training and 27 speakers for
testing) task, 102 Korean words:
11.1% WER (standard HMM:
16.0% WER).

HMM inversion [84] Joint optimization of models and
feature space via `model inversiona:
an updating rule for the current input
vector is developed, and the
transformed input is expected to
be more suitable to the model.

TI database, isolated digits task
with noise, 16 speakers: increase in
recognition rate from 76.63%
(standard CDHMM) to 89.27%
(applying inversion) with SNR of
20 dB.

circumstances, a scenario where a global backpropagation learning scheme is de"ned
within a homogeneous (neural) combined system can be hypothesized. Some issues
that are strictly related to the open problems introduced so far follow.
An important topic in state-of-the-art ASR systems is the model adaptation
[131,91], e.g. speaker normalization [51,119] or channel adaptation [26,117]. Speaker
normalization deals with the problem of recognizing speech signal acquired from
a new speaker, not included in the training population used to estimate parameters for
the ASR system, whose voice may signi"cantly di!er from those used for training.
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Di!erences in vocal tracts dramatically a!ect the recognition performance. Similarly,
in channel adaptation the diversity in acoustic conditions is introduced by a novel
acquisition channel, e.g., the telephone line. Related problems, which have to deal with
system robustness, concern the electronic transducer, namely the microphone(s) used
to capture the voice signal: the microphone used for testing may di!er from that used
to collect the training data, or it may no longer be close-mouth but placed at a certain
distance from the talker(s). A microphone array [35,19] is sometimes needed to allow
hands-free recognition of people moving within a room, and so on. Model adaptation
techniques usually aim at building an acoustic front-end to a pre-trainedHMM-based
recognizer, or to tune the parameters of the latter, in order to increase recognition
performance whenever acoustic conditions are changed with respect to those which
held during the training, using a limited amount of acoustic material collected in the
new conditions and avoiding a full re-training of the whole system. The nature of
ANNs, e.g., their adaptivity and generalization ability, should be exploited to yield
e!ective approaches to the problem of model adaptation. In particular, on-line
learning [5] given a global training criterion de"ned at the recognizer level (e.g., ML
or minimum WER) appears promising in this respect.
Another hot issue concerns ASR in noisy environments, such as a room with many
people talking or loud background noises (e.g., noisy electrical devices), a car or the
telephone line. Many noise-reduction approaches, based also on ANNs, have been
investigated by the speech community, such as extraction of robust acoustic features
or blind separation of sources [2]. Future hybrid systems should allow for adaptive
and robust connectionist reduction, or "ltering, of noise. As mentioned above,
a globally optimized robust feature extraction process is sought.
A "nal remark to VLSI implementation of ASR systems is due: one major limita-
tion of state-of-the-art ASR systems based on standard HMMs is the di$culty to
implement them in hardware (at least when non-trivial tasks are considered). ANNs,
as pointed out in Section 1, require much less parameters than HMMs and are easily
implemented in VLSI. This could be a considerable advantage of many hybrid
systems, since availability of compact and e$cient hardware devices would increase
applicability and di!usion of ASR to a large extent.
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1995, he joint the University of Siena, where he is currently full professor. His main
research interests are in pattern recognition (especially document processing) and
neural networks. Dr. Gori was the general chairman of the Second Workshop of
Neural Networks for Speech Processing held in Firenze in 1992, organized the
NIPS'96 post-conference workshop on `Arti"cial Neural Networks and Continu-
ous Optimization: LocalMinima and Computational Complexity,a and co-organ-
ized the Caianiello Summer School on `Adapting Processing of Sequencesa held in

Salerno on September 1997. He co-edited the volume Topics in Artixcial Intelligence (Springer-Verlag, 1995)
which collects the contributions of the 1995 Italian Congress of Arti"cial Intelligence. Dr. Gori serves as
a Program Committee member of several workshops and conferences mainly in the area of Neural
Networks and acted as Guest Co-Editor of the Neurocomputing Journal for the special issue on recurrent
neural networks (July 1997). He is an Associate Editor of several journals in the area of expertise, including
the IEEE Trans. Neural Networks, Neurocomputing, and Pattern Recognition. He is the Italian chairman
of the IEEE Neural Network Council (R.I.G.) and is a member of the IAPR, SIREN, and AI*IA Societies.
He is also a senior member of the IEEE.

126 E. Trentin, M. Gori / Neurocomputing 37 (2001) 91}126


