
ESTIMATING SEMANTIC CONFIDENCE FOR SPOKEN DIALOGUE
SYSTEMS

Sameer S. Pradhan and Wayne H. Ward

Center for Spoken Language Research
University of Colorado

Boulder, CO 80309-0594, USA
{spradhan,whw}@cslr.colorado.edu

ABSTRACT

In order for a spoken dialogue system to carry on a flu-
ent conversation, it must be able to estimate confidence
in its interpretation of the input that it is receiving. It
must realize when it doesn’t understand the user and
interact to correct the problem. To this end, most sys-
tems have some form of confidence assessment mecha-
nism. These algorithms generally estimate confidence
on a word-by-word basis and sometimes use these esti-
mates to accept or reject an utterance as a whole. This
paper presents the confidence assessment mechanism
developed for the CU Communicator spoken dialogue
system. The focus of this mechanism is to assess con-
fidence in the semantic representation extracted from
an utterance by the system rather than in the string of
words produced by the recognizer. We use a decision
tree classifier with features based on acoustic models,
language models, word lattice density, parser output
and dialogue context. The classification performance
is evaluated on a test set from the CU Communicator
data. CU Communicator is a telephone based spoken
dialogue system for getting information on air travel,
hotels and rental cars.

1. INTRODUCTION

1.1. Motivation

In order for a spoken dialogue system to carry on a
fluent conversation, it must be able to estimate con-
fidence in its interpretation of the input that it is re-
ceiving. It must realize when it doesn’t understand
the user and interact to correct the problem. Speech
recognition systems make errors, and systems can make
understanding errors even when the speech is decoded
correctly. In the absence of an accurate estimation of

This work was supported by DARPA through SPAWAR un-
der grant #N66001-00-2-8906

confidence, the system must adopt sub-optimal strate-
gies for verifying information. Confirming each piece
of information after each user utterance leads to a very
tedious and inefficient interaction. Not confirming in-
formation at all, and waiting until much later in the
dialogue for the user to notice a problem can be even
worse. It is more difficult to recover when the problem
is noticed later. Also, if the system is not confident
about the state of a conversation, it tends to become
more directed, decreasing the naturalness of the dia-
logue. A desirable solution is to have confirmation and
rejection of input be guided by a confidence estimation
procedure.

Most spoken dialogue systems have some form of
confidence assessment mechanism. These algorithms
generally estimate confidence on a word-by-word basis
and sometimes use these estimates to accept or reject
an utterance as a whole [1]. The latter tends to be a
overkill, as a completely correct utterance is not a nec-
essary precedent to a confident information extraction.
We want to use the confidence estimate to guide our
information verification process, not just for utterance
level rejection. Our strategy is to assess confidence in
the semantic representation extracted from an utter-
ance by the system rather than in the string of words
produced by the recognizer. It is this semantic repre-
sentation that the system confirms in interactions with
the user. It is this representation that drives the sys-
tem actions. It is useful therefore to be able to estimate
confidence in each element of the semantic representa-
tion. This measure can then be used directly in guiding
confirmation interactions.

We train decision trees – using features based on
acoustic models, language models, word lattice density,
parser output and dialogue context – to assign confi-
dence to the semantic representations.



1.2. The System

The CU Communicator [3] is an interactive, spoken di-
alogue system which complies with the Galaxy Hub ar-
chitecture. It combines continuous speech recognition,
robust semantic parsing and dialogue management, to-
gether with a live database backend, to assist telephone
callers in scheduling airline, hotel and rental car reser-
vations.

2. METHODOLOGY

2.1. Related Research

Until recently, most of the dialogue confidence mea-
sures were derived from the confidence given to individ-
ual words hypothesized by the decoder. Most previous
research [2] tends to indicate that lattice density and
language model features perform better than acoustic
features, and their combination sometimes works bet-
ter when complemented with parse-level features de-
rived from the output generated by a semantic parser
like Phoenix [4]. However, recently, researchers have
started using utterance-level confidence measures to
better assist the dialogue manager in taking a binary
accept/reject decision [1]. Since accepting/rejecting an
entire utterance is not an ideal strategy in most cases,
we decided to explore one at a sub-utterance level –
on extracted semantic representations spanning one or
more words. This strategy requires changes in gen-
eration of features that were found to be most useful
in previous experiments. Also, some other features –
parallel to the word-level features, can now be gener-
ated from the semantic representations. We analyze
the utility of these features by using them to classify
the semantic extractions.

2.2. Extracted Representation

The parser produces a semantic representation of the
extracted information. Each line of the extracted parse
contains: a frame name, a slot name and a value. Our
confidence annotation mechanism assigns a confidence
score to each element. This confidence score represents
the joint probability of the slot and its filler value.

An example will be helpful for clarification:

UTTERANCE: I WOULD LIKE TO GO FROM DENVER TO CHICAGO TOMORROW
AFTERNOON

The extracted semantic representation is

Air:[Depart_Loc].DENVER
Air:[Arrive_Loc].CHICAGO
Air:[Date_Time].TOMORROW AFTERNOON

2.3. Data Preparation and Training

Our data set comprises 23,472 utterances collected us-
ing the CU Communicator system over a two-year pe-
riod.

All the utterances (both the hypothesized and ac-
tual) are first parsed using Phoenix. Some of them
do not produce a parse, so we simply discard them.
Then, we annotate the sentences using just the frame
and slot pair from each output line (generated from the
transcribed utterances). We then partition the entire
dataset by dialogue context (refer Section 3) and train
a trigram language model for each context (henceforth
referred to as slot language model conditioned on dia-
logue context). Our example utterance produces the
following sequence:

Air:[Depart_Loc] Air:[Arrive_Loc] Air:[Date_Time]

The training examples comprise features extracted
from the annotated sentence associated with the cor-
responding hypothesized sentences. Assuming that the
recognizer generated a perfect hypothesis in our exam-
ple, we would get the following annotated sentence:

Air:[Depart_Loc] (DENVER) Air:[Arrive_Loc] (CHICAGO)
Air:[Date_Time] (TOMORROW AFTERNOON)

Each frame-slot-words triplet, along with the as-
sociated statistics, contributes towards generating the
feature values in an example used for training the deci-
sion tree. The examples produced using a sentence in
a hypothesis are labeled correct or incorrect depending
on whether or not the corresponding frame-slot-words
triplet in the transcribed utterance is identical.

3. THE FEATURES

We consider the following features in our experiments

� Dialogue Context – In our system the dialogue
context is modeled using the most recent system
prompt. These can be clustered into distinct cat-
egories depending on the nature of the informa-
tion they seek. We use 20 different contexts in
the Communicator system.

� Word LM Probability – This is the average of
the class-based trigram language model probabil-
ity conditioned on the dialogue context.

� Word LM Backoff – This is the probability that
a given n-gram backoff sequence over a given win-
dow around the word – in our case, two on ei-
ther side – corresponds to a correctly hypothe-
sized word. This is averaged over the number of
words present in the semantic unit [4].



� Slot LM Probability – This is the slot language
model probability of the slot under consideration
– also conditioned on dialogue context.

� Slot LM Backoff – This is calculated just like
its word counterpart, using slot language model
conditioned on the dialogue context instead.

� Word Confidence – This measure is an esti-
mate of the confidence of an hypothesized word
directly as its posterior probability, computed on
the word graphs using a forward-backward algo-
rithm [5].

4. EXPERIMENTS AND RESULTS

After processing the 23,472 utterances as mentioned in
Section 2.3, we are left with a total of 25,315 examples.
We performed stratified sampling on the dialogue con-
text to partition the data into training (60%) and test
(40%) sets – so that we could perform two types of clas-
sification experiments – one, using the dialogue context
as one of the features and training a single decision tree
to classify all examples, and the other, by generating a
separate tree for each dialogue context and testing the
collective performance on the entire test set.

Feature Set Equal Cost 10% False Accepts
(Dialogue Context +) %FA %FR %ACC %FA %FR %ACC

Slot-Prob (1) 94.65 0.52 89.41 9.96 68.02 38.19
Word-Prob (2) 100.00 0.00 89.30 9.96 68.15 38.07

Slot-Backoff (3) 76.20 2.00 90.06 11.53 56.48 48.33
Word-Backoff (4) 85.06 1.14 89.88 9.50 52.71 51.91

Confidence (5) 74.72 1.97 90.25 9.78 63.49 42.26
1+2+3+4 (6) 76.38 1.76 90.26 9.96 49.02 55.16

1+2+3+4+5 (7) 67.44 1.91 91.08 10.06 43.50 60.08

Table 1. Performance of trees generated using dia-
logue context as one of the features.

Feature Set Equal Cost 10% False Accept
%FA %FR %ACC %FA %FR %ACC

Slot-Prob (1) 95.57 0.31 91.33 3.51 91.77 20.17
Word-Prob (2) 93.63 1.36 90.95 8.67 79.31 25.66

Slot-Backoff (3) 77.03 1.75 91.68 2.21 94.35 20.42
Word-Backoff (4) 80.44 1.94 90.57 5.07 84.02 28.01

Confidence (5) 75.74 1.92 91.77 4.70 92.87 24.73
1+2+3+4 (6) 68.36 3.43 90.22 8.58 76.04 39.63

1+2+3+4+5 (7) 67.80 2.15 90.52 10.79 51.57 57.37

Table 2. Performance of separate trees generated for
each dialogue context.

We used the Weka machine learning toolkit’s [6] im-
plementation of C4.5 to train the decision trees. The
semantic error, i.e., the total number of semantic units
that were labeled incorrectly, in the entire dataset was

about 10.54%. After partitioning, the training and test
sets had semantic errors of 10.44% and 10.69% respec-
tively.

Table 1 shows the classification accuracies (ACC)
on the test set, using a single decision tree that has
the dialogue context as one of its features – for various
combination of feature sets. Alongside are the false
acceptance (FA) and false rejection (FR) percentages
for the same. FA is calculated as using the following
formula (FR is calculated in a similar fashion).

FA =
Number False Positives

Total Negative Examples
× 100

Accuracy is calculated as

ACC =
Number Correctly Classified

Total Number of Examples
× 100

Table 2 shows parallel classification statistics when
a different tree is used for each dialogue context.

The default decision tree objective function tries to
maximize overall classification accuracy assuming equal
cost for both the false acceptances and the false rejec-
tions, however, in this particular classification problem,
false acceptances are more damaging than false rejec-
tions, since the assignment of a wrong value to a slot
can lead to many user-initiated correction stages creat-
ing a greater possibility of misunderstanding, whereas,
a false rejection means the system implicitly or explic-
itly confirms the value. Therefore, we present two sets
of values – one with the default equal cost function,
and other generated by varying the cost threshold such
that the false acceptance percentage is close to a target
value of 10%1. Though, this has a detrimental effect
on the overall classification accuracy, it may be more
optimal for system performance.

It can be seen that the tree created using dialogue
context as a feature has slightly better performance
than the cumulative performance of using a different
tree for each dialogue context. Also, in the first case,
in terms of accuracy as well as in terms of false rejec-
tion, all the features together are significantly better
than any individual feature, bringing down the false
rejection from a range of 50-70% to about 43%, which
means less decision making about whether an implicit,
explicit, or no confirmation is warranted.

We also considered using the hypothesized slot as
one of the tree features, but it turns out to be a re-
dundant or possibly detrimental addition at low false

1Since the false acceptance percentages cannot be finely con-
trolled by adjusting the cost thresholds, the best we can do is to
present the values that are nearest to 10%



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
al

se
 A

cc
ep

ta
nc

e

False Rejection

Dialog Context +

Word-LM-Score (2)
Word-LM-Backoff (4)
Word-Confidence (5)

1+2+3+4+5 (7)

Fig. 1. ROC curves using different cost thresholds to
train decision tree with dialogue context as a feature.

acceptance percentages. The ROC curves for trees with
different feature combinations along with dialogue con-
text as one of its features are shown in Figure 1. Since
there was no significant difference between the ROC
curves for slot and word language model score, we just
show the one for word language model score. Also, the
curve for slot language model backoff nearly coincided
with the one for word confidence, so we show only the
latter.

One of the particularly notorious problems that we
have seen recurring in the CU Communicator is that of
spurious city name misrecognitions, and so we decided
to test another possible formulation of the classification
task, which is to partition the data on the basis of the
slot hypothesized, and train a decision tree on each set.
To begin with, we extracted the examples that had city
name as their hypothesis (3,423 examples) and trained
a tree on it. It is interesting to note that the perfor-
mance of this tree was not significantly different than
the one trained on the entire data (15,182 examples).
Also, the false rejection percentage at 10% false ac-
ceptance is about the same as that over all different
hypotheses.

5. CONCLUSION

In this paper we discussed a mechanism for annotat-
ing confidence of the semantic representations that a
dialogue manager uses while making verification deci-
sions. We investigated the discrimination powers of

various features: word lattice, word and slot trigram
language model, parsing, dialogue context, and acous-
tic – at different cost thresholds, as indicated by the
ROC curves. We then showed that a combination of
all features is better than any one in isolation, based
on the overall classification accuracy at a 10% false ac-
ceptance level. In our future work we will compare the
performance of our current system with one that uses
confidence annotation as a basis for verification.

6. REFERENCES

[1] Carpenter, P., Jin, C., Wilson, D., Zhang, R., Bo-
hus, D., Rudnicky, A., “Is This Conversation on
Track?”, Proceedings of Eurospeech 2001, Aalborg,
Denmark, Volume 3, September 2001, 2121–2124.

[2] Chase, L., “Error-Responsive Feedback Mecha-
nisms for Speech Recognizers”, Ph.D. Thesis,
Carnegie Mellon University, Technical Report,
CMU-RI-TR-97-18, April 1997.

[3] Pellom, B., Ward, W., Pradhan, S., “The CU
Communicator: an Architecture for Dialogue Sys-
tems”, Proceedings of the International Confer-
ence Speech and Language Processing (ICSLP-
2000), Beijing, China, Volume II, October 2000,
723–726.

[4] Rubén, S., Pellom, B., Hacioglu, K., Ward, W.,
“Confidence Measures for Spoken Dialogue Sys-
tems”, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP-2001), Salt Lake City, Volume I,
May 2001, 393–396.

[5] Wessel, F., Schlüter, R., Macherey, K., Ney, H.,
“Confidence Measures for Large Vocabulary Con-
tinuous Speech Recognition”, IEEE Transactions
on Speech and Audio Processing, Volume 9, Num-
ber 2, March 2001, 288–298.

[6] Witten, I., Frank, E., et al., “Weka 3 – Machine
Learning Software in Java”,
http://www.cs.waikato.ac.nz/~ml/weka/index.html


