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ABSTRACT

This paperexaminesanapproactor combiningtwo different
methodsfor detectingerrorsin the outputof a speechrecognizer
The first methodattemptsto alleviate recognitionerrorsby using
anexplicit modelfor detectingthe presencef out-of-vocalulary
(O0V) words. Thesecondnethodidentifiespotentiallymisrecog-
nizedwordsfrom a setof confidenceeaturesextractedfrom the
recognitionprocessisinga confidencescoringmodel. Sincethese
two methodsareinherentlydifferent,anapproactwhichcombines
the techniquescan provide significantadwantagesover either of
the individual methods. In experimentsin the JUPITER weather
domain,we compareandcontrasthetwo approacheanddemon-
stratethe adwantageof the combinedapproach.ln comparisorto
either of the two individual approachesthe combinedapproach
achieves over 25% fewer falseacceptancesf incorrectly recog-
nized keywords (from 55% to 40%) at a 98% acceptanceate of
correctlyrecognizeckeywords.

1. INTRODUCTION

The Spolen LanguageSystemsGroup conductsresearcheading
to the developmentof cornversationalspeechunderstandingys-
temsfor human-machineteraction.Thesesystemsnustnotonly
recognizethe words which are spolen by a userbut alsounder
standthe users query and respondaccordingly The succesf
suchsystemsis heaily dependenbn the ability of the speech
recognitioncomponento accuratelyrecognizethe words spolen
by the user The presenceof incorrectly recognizedwords may
causethe systemto misunderstané users request,possiblyre-
sultingin the executionof anundesirablection.
Unfortunatelytodays speechrecognitiontechnologyis far
from perfectand errorsin recognitionmust be expected. Un-
derthesecircumstance# becomeglesirableto develop methods
which canidentify whena recognizers hypothesids correctand
whenit maybein error In orderto createmethodgo accomplish
this, it is importantto understandhe two primary deficienciesn
atypical recognizerFirst,the modelsusedin therecognitionpro-
cessmaybeinadequatefor any numberof reasonsfor discrimina-
tion betweencompetinghypothesesSecondyecognizeraretyp-
ically developedfor closedsetrecognition(e.g.,recognitionusing
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apredeterminedixedvocalulary) andarethusnot entirelyappro-
priate for opensetrecognitionproblemswhereunknavn words,
partialwords,andnon-speecmoisesmay corrupttheinput.

In this papemwe examinetwo methodswhich werepreviously
developedin our group,to help detectand alleviate the presence
of errorsin speechrecognitionhypotheses.In the first method,
anexplicit out-of-vocatlulary (OOV) word modelis addedinto the
modelsetof therecognizetin orderto identify potentialunknavn
words during recognition[1]. In the secondmethod,the recog-
nizer's hypothesesre post-processewith a confidencescoring
modelin orderto identify hypothesizedvordswhich maybe mis-
recognized5]. Both methodsattemptto identify the regions of
an utterancewherethe recognizercannotfind reliable word hy-
pothesesvithout harmingtheregionswheretherecognizeiis per
forming correctly However, becaus¢hemodelingapproacheare
inherentlydifferent,they have differentadwantagesanddisadwan-
tages.Underthesecircumstances combinationof the two meth-
odsmight prove beneficial.In this paperwe seekto compareand
contrastthe performanceof the two individual methods.This pa-
peralsopresents methodfor combiningthe techniquesandpro-
vides experimentalresultsdemonstratinghe performancegains
that canbe obtainedby the combinedapproach.Resultsare pre-
sentedusingthe recognizerfor the JUPITER weatherinformation
system[13].

2. MODELING OOV WORDS

In devising atechniqueor explicitly modelingOOV wordsduring
recognition,we startwith a word-basedecognizemwith a fixed
predefinedrocahulary of words. To modelOOV words,we create
a genericword modelwhich mustallow for arbitrary phonese-
guencesluring recognition. One simplegenericword modelis a
phonerecognizercovering the setof all phoneticunitsin thelan-
guage.Sincethis unit inventorycancover the phoneticsequences
containedin all possibleOOV words, it canbe usedasthe basis
for our genericword model.

To allow for OOV words,theword-basedecognizers vocab-
ulary is augmentedvith an OOV word whoseunderlyingmodel
is the genericword model. Figure1 shavs how the word search
spacecanbe augmentedvith the genericword model. We simply
allow the searchto transitioninto the genericword modelWoov
atthecompletionof ary word. Whenexiting Woov, thesearchs
allowedto eitherendthe utteranceor enterary otherword model,
includingthe OOV word.

Entrancanto the genericword modelis controlledby two pa-
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Fig. 1. The hybrid recognitionconfigurationcontainingthe OOV
genericword model.

rametersduring recognition. The first is an OOV cost, Coov .-

This costis relatedto the probability of observingan OOV word

andis usedo balancehecontritution of theOOV phonegrammar
totheoverall scoreof theutterance For our experimentsve varied
the value of Coov to quantify the behaior of the hybrid recog-
nizer The secondparameteis simply the languagemodel. The
languagemodelof the hybrid recognizeremainsword-basedbut

now includesanentryfor the OOV word. Sincethe OOV word is

partof the vocatulary, the n-gramgrammartreatsthne OOV word

justlike ary otherwordin thevocahulary.

Augmentingtheword recognizemwith thegenericword model
shavn in Figure 1 is somevhatsimilar to usingfiller (or garbage)
modelsfor word-spotting10,11]. However, therearetwo key dis-
tinctionswhich differentiateour approactrom usingfiller models
for word-spotting.First, the entireword vocalulary is usedin the
searchwhereaghe genericword is intendedonly to cover OOV
words. The seconddistinctionis that accuratesub-word recogni-
tion is importantfor our OOV modelsinceit is possibleto useits
outputfor a secondstageof processingo identify the pronuncia-
tion (andpossiblythespelling)of the OOV word. In contrastword
spottergypically make no useof the outputof thefiller models.

3. WORD CONFIDENCE SCORING

In our system,word confidencescoresare computedas a post-
processingstageafter recognition[7,9,12]. To obtainthe confi-
dencescoreswe begin by extractinga setof confidenceneasures
for eachword from the computationgperformedduringtherecog-
nition process. In our systemten different confidencemeasures
are computed. Theseinclude suchmeasurementas the average
normalizedlog-likelihood acousticmodel scoreover all acoustic
obserationsin a word, the minimum normalizedlog-likelihood
acousticmodelscorefor aword, the fraction of the N-bestutter
ancehypothese which ahypothesizedvord appearsetc. These
featuresareconcatenatethto a singleconfidencdeaturevector
Thefeaturevectorfor eachindividual word hypothesiss then
evaluatedusinga confidencescoringmodelwhich producesa sin-

gle confidencescorebasedntheentirefeaturevector To produce
a confidencescorefor a word from the confidenceeaturevector

a simple linear discriminationprojectionvectoris trained. This

projectionvector reducesthe multi-dimensionalconfidencefea-
ture vectorfor the hypothesidown to a single confidencescore.
Mathematicallythisis expresseds

c=p"f 1)

Wherefis the featurevector p'is the projectionvector andc is

theraw confidencescore. A thresholdon this scorecanbe setto

producean accept/rejectlecisionfor the word hypothesis.In our
experimentsthis thresholds variedto adjustthe balancebetween
falseacceptancesf misrecognizedvords andfalserejectionsof

correctlyrecognizedvords. In [6], we describehow theraw score
canbe convertedinto a probabilisticscorewhich canbe usedin

later processingy thelanguagainderstandingnddialoguecom-
ponentf thesystem.

The projectionvector g’ is trainedusing a minimumclassifi-
cationerror (MCE) trainingtechnique.In this techniquethe pro-
jectionvectoryp'is first initialized usingFisherlinear discriminant
analysis.After theinitialization of p, a simplehill-climbing MCE
algorithmiteratesthrougheachdimensionin g adjustingits val-
uesto minimize the accept/rejectlassificationerror rate on the
training data. The optimizationcontinuesuntil a local minimum
in errorrateis achieved. Thoughthis discriminatively trainedpro-
jectionvectorapproachs quitesimple,it hasperformedquitewell
for us. Nevertheless futurework mayattempto usea morepow-
erful accept/rejectlassifiersuchasaneuralnetwork [9, 12].

4. COMBINING OOV WORD DETECTION
AND CONFIDENCE SCORING

In speechrecognitiorresearchit hasbeendiscoseredthatcombin-
ing the outputsof differentclassifiersand/orrecognizercanim-
prove recognitionaccurag androbustnesg2, 4,8]. Theseresults
are most compellingwhen the different classifiersutilize differ-
entobserationmeasurements modelingapproachebut achiere
similarresults.Underthesecircumstancegheexpectedgainfrom
combiningthe different classifiersis the greatest. This was the
motivation for attemptingto combineour two distinctly different
methoddor detectingrecognitionerrors.

Our OOV word modelingapproactoperatesluringtherecog-
nition searchprocessy allowing therecognizeiitself to hypothe-
sizeagenericOOV word modelasanalternatve to aknown word.
On the otherhand,our confidencescoringapproacthis appliedas
apost-processintpchniqueaftertherecognitionsearchs already
complete. A naturalway to combineboth methodsis to enable
OOV word detectionduring recognitionand then utilize confi-
dencescoringon the hypothesizedknown words (excluding the
OOV word hypothesesafterrecognitionis complete.

Usingthis two-stagecombinedapproachtherearetwo oppor
tunitiesfor the systento detectpotentialerrors.During therecog-
nition stagethe OOV word detectionapproactreplacegotential
misrecognitionsvith unknavn word markers. In the postprocess-
ing stage the confidencescoringmoduleexaminesthe remaining
word hypothesesvhich arein-vocalulary andrejectsthoseword
hypothese whichit haslow confidence.
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Fig. 2. Comparisorof therejectionrateof errorscausedy OOV
wordsversughefalserejectionrateof correctlyrecognizedvords.

5. EXPERIMENTS & RESULTS

5.1. Experimental Setup

Experimentgpresentedhereutilize therecognizerfor the JUPITER
weatherinformationdomain[3]. This recognizewutilizes a setof
contet-dependentiiphoneacoustiomodels,whosefeaturerepre-
sentatiorwasbasednthefirst 14 MFCCsaveragecdver 8 regions
nearhypothesizeghoneticboundaries.Diphoneswere modeled
using diagonal Gaussianswvith a maximum of 50 mixtures per
model. Thewordlexicon consistedf atotal of 2,009words,mary
of which have multiple pronunciations.Word classtrigram lan-
guagemodelswere usedat the word-level. Phone-lgel bigrams
were usedfor the internal phonetransitionsin the OOV model.
Thetraining setusedfor theseexperimentsconsistsof 88,755ut-
terancesusedto train both the acousticandthe languagemodels.
Thetestsetconsistof 2,388spontaneoustterancesollectedby
JUPITER, 13% of which containOOV words. On this testsetthe
baselinerecognizethasaword errorrateof 21.6%.

In our experimentswefirst examinethecapabilityof the OOV
detectionmethodandthe confidencescoringmethodon the task
of detectingerrorscausedby unknavn words. Secondwe com-
parethe two methodson the task of detectingrecognitionerrors
in general Finally, we examinethe methodfor combiningthetwo
approachesn thetaskof keyword recognitionerror detection.

5.2. Detecting OOV Words

The purposeof the OOV word detectionmodel is to detectthe
presencef OOV wordswithoutharmingtherecognitionaccurayg
on correctlyrecognizecknowvn words. Similarly, it is hopedthat
the confidencescoringmodulewill rejectword hypothesesvhen
the actualword is an unknavn word without absorbingfalsere-
jectionsof correctly recognizecknowvn words. The performance
of the two methodson the taskof OOV word detectionis shovn
in Figure 2. In this figure OOV word detection(i.e., the rejec-
tion of word hypothesisrrorscausedy unknavn words)is plot-
ted againstthe falserejectionrate of correctlyrecognizedwvords.
As canbe seenin the figurethe OOV detectionmethodperforms
betterat the task of detectingerrorscausechy OOV wordsthan
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Fig. 3. ROC curvesfor OOV word detectionandconfidencescor
ing methodsevaluatedon all wordsandon keywordsonly.

the confidencescoringmethod. This is not surprisingconsider
ing thatthe OOV detectiormethodis designedspecificallyfor this
taskwhile the confidencescoringmethodis designedor the more
generaltaskof detectingany type of recognitionerror (including
substitutionof knowvn wordsandinsertions).

5.3. Detecting Recognition Errors

As mentionedearliet the confidencescoringmodelis designed
to be a genericdetectorof recognitionerrors. Its focusis not
specificallyon the detectionof errorscausedy unknavn words,
as examinedin the previous section. To testthis capability we
can examinethe recever-operatorcharacteristiqROC) curve of
the system. The ROC curvwe measureshe relationshipbetween
the percentagef correctlyrecognizedvordswhich areaccepted
(i.e., the correctacceptanceate) againstthe percentagef incor
rectly recognizedword which areacceptedi.e., the falseaccep-
tancerate).ldeallywe'd like to minimizethefalseacceptanceate
without harmingthe correctacceptanceate.

Figure 3 shaws four different ROC curwes. The solid ROC
cunvesshav theOOV detectiormethodandtheconfidencescoring
methodwhenappliedto all wordshypothesizedby therecognizer
Thesdinesindicatethattheconfidencescoringmethodhasabetter
ROC curve thanthe OOV detectionmethodwhen appliedto all
hypothesizedvords. This resultis not surprisingconsideringhat
the confidencescoringmethodwas specificallydesignedor this
task, while the OOV detectionmethodwas designedspecifically
for detectingerrorscausedy OOV words.

However, the dashedinesin Figure3 shav the ROC curves
for thetwo methodsvhenonly examiningcertainkeywordswhich
areimportantfor correctunderstandingThesekeywordsarefrom
alist of 937 propernamesof geographidocationsknown by the
recognizer For this testthe two methodsperform almostidenti-
cally. Thefactthatthe OOV detectionmethodworks muchbetter
on this keyword evaluationthanit did on the evaluationusingall
wordsis alsonot surprising.Many of the out-of-vocalulary words
thatappeain the JuPI TER taskarepropermamesof locations.Be-
causeof languagemodelingconstraintst is relatively commonfor
thebaselineecognizetto substitutea known locationnamefor an
out-of-vocahulary locationname.
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Fig. 4. ROC curvesonhypothesizetteywordsonly usingthe OOV
word detectionandconfidencescoringmethodsaswell asa com-
binedapproach.

5.4. The Combined Approach

Figure4 shavs theROC curvesfor keyword detectiorfor ourorig-
inal two methodslusthe combinedmethod.In the combinedap-
proach the OOV modelingcomponents first fixed at a particular
operatingpoint beforeconfidencescoringis utilized. The dashed
anddottedline on the figure shavs one example ROC curve for
the combinedapproachfor one initial OOV modelingoperating
point. In this example theinitial OOV modelingoperatingpointis
fixedata correctacceptanceateof 99.2%with afalseacceptance
rateof 71%. From this point we canthengeneratghe remainder
of the ROC curwe by adjustingthe confidencescoreaccept/reject
threshold. The solid line shavs the optimal ROC curwe for the
combinedapproachwhich is generatedy samplingresultsfrom
all combination®f all operatingpointsfor thetwo differentmeth-
odsandextractingthe “envelope” of thesedual operatingpoints.
Thesecurvesdemonstratéhe significantimprovementthatcanbe
obtainedby the combinedapproach.

To further illustrate the improvementthat can be obtained,
supposewe wish to operateour systemat a correctacceptance
rateon keywordsof 98%. At this operatingpoint, thefigureshavs
that the combinedapproachcan reducethe falseacceptanceate
of misrecognizedeywords by over 25% from either of the two
original methods(from 55% to 40%). Although not shown,
similar (though smaller)improvementscan also be obsered on
the more generaltask of identifying recognitionerrorsacrossall
words.However, it isimportantto notethatwe focusednthekey-
wordsbecausé¢hey aremostrelevantto the overall understanding
rateof thefull system.

6. CONCLUSIONS & FUTURE WORK

This paperhaspresented methodfor combiningtwo techniques
for detectingrecognitionerrors. The first techniqueusesan ex-
plicit OOV modelfor detectingDOV words. Thesecondapproach
relies on a confidencemodelto predictrecognitionerrors. The
combinedapproachusesOOV detectionin a first stageandthen
confidencescoringin a secondstage. In experimentscomparing
the two techniqueswe found that the OOV modelingapproach

doesbetterat detectingOOV wordswhile the confidencescoring
approachperformsbetterin detectingmisrecognitionsn general.
However, the combinedapproactshaws significantimprovement
over either of the two approachesespeciallyfor recognitionof
keywords.

Thereare numerouspossibleextensionsto this work thatwe
would like to examinein the future. Oneextensionis to develop
confidencenethodsspecificallyfor determiningvhetherahypoth-
esizedOOV word is indeedOOV. A comparisonof recognition
pathscontainingand not containinga hypothesizedOOVv word
could provide suitableconfidencemeasuresor making this de-
cision. This would allow us to build a confidencemodel specif-
ically for OOV word detection. A secondpossibleextensionis
to examinedifferentmethodsfor combiningthe two approaches.
Runningparallel recognizersand using a post-processingoting
schemgi.e.,ROVER [2]) is onepossiblealternatve.
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