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b Department Arquitectura y Tecnologı́a de Sistemas Informáticos, Universidad Politécnica de Madrid, Spain
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Abstract

This paper describes some methodological concerns to be considered when designing systems for automatic detection of voice pathology, in

order to enable comparisons to be made with previous or future experiments.

The proposed methodology is built around the Massachusetts Eye & Ear Infirmary (MEEI) Voice Disorders Database, which to the present date

is the only commercially available one. Discussion about key points on this database is included.

Any experiment should have a cross-validation strategy, and results should supply, along with the final confusion matrix, confidence intervals

for all measures. Detector performance curves such as detector error trade off (DET) and receiver operating characteristic (ROC) plots are also

considered.

An example of the methodology is provided, with an experiment based on short-term parameters and multi-layer perceptrons.
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1. Introduction

In the last years a large number of works have focused on the

automatic detection and classification of voice pathologies, by

means of acoustic analysis, parametric and non-parametric

feature extraction, automatic pattern recognition or statistical

methods. Table 1 lists several of these studies chronologically,

and gives a good idea of the variety of approaches that can be

found in existing literature. As can be seen, many research

groups in speech technology have broached these problems,

using their own databases and signal processing techniques.

However, there is a lack of uniformity in their overall

development that makes it very difficult to reach valid

conclusions regarding the proposed methods. Focusing only

on the databases, there are studies like [1] that employed just a

few voice recordings, while others used several hundreds [2].

The type of the pathologies collected in these databases is
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broad, including all kinds of organic and functional lesions [3–

5], although some studies concentrate only on laryngeal cancer

[1,6–8]. Recording conditions are also varied, ranging from

prepared rooms with professional equipments [9] to commer-

cial sound cards under normal acoustic conditions [5,10].

Sampling frequencies vary from 8 kHz [1,6] up to 22 kHz [5].

The recorded material consists usually on sustained vowels,

such as the Italian /a/ in [3], Japanese /e/ in [2] or the five

Spanish vowels in [5,11]. In [7,9], electroglottographic data are

also used along with the speech signals. Finally, most of the

studies employed adult patients, with different distributions of

male and female subjects, while [7] used exclusively male

voices, and [4] employed children.

In 1999, Campbell and Reynolds wrote [12]: ‘‘The use of

standard speech corpora for development and evaluation is one

of the major factors behind progress over the last 10 years in

automatic speech processing research, particularly in speech

and speaker recognition. Perhaps the main benefit of using

standard corpora is that it allows researchers to compare

performance of different techniques on common data, thus

making it easier to determine which approaches are most

mailto:nicolas.saenz@upm.es
http://dx.doi.org/10.1016/j.bspc.2006.06.003
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Table 1

Summary of several research works on voice pathology detection, detailing the number of patients in the database (normal + pathologic), the acoustic features

employed and the classification method

First author DB Features Classifier Best results (%)

Banci [3] 30 + 53 Pitch, noise, residual Mahalanobis distance 91.6

Kasuya [2] 804 + 66 Perturbation, noise Thresholds –

Childers [9] 52 + 29 Linear prediction coefficients (LPC) Vector quantization 82.6

Plante [4] 209 + 88 Cepstral, perturbation, noise Thresholds 89

Wallen [6] 9 + 20 Perturbation, cepstral, LPC Multi-layer perceptron 85.5

Gavidia [1] 10 + 24 Spectral Hidden Markov models 92.8

Boyanov [10] 50 + 150 Perturbation, noise, energies K-nearest neighbours,

linear discriminant analysis,

self-organized maps

96.5

Ritchings [7] 20 + 20 Spectral Multi-layer perceptron 90.5

Tadeusiewicz [8] ? Formants, perturbation Multi-layer perceptron 84.75

Cheol-Woo [15] 33 + 33 Noise, perturbation Multi-layer perceptron 91.6

Alonso [5,11] 100 + 68 High order statistics, bispectrum, chaos Multi-layer perceptron 98.3
promising to pursue. In addition, standard corpora also can be

used to measure current state-of-the-art performance in

research areas for particular tasks and highlight deficiencies

that require further research’’.

Unfortunately, in the area of voice quality assessment and

automatic pathology detection there are no such standard

speech corpora. As it is impossible to compare results when the

experiments are performed with a private database, we have

concentrated our study on works using the Massachusetts Eye

& Ear Infirmary (MEEI) Voice Disorders Database, distributed

by Kay Elemetrics [13], which is the only one that is

commercially available and is rather extended. Table 2 lists

several works with this database that will be discussed later on.

But even when this database was employed in the state of the

art, there were many differences in the way its files were chosen

and handled. Furthermore, the experiments were carried out

with such different criteria, that comparisons were fruitless.

Detection of voice pathology is closely related to a speaker

verification task [14], where a candidate sample is compared
Table 2

Summary of several research works with MEEI VDDb, detailing the number of patien

the features employed, the classification method if any and results obtained

First author MEEI VDDb Features

Qi [27] 0 + 48; Unknown Harmonics-to-noise ratio

Cheol-Woo [28] Unknown Wavelet transform

Godino [33] 53 + 82; Unknown Mel-frequency cepstral c

Wester [29] 36 + 607; Unknown Harmonics-to-noise ratio

Parsa [16,36] 53 + 173; Known Noise

Hadjitodorov [30] 53 + 638; Unknown Perturbation, noise

Dibazar [31] All Acoustic parameters give

Mel-frequency cepstral c

Maguire [32] 58 + 573; Unknown Perturbation, noise,

Mel-frequency cepstral c

Moran [37] 58 + 573; Unknown Perturbation, noise

Marinaki [34] 21 + 42; Unknown Linear prediction coeffic

Umapathy [35] 51 + 161; Unknown Adaptive time–frequency
against two different models (target and impostors versus

normal and pathological speech). The system must provide a

hard decision and a confidence score about which model the

sample belongs to. We aim to develop a methodology that

allows results from different classifiers and features to be

compared. Thus we have adopted some methodological issues

which are common in speaker verification.

The paper is organized as follows: Section 2 covers the

MEEI database and discusses some of its particularities.

Section 3 contains an overview of previous work on

pathological voice detection using this database. Sections 4

and 5 present the proposed methodology and describe a simple

experiment of detection based upon it. Finally, Section 6

presents discussion and conclusions.

2. MEEI voice disorders database

The MEEI Voice Disorders Database (VDDb) was delivered

in 1994 [13]. It was compiled partly at the MEEI Voice and
ts used (normal + pathologic) and if there is an indication of which the files were,

Classifier Best results (%)

– –

– –

oefficients Multi-layer perceptron,

learning vector quantization

95

Hidden Markov models;

linear discriminant analysis

65

Linear discriminant analysis 98.7

Vector quantization,

linear discriminant analysis

92.7

n by MDVP,

oefficients

Hidden Markov models,

Gaussian mixture models,

multi-layer perceptron

98.3

oefficients

Linear discriminant analysis 87.16

Linear discriminant analysis 89.1

ients Linear discriminant analysis,

three nearest neighbours

85

transform Linear discriminant analysis 93.4
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Speech Lab. and partly at Kay Elemetrics Corp. It contains

recordings of sustained phonation of vowel /ah/ (53 normal and

657 pathological files) and continuous speech (53 normal and

661 pathological). For this description we will mainly focus on

the former ones.

The database also includes a spreadsheet with clinical and

personal details from the subjects and the results of the acoustic

analysis of the recordings, obtained with Kay’s Multi-

Dimensional Voice Program (MDVP). The recordings were

performed in matching acoustic conditions, using Kay’s

Computerized Speech Lab. (CSL). Each subject was asked to

produce a sustained phonation of vowel /ah/ at a comfortable

pitch and loudness for at least 3 s. The process was repeated

three times for each subject, and a speech pathologist chose the

best sample for the database.

The usefulness of this database is clear and has been

repeatedly tested in numerous research works since its

development. Moreover, it is the most widespread and available

of all the voice quality databases, but there are some key points

that should be carefully taken into account when used for

research purposes:
� N
Ta

Pa

Sp

A

Fi

Fi

Re
ot all the pathological patients have corresponding

recordings nor diagnoses, and there are some patients with

more than one recording, from different visits to the clinic.

Table 3 shows detailed information about the pathological

subset of recordings of vowel /ah/.
� T
he files have different sampling frequencies. Normal and a

small percentage of pathological files have 50 kHz, whereas

most of the pathological ones have 25 kHz. In order to unify

these frequencies, all the files should be down-sampled at

least to 25 kHz before further processing.
� N
ormal and pathological voices were recorded at different

locations (Kay Elemetrics and MEEI Voice and Speech Lab.,

respectively), assumedly under the same acoustic conditions,

but there is no guarantee that this fact has no influence in an

automatic detection system. Normal subjects were not

clinically evaluated, although according to [16], none of

them had ‘‘complaints or history of voice disorders’’.
� T
he files are already edited to include only the stable part of

the phonation. Several studies consider that the onset and

offset parts of the phonation contain more acoustic

information than stable parts [17]. The editing also makes

it impossible to know the signal-to-noise ratio of the

recordings.
� T
he normal files have an average length of 3 s for sustained

vowels and 12 s for running speech, while pathological files
ble 3

thological recordings of sustained vowel /ah/ in MEEI VDDb

No. of visits No. of patients

readsheet entries 720 617

udio recordings 657 566

les without diagnosis 306 253

les with diagnosis ‘‘normal’’ 6 6

mainder files 345 307
have averages of around 1 and 9 s, respectively. These

differences are possibly due to the fact that it is difficult for

some pathological subjects to phonate for a long time. Hence,

some of the MDVP measurements, provided with the

spreadsheet, could be misleading, such as SEG (number of

analyzed segments), PER (number of detected pitch periods),

etc. Common sense dictates that when training automatic

models, it has to be ensured that the length is not used as a

parameter to discriminate between classes.
� T
here is only one phonation per patient and visit. Sometimes

it is useful to have available several samples of the same

vowel to model intra-speaker variability or samples of

different vowels [18,19].
� T
here is a heterogeneous number of pathologies in the

database, with almost 200 different diagnoses, probably

because they were included as they were captured in the

clinical practice. There are a lot of files labelled with several

diagnoses, pertaining sometimes to different categories of

voice disorders (e.g. physical and neuromuscular). According

to [20], the only mutually exclusive possible categorization is

at the highest level (i.e. ‘‘normal’’ and ‘‘pathological’’).
� T
here is a limited number of normal recordings in

comparison with the number of pathological ones. This is

a problem for training supervised pattern recognition

systems, which work best with large amounts of data which

are well balanced between the different classes.
� T
here is no perceptual subjective evaluation of the recordings,

such as GRBAS [21] or others [22–24], which would be very

useful for research purposes. This would require a similar

number of recordings of each perceptual rank.
� T
here are no video recordings (stroboscopy, endoscopy). The

importance of this kind of material is highlighted in [25].

Moreover, there are no electroglottographic (EGG) data with

the voice registers. EGG signals have proven to be an

important complement for acoustic analysis and detection of

pathology [9,26].
� T
he database has been on the market for more than 10 years

now and has been extensively used for pathology detection.

Therefore, the newly developed algorithms and parameters

could have been adapted to these particular data. The results

obtained with this database should be contrasted with new

databases to take this possibility into account.
3. Pathological voice detection with MEEI VDDb

This section presents an overview of previous works found

in the literature using MEEI VDDb. The objective here is to

concentrate on the way they handle the database, how they

design the experiments and evaluate their results.

In [27], Qi and Hillman employed 48 voices from MEEI

to test an algorithm to compute a harmonics-to-noise ratio

(HNR) in the spectral domain. They used some of the original

files, prior to being edited, not detailed and not publicly

available.

In 1998, Cheol-Woo and Dae-Hyun [28] proposed two

novelty measurements, based on the wavelet transform, and

compared their discriminative power against some of the
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available MDVP features, though they do not state which files

were employed.

In 1998, Wester [29] compared linear regression techniques

and Hidden Markov Models (HMM) to detect voice pathol-

ogies. She employed 36 normal and 607 pathological voices

from the running speech files. A number of HNR-based features

were extracted by acoustic analysis every 10 ms. 80% of the

data were used to train the system and the rest were for testing

it. The word ‘‘sunlight’’ was segmented from each file, and

perceptually evaluated by two expert listeners into three scales:

roughness, breathiness, and general degree of deviance. Results

were favourable to HMMs yielding best results close to 65% of

correct classification rate.

Parsa and Jamieson in 2000 [16] approached the detection

task based on six different noise measurements. They employed

53 normal and 173 pathological voices, enumerated in an

appendix. All the files were down-sampled to 25 kHz, chosen to

have a diagnosis and similar age distributions between both

groups. Only the first second of each file was used. Discrimina-

tion results were obtained building the histograms of the two

classes and receiver operating characteristic (ROC) curves were

employed to compare them, yielding a best accuracy of 98.7%

using a spectral flatness ratio (SFR) measure.

Hadjitodorov and Mitev in 2002 [30] describe a system for

acoustic analysis of voice, which also allows the automatic

detection of pathology, using jitter, shimmer and noise

measurements. Classification is achieved by means of linear

discriminant analysis (LDA) and nearest neighbours (NN)

clustering. They employed 106 normal (‘‘two phonations by

each non-pathological speaker’’) and 638 pathological files.

The accuracy of the system was 96.1%.

Dibazar et al. [31] presented some of the best results in

pathology detection with this database. They used all the files in

the database, along with all MDVP parameters, short-term Mel-

Frequency Cepstral Coefficients (MFCC) and fundamental

frequency. They classified the voices with HMMs, to achieve a

best accuracy of 98.3%. However, they do not give many

methodological details due to the great amount of experiments

carried out.

Maguire et al. [32] propose a pathology detector, based on

sustained phonation, combining long-term acoustic, spectral

and cepstral parameters. They used 58 normal and 573

pathological voices. The classifier was a LDA with a 10-fold

cross-validation strategy. They achieved an 87.16% accuracy

with a subset of the MDVP parameters (shimmer and noise

features).

Godino et al. have several papers using this database. In [33]

they employed 53 normal files and 82 pathological files, the

latter chosen randomly among the whole database. All files

were down-sampled to 25 kHz. The files were short-term

parameterised using MFCCs and their derivatives, and the

detector system was based on neural networks (multi-layer

perceptrons, MLP and learning vector quantifiers, LVQ). The

training test was composed with 70% of the files from each

class. Results were presented with confusion matrices,

providing confidence intervals for the measurements, yielding

a best accuracy of around 95% with LVQ.
Moran and co-workers [20] presented a telephone system

for detecting voice pathologies, with the same data and

classifying scheme as [32], down-sampling the recordings to

10 kHz. They used 36 short-term parameters based on jitter,

shimmer and noise measures. The system yielded 89.1%

accuracy for the original data and 74.15% for simulated

telephone data.

Marinaki et al. [34] implemented a system to distinguish

between 21 normal speakers, 21 patients with vocal fold

paralysis and 21 patients with vocal fold edema, with similar

distributions of age and gender. These patients had also other

pathologies. They use short-term linear predictive coding

(LPC) parameters, principal components analysis (PCA) and

LDA to classify the voices. Results yielded an accuracy of

nearly 85% and were presented via ROC curves.

Umapathy et al. [35] presented a detection system using 51

normal and 161 pathological continuous speech samples. They

extracted five new acoustic parameters based on adaptive time–

frequency transformations (ATFT) and employed LDA and

leave-one-out cross-validation to discriminate between classes.

Results were presented by means of ROC curves, areas under

the curves and confusion matrices. Best results achieve a

correct classification rate of 93.4%.

Although all these works represent novel contributions to

automatic detection of voice disorders and to voice quality

assessment and they share the same database, their achieve-

ments and conclusions are not easily comparable, due to a lack

of uniformity when computing and presenting the results. There

does not normally exist an adequate description of the files used

or the reasons for using them. Many works use pathological

files without a diagnosis or make a subset of the database

without taking into consideration the distribution of features

such as gender, age, or origin. Another important point, which

has rarely been addressed until recently, is the reliability of the

results. These only provide a single measure of the performance

of a detector, but they do not take into account what the answer

of the system would be when facing unknown data. This can

only be achieved through cross-validation and confidence

intervals.

4. Methodology

Bearing in mind all of the considerations presented in the

previous sections, our goal is to discuss a series of key points

for designing experiments to automatically distinguish

pathological voices from normal ones, and to set up a

methodology that could allow comparisons between different

experiments, in order to outline the benefits of each

approach.

The first thing to establish should be the database. A good

decision is to use MEEI VDDb, due to its availability.

If any other database is available, it could be a good choice to

repeat the experiments with both databases, in order to test the

robustness or independence of the algorithms to the database.

We have considered only a subset of all the available files, 53

normal and 173 pathological voices, according to Parsa and

Jamieson [16]. This paper included a list with the names of the
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Table 5

Typical aspect of a confusion matrix

Detector’s decision Actual diagnosis

Pathological Normal

Pathological tp fp

Normal fn tn

tp, fp, fn and tn stand for true positive, false positive, false negative and true

negative rates, respectively. See text for definitions.

Table 4

Gender and age distribution of the recordings in the chosen subset of MEEI

database, adapted from [16]

Subjects Margin (years) Mean (years) Standard

deviation

(years)

Male Female Male Female Male Female Male Female

Normal 21 32 26–58 22–52 38.8 34.2 8.49 7.87

Pathologic 70 103 26–58 21–51 41.7 37.6 9.38 8.19
pathological files, so it is easy to reuse their work.1 The splitting

was accomplished to assure that all the files have a diagnosis

(though very often more than one), and gender and age

characteristics are uniformly distributed between the two

classes (Table 4).

After this, the files in the database should be arranged into at

least two sets, one for training and one for testing and validating

the results. Typical possible sizes for these sets are around 70

and 30% of the files, respectively. When the feature extraction

is performed on a short-term basis, it is important to avoid

mixing segments from the same file in both sets, which could

affect the results [38].

Once the system is trained or the models have been computed,

the test set is employed to estimate the performance of the

detector. The final results are presented through confusion

matrices (Table 5), where we define the next measures: true

positive rate (tp), also called sensitivity, is the ratio between

pathological files correctly classified and the total number of

pathological voices. False negative rate ( fn) is the ratio between

pathological files wrongly classified and the total number of

pathological files. True negative rate (tn), sometimes called

specificity, is the ratio between normal files correctly classified

and the total number of normal files. False positive rate ( fp) is the

ratio between normal files wrongly classified and the total

number of normal files. The final accuracy of the system is the

ratio between all the hits obtained by the system and the total

number of files. If the parameterization is performed on a short-

term basis, then these measures can also be calculated on a

segment or frame basis, besides of on a file basis.

To assess the generalization capabilities of the system, it is

important to adopt a cross-validation scheme [39, Chapter 9]. A

simple one is to repeat each experiment N times, with a

different test set, randomly chosen from the whole set of files, or

the K-fold cross-validation, where the dataset is randomly split

in K different subsets and the experiment is repeated K times,

using each time a different subset for testing the performance.

When the number of folds is equal to the number of available

files F, then this method is known as leave-one-out cross-

validation. The experiment is repeated F times, and each time

the system is trained with F � 1 files, leaving the remaining file

for testing. This method is computationally expensive. After the

cross-validation, the final results are averaged across these
1 In fact, Parsa and Jamieson affirm that they use 175 pathological files in

their work, but in the final list they give two repeated file names. Data in Table 4

have been adapted to reflect just the 173 registered files.
repetitions, and confidence intervals can be computed using the

standard deviation of the measures.

When we use short-term parameters, accuracies for both

frames and files should be presented.

Statistics also provide other simple indicators of the

generalization error for linear models, working under certain

conditions of the sample. These statistics can be also considered

as rough estimations of the generalization error for non-linear

models if the database is large enough, although their

adaptation to the non-linear model framework (e.g. neural

networks) is not always possible.

Eq. (1) represents a statistic used in speech technology to

measure the generalization error [40]. Testing with N patterns

and obtaining an accuracy p, the confidence interval for this

measure is:

CI ¼ �za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

N

r
(1)

where the value z is obtained from a standard normal distribu-

tion as a function of the required confidence level a. Using

a = 0.05 (95% of confidence), z is 1.96.

The calculation requires statistical independence among the

patterns, so although the training patterns would be short-time

features, N should be the number of speech files available (and p

should be calculated on a file basis). This is a conservative

approach, but matches well with the assumption that there must

be expected more inter than intra-speaker variability. Regarding

the amount of data needed for this kind of measurements, it is

useful to consider the ‘‘rule of 30’’ found in [41]: ‘‘To be 90%

confident that the true error rate is within �30% of the

observed error rate, there must be at least 30 errors’’. This rule

could lead to the need of huge amounts of data for an

experiment to be considered meaningful. An alternative is to

assume independency among the patterns and not to take

assertions about the statistical significance of the results too

seriously.

During the system testing, a score representing the

likelihood of the input vector for belonging to the desired

class (i.e. pathological voice) is given. This score has to be

compared to a threshold value in order to compute the

confusion matrix. If we move this threshold we obtain a set of

possible operating points for the system, which can be

represented through a detector error trade off plot [42], widely

used in speaker verification. In this curve, the false positives (or

false acceptances) are plotted against the false negatives ( false

rejections), for different threshold values (Fig. 1, left). Another
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Fig. 1. Schematic depiction of DET (left) and ROC (right) curves.
choice is to represent the false positives in terms of the true

positives in a receiver operating characteristic (Fig. 1, right),

which is very common in medical decision systems [43]. There

are numerical measurements that convert the whole curve into a

single figure, to compare different curves from different

systems. The most usual is the area under ROC curve (AUC)

[44]. If the performance of a system is poor, the AUC will be

close to 0.5 and if the performance is perfect, the area will be 1.

This area also allows the calculation of other statistics to

determine if there exist statistical significances between

different curves drawn from the same data. As presented in

[45], another way to obtain a measurement of the confidence

interval is to calculate the standard error of the AUC.

In a detector error trade off (DET) plot, the better the

detector, the closer the curve will get to the bottom-left corner.

In a ROC plot, the curve gets nearer to the upper-left corner as

the efficiency of the system improves. Another important

difference between both types of curves is that the DET is

plotted in a normal deviate scale; therefore, if the data

distributions from the two classes are close to normal, the curve

will tend to be linear. This is typically the case when data come

from cross-validation averaging of different folds.

5. An example detector

The goal of the following experiment is not to improve the

results of previous works in the state of the art, but to illustrate

the proposed methodology with a brief example. We have

designed an automatic system following [33]: the voices from

the database are processed in a short-term basis and used to

train a neural network that models the two classes of voices.

The voices are selected from MEEI VDDb as detailed in the

previous section (53 normal speakers, 173 pathological patients

from [16]). Each file is segmented into frames, using 40 ms

Hamming windows, with a 50% of overlapping between

consecutive frames. This size ensures that each frame contains

at least one pitch period. The frames are analyzed in order to

detect silence of unvoiced segments, which are removed.
From the remaining frames, a certain number of Mel-

Frequency Cepstral Coefficients are extracted. For this example

we have chosen 18 coefficients. MFCCs have been calculated

following a non-parametric approach, based on the human

auditory perception system. The term ‘‘mel’’ refers to a

frequency scale related to the human perceptual auditory

system. The mapping between the real frequency scale (Hz) and

the perceived frequency scale (mels) is approximately linear

below 1 kHz and logarithmic for higher frequencies. This

matches with the idea that a trained speech therapist is able,

most of the times, to detect the presence of a disorder by just

listening to the speech.

The detector is a basic feedforward multi-layer perceptron

(MLP) with three layers [46, Chapter 6]. The input layer is made

of as many inputs as MFCC parameters, the hidden layer has 12

neurons and the output layer has two nodes. These two outputs

are employed to obtain a logarithmic likelihood ratio or score

from every input pattern. Supervised learning is carried out by the

backpropagation algorithm with delta rule and momentum. The

activation functions on all nodes are logistic. The connection

weights are initialized with random values drawn from a

Gaussian distribution of zero mean and a standard deviation

inverse to the number of weights of each neuron. The training is

performed on-line, that is, the weights are updated immediately

after each example is presented to the net. For this example, 40

iterations of the training algorithm were performed.

The database is split into two subsets: a training set with the

70% of the normal and pathological files and a test set with the

remainder 30%. The normal recordings are approximately three

times longer than the pathological recordings, so they produce

more short-term frames per file than the latter. This is

compensated by the bigger number of pathological files in the

database (173–53). The data in the training set are normalized

to be in the range [0, 1] and shuffled randomly. The test set is

normalized according to the normalization values used for the

training set.

The experiment was repeated 10 times, each time building

different training and test sets randomly. The scores produced

by the neural network are used to calculate the curves that
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Fig. 2. (a) Averaged DET plots for the designed detector. The dotted line corresponds to the training set and the solid line to the test set. (b) Averaged DET plot for the

test set of the designed detector along with confidence intervals based on standard deviation.
represent the system’s performance. Fig. 2a shows two DET

plots reflecting the overall performance of the detector. The

dotted line has been calculated with the averaged training data

(i.e., the scores obtained with the 10 training sets), while the

solid line corresponds to the averaged testing data. The

distance between these two lines is related to the general-

ization capabilities of the system. There are three different

points marked in the figure. The point marked with a round

circle is the equal error rate point (EER) [47], that is, the point

for which the false positives rate equals the false negatives

rate. The point marked with a square is the operating point of

the system, that is, the point that reflects the performance at

the chosen threshold. In this case, the operating point

corresponds to threshold 0. An ordinary decision is to use

the same threshold for which the EER point was obtained on

the training set. Another point of interest is the detection cost

function (DCF) [42], which is the point on the curve that

minimizes the classification error, having in mind the global
Fig. 3. ROC plot of the designed detector. The right plot is a zoom of the region of

plots.
costs of false positives and false negatives and the a priori

probabilities of both classes. This point is marked in Fig. 2a

with a triangle, considering that these costs and probabilities

are the same for normal and pathological voices. The DCF

should be the ideal point of operation. The distance between

the actual operating point and the DCF is also an indication of

the degradation of the system performance due to the unknown

data in the test set.

Fig. 2b shows the same DET plot, along with the confidence

intervals obtained with 1 standard deviation of the 10

experiments. These bands give an idea of the confidence of

the decisions made by the detector.

Fig. 3 shows the ROC curve corresponding to the averaged

data from the 10 test sets. When the performance of the system

is high, the curve is close to the upper-left corner, so it is

difficult to compare visually several curves. For this matter, the

area under the curve is a useful statistic. In this case, the AUC is

0.9578.
interest. The points marked in the plots correspond to those marked in the DET
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Table 6

Results of the classification (in %) given in a frame basis (mean � standard

deviation)

Detector’s decision Actual diagnosis

Pathological Normal

Pathological 92.73 � 5.24 13.66 � 6.49

Normal 7.27 � 5.24 86.34 � 6.49
Once we have chosen a point of operation, we can compute

the final performance measures. Table 6 shows the confusion

matrix of the system with the mean and standard deviation

values obtained averaging the results for each individual

experiment.

The total accuracy of the system is 89.6 � 2.49%. The

accuracy on a file basis (the percentage of correctly classified

recordings) is 90.42 � 0.04%. This measure is computed for

each experiment, and then averaged, by setting up a threshold to

the number of classified frames. If more than 50% of the frames

of a file are assigned to a certain class, then the whole file is

assumed to belong to that class.

6. Conclusions

The only way to improve and to profit from other works is to

have an objective means to measure the efficiency of different

approaches. In this paper, we have described a set of

requirements that an automatic detector of voice pathologies

should meet to allow comparisons with other systems.

The database of pathological voices is an essential point in

any research, and so we have suggested the use of a well

described subset of the only commercially available one. We

have adopted a cross-validation strategy based on several

partitions of the whole dataset, in order to obtain averaged

classification ratios along with confidence intervals for every

measure. We prefer to present the results by means of a DET

curve, because when averaging different folds of tests, the

curves tend to be linear and this allows us to compare several

systems at a glance more easily than with ROC curves.

Measurements of the area under the ROC curve are also

valuable for objective comparisons.

As far as we know, there were no previous works in existing

literature addressing these issues. We intend to continue the

research in pathological voice detection and classification using

the presented methodology. In any case, it seems evident that

new publicly available and well designed databases are needed.

In all probability it will be necessary to carry out a public

evaluation of pathological voice assessment systems, such as

the NIST’s Speaker Recognition ones.
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