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Abstract The objective of the present work is to provide
a detailed review of expressive speech synthesis (ESS).
Among various approaches for ESS, the present paper fo-
cuses the development of ESS systems by explicit control.
In this approach, the ESS is achieved by modifying the pa-
rameters of the neutral speech which is synthesized from the
text. The present paper reviews the works addressing var-
ious issues related to the development of ESS systems by
explicit control. The review provided in this paper include,
review of the various approaches for text to speech synthe-
sis, various studies on the analysis and estimation of expres-
sive parameters and various studies on methods to incorpo-
rate expressive parameters. Finally the review is concluded
by mentioning the scope of future work for ESS by explicit
control.

Keywords Expressions · Prosody modification · Text to
speech · Emotion conversion · Epochs

1 Introduction

Speech synthesis is the process of converting message writ-
ten in text to equivalent message in spoken form. Expressive
speech synthesis deals with synthesizing speech and adding
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various expressions related to different emotions and speak-
ing styles to the synthesized speech (Pitrelli et al. 2006;
Tao et al. 2006; Erickson 2005; Campell et al. 2006). The
dictionary meaning of expression is conveying a thought or
an emotion. The expression is defined as the vocal indicator
of various emotional states that reflect in the speech wave-
form (Scherer 1986). The different emotions and speak-
ing styles are also considered as expressions (Pitrelli et al.
2006). Based on this, in the present work, we have consid-
ered different emotions as the expressions and hence emo-
tions and expressions are interchangeably used.

The objective of speech synthesis is to synthesize speech
waveform from the text. The Schematic block diagram of a
speech synthesis system is shown in Fig. 1. The input text is
first converted into abstract linguistic representation by the
front end text processing stage. This linguistic representa-
tion is obtained by performing prosodic annotations on the
syntactic, semantic and lexically analyzed text (Klatt 1987).
This linguistic representation drives the synthesis routines
to get the speech waveform of the input text (Klatt 1980). In
the present work, such a system is termed as Neutral Speech
Synthesis (NSS) system.

In expressive speech synthesis, along with text, the de-
sired expression also forms an additional input to the text
processing stage as shown in Fig. 2. The input text is con-
verted into abstract linguistic representation as in NSS. In
addition, the expressive information is also incorporated, ei-
ther before or after the synthesis of neutral speech. In the
former case, the expressive information is coded along with
the linguistic information and speech is synthesized from
the text using the linguistic and expressive information. In
the later case, the speech is synthesized initially without any
expression, that is, neutral speech and then later the desired
expression is added using a suitable voice transformation
technique (Tao et al. 2006; Campell et al. 2006).
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Fig. 1 Schematic diagram of neutral speech synthesis

Fig. 2 Schematic diagram of expressive speech synthesis

Speech synthesized in different expressions can be used
in story telling applications for children where for effective-
ness and drawing attention, different expressions have to be
generated in different contexts of the story (Theune et al.
2006). ESS can be used as a part of dialogue system which
makes the human computer interaction more natural and ef-
fective. Expressive speech analysis can be utilized by the
call center managers to identify the emotional state of the
operators during conversing with the customers and valuate
them based on their emotional maturity. ESS finds applica-
tion in the financial information system to make announce-
ments in different speaking styles to the users (Pitrelli et al.
2006).

The review of existing approaches for the development
of ESS systems are presented in Sect. 2. Among various ap-
proaches for the development of ESS systems, the present
focus of the development of ESS by explicit control and the
issues in that are described in Sect. 3. In ESS by explicit
control approach, the perceptual quality of the synthesized
expressive speech deeply depended on the quality of the syn-
thesized neutral speech, Sect. 4 reviews different NSS ap-
proaches.The various works done on analysis and estimation
of expressive parameters are explained in Sect. 5. Section 6
reviews the methods to incorporate the expressive parame-
ters. Section 7 describes the methods to evaluate the synthe-
sized expressive speech. Finally, the scope for the present
work is given in Sect. 8

2 Review of existing expressive speech synthesis systems

This section reviews various existing approaches employed
for expressive speech synthesis. According to Schroder

(2009), the expressive speech synthesis approaches can be
broadly classified into the following three categories.

• Expressive speech synthesis by explicit control
• Expressive speech synthesis by playback approach
• Expressive speech synthesis by implicit control

2.1 Expressive speech synthesis by explicit control

Here, the expressive speech is synthesized by modifying the
neutrally synthesized speech based on the prosodic rules de-
rived from the expressive speech database of the respective
expressions. The expressive speech synthesis systems devel-
oped on formant synthesis (Cahn 1989; Murray and Arnott
1993; Burkhardt and Sendilmeier 2000) and diphone con-
catenation are examples of explicit control (Vroomen et al.
1993; Montero et al. 1999). Various methods developed
for neutral to expressive conversion tasks (Tao et al. 2006;
Cabral and Oliveira 2006a; Theune et al. 2006) also falls
under the category of explicit control.

As the formant speech synthesizers provide flexibility to
control the various source and system parameters, earlier
developments of expressive speech synthesis systems were
on top of the formant speech synthesis systems (Schröder
2001). The affect editor developed by Cahn was the first at-
tempt to synthesize emotional speech using a formant syn-
thesizer (Cahn 1989; Schröder 2001). The control parame-
ters of formant synthesizer are manually tuned for each of
the emotions to synthesize the expressive speech. Modifi-
cation of each of the control parameters for each emotion
is done according to various acoustic profiles discussed in
the literature (Williams and Stevens 1972; Fairbanks and
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Hoaglin 1939). HAMLET, emotion speech synthesis sys-
tem developed by Murray and Arnott (1995), is a rule based
system developed on commercial formant speech synthe-
sis system called DECtalk. In HAMLET the pitch and du-
ration rules and voice quality rules are set in the formant
synthesizer and quality of the synthesized emotions are im-
proved heuristically by manual tuning. The development of
these rules for emotions is as given in Murray and Arnott
(1993). The objective of the perceptual experiments con-
ducted by Felix Burkhardt was to, find out the perceptually
relevant acoustic features for each emotion by systemati-
cally varying these acoustic parameters during the synthesis
of the neutral utterances and find the optimum values of each
of the acoustic features for the emotional speech synthesis
(Burkhardt and Sendilmeier 2000). According to these per-
ceptual experiments, the pitch parameters like mean pitch
and pitch range, suprasegmental parameters like speech rate,
and voice quality parameters like phonation and vowel pre-
cisions, are found to be significant for effectively synthesiz-
ing emotions using formant synthesizers. The studies con-
ducted by Vroomen et al. (1993) on seven emotions (neu-
tral, joy, boredom, anger, sadness, fear, indignation) showed
that only intonation and duration are enough to express emo-
tions in the synthesized speech using a diphone synthesizer.
Here the emotional speech is synthesized by manipulat-
ing the pitch and duration using Pitch Synchronous Over-
lap Add (PSOLA) of the neutrally synthesized speech. The
significance of pitch and duration parameters in emotional
speech synthesis is also shown in the studies by Montero
et al. (1999) in Spanish using diphone concatenation. This
study also showed that the relative contribution of prosody
and voice quality depends on the emotions to be synthesized
(Schroder 2009).

Apart from the expressive speech synthesis systems de-
veloped based on various speech synthesis approaches,
there are some works done for neutral to target expressive
speech conversion task using the explicit control approach.
Tao et al. (2006) achieved expressive speech conversion
by prosody (pitch and duration) modification of the neu-
tral expressive speech. This paper compared linear, Gaus-
sian mixture model (GMM) and classification and regres-
sion tree (CART) methods for converting neutral speech
to target expressive speech for mandarin language. Apart
from discrete emotions like angry, happy, sad and fear, the
strong, medium and weak versions of each is also consid-
ered for synthesis. Direct scaling of sentence F0 and sylla-
ble duration is done in linear modification model and other
acoustic features of F0 contour considered for modifica-
tion are F0topline,F0baseline,F0avg and intensity. In GMM
based prosody modification, pitch target models are con-
structed from the tonal representation of the intonation pat-
tern of each syllable for each expression. The pitch tar-
get model parameters generated by GMM of the neutral

syllable is mapped to that of the target expression to ob-
tain intonation contour. In the case of CART, along with
prosody information of target expression, linguistic infor-
mation obtained from the text is also used to build trees.
Listening test indicates that the speech synthesized using
GMM (for small data set) and CART (large data set) sounds
more expressive compared to linear prosody modification.
Cabral and Oliveira (2006a) developed Emo Voice sys-
tem to incorporate different emotions into the neutral ex-
pressive speech in German language. In Emo Voice sys-
tem the neutral speech is converted to expressive speech
by modifying both prosody parameters (pitch, duration and
intensity) and excitation source parameters (jitter, shim-
mer, and glottal wave parameters) by Pitch Synchronous
Time Scaling (PSTS) method (Cabral and Oliveira 2006b;
Cabral 2006). The rules for the prosody and voice qual-
ity modification are derived based on the acoustic profiles
presented in Drioli et al. (2003), Whiteside (1998), Zovato
et al. (2004). Theune et al. (2006) devised prosodic rules to
generate expressions in the story telling style. Story telling
expressions are synthesized by modifying the pitch and in-
tensity of various part of the story like suspense, climax etc.

2.2 Expressive speech synthesis by playback approach

In playback approach, the expressive speech is synthe-
sized independently using the respective expressive speech
database. Here expressive speech synthesis is achieved ei-
ther by merely playing back what is available in the database
of the target expression or using the models which are
trained using the target expression database. The unit se-
lection based and HMM based expressive speech systems
trained on the respective expressive database works on play
back approach (Yamagishi et al. 2003; Iida et al. 2000; Hofer
et al. 2005; Fernandez and Ramabhadran 2007; Pitrelli et al.
2006).

For improved naturalness in the synthesized speech, the
emotional speech synthesis systems developed based on
unit selection cocatenation were developed. A highly nat-
ural synthesized emotional speech is demonstrated by Iida
et al. (2000) by storing large databases for each emotion.
For synthesizing the target emotion, the respective emotion
database is loaded and selected units from the database to
synthesize the speech in the target emotion. A good quality
conversational speech is synthesized by Campbell (2006)
using phrase unit selection based speech synthesizer from a
very large database. Gregar et al. used a blended database
by mixing emotion databases of angry, happy and neu-
tral speech for synthesizing speech in the target emotions
(Hofer et al. 2005). For achieving this, target cost func-
tion is designed to give more penalty to select the units
other than the intended emotion. The work done by Fer-
nandez and Ramabhadran (2007) also followed same ap-
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proach by mixing the units of other emotions to synthe-
size the target emotional speech. Pitrelli et al. (2006) pro-
posed an unified approach for expressive speech synthesis
system by combining corpus driven and prosodic phonol-
ogy approach. These studies concluded from the listening
test that the use of corpus driven approach for convey-
ing good and bad news, and prosodic phonology approach
for contrastive emphasis and Yes-No questions. Similar to
unit selection approach expressive speech synthesis sys-
tems are developed using statistical parametric (HMM) ap-
proach also. Junichi et al. trained HMM models for differ-
ent speaking styles like reading, sad, joyful and rough and
synthesized speech in the target styles using the respective
trained HMM models (Yamagishi et al. 2003). Some of the
synthesized expressive speech samples for happy and an-
gry emotions are available for listen at the following link:
http://www.iitg.ernet.in/stud/dgovind/emotionsynthesis.htm.

2.3 Expressive speech synthesis by implicit approach

The implicit control based expressive speech system con-
trols the expressivity by interpolation between two statis-
tical models trained on the different expressive databases.
The expressive speech synthesized by the interpolation and
adaptation of HMM models are examples of implicit con-
trol. HMM based speech synthesizers offer various adap-
tation techniques to adapt the average style model to a
specific style. Miyanaga et al. (2004) proposed an HMM
based style synthesis system using a style control vector es-
timated for each style. During the synthesis the style con-
trol vector associated with the target style transforms the
mean vectors of the neutral HMM models. The adaptation
techniques provides flexibility to build the statistical mod-
els with a few minutes of data if an average model is avail-
able. As the speech synthesized using speaker adaptation are
found to be more robust than speaker dependent case, these
adaptation techniques can be used for synthesizing various
styles also (Yamagishi et al. 2007). Apart from the adap-
tation techniques, HMM speech synthesis systems provide
flexibility to synthesize various speaking styles or emotions
by HMM interpolation or multiple regression of emotion
vectors (Barra-Chicote et al. 2010; Tachibana et al. 2005;
Nose et al. 2007). In spite of all these advantages for HMM
based speech synthesis systems the notable disadvantage
is the inherent over-smoothing of the spectral and excita-
tion parameters by the HMM models (Barra-Chicote et al.
2010). This over-smoothing causes the reduced naturalness
in the synthesized emotions. However, the perceptual stud-
ies presented by Barra-Chicote et al. shows that the emo-
tional speech synthesized using HMM based speech synthe-
sis system and unit selection based speech synthesis system
provides almost similar emotion identification rates (Barra-
Chicote et al. 2010).

The present work focuses on the development of expres-
sive speech synthesis systems based on explicit control of
prosodic features. Here the issue will be framing of prosodic
rules by the analysis of each expression in the database and
incorporating them into the neutral speech.

3 Issues in expressive speech synthesis by explicit
control

The ESS by explicit control is achieved by transforming the
neutral speech by a signal processing approach according
to the prosodic rules framed for the target expression. The
various issues in the ESS by explicit control approach are
the following:

• Synthesizing a good quality neutral speech
• Analysis and estimation of expressive parameters
• Incorporation of expressive parameters

The various issues and approaches for the development of
neutral speech synthesizers are presented in Sect. 4. Based
on this review, the speech synthesized either from a unit se-
lection concatenative system or HMM based statistical para-
metric speech synthesis system is of good intelligibility and
reasonably natural. Therefore any of the two systems can
be used as the neutral speech synthesizer for the present
work.

The analysis and estimation of expression specific pa-
rameters of various emotions are performed on an expres-
sive database. Section 5 reviews various existing expres-
sive databases used for the expressive speech analysis. Ex-
pression specific parameters for each expression are ana-
lyzed with respect to the neutral expression. In this stage,
the issues will be the accurate estimation of parameters to
analyze its variation across various expressions. Therefore
the choice of signal processing tools that accurately esti-
mates the expressive parameters are important for analyz-
ing the expressive parameters. Section 5 also reviews stud-
ies made on various expressive parameters in expressive
speech analysis. Finally, the outcome of this study will be
a set of rules on expressive parameters which can modify
the parameters of neutral speech to synthesize the expres-
sive speech.

The final stage in the ESS by explicit control is the in-
corporation of the rules for each expression on the parame-
ters of neutral speech to obtain the speech in the target ex-
pression. This is typically achieved by a signal processing
method. The issue in incorporating these expressive rules
is to introduce minimum perceptual distortion without af-
fecting the naturalness in the synthesized expressions. Sec-
tion 6 reviews various methods for incorporating expressive
parameters.

http://www.iitg.ernet.in/stud/dgovind/emotionsynthesis.htm


Int J Speech Technol

4 Review of text to speech synthesis

The front end text to speech synthesis system serves as the
NSS. The parameters of the neutral speech synthesized by
the TTS system are modified according to target expres-
sion to generate the speech in the target expression. Every
TTS has a front end text processing block, which converts
the text to be synthesized to an abstract linguistic specifica-
tions. These abstract linguistic specifications could be a se-
quence of phonemes or any sub-word unit and also it could
be annotated with the prosodic information (Klatt 1987;
Clark et al. 2007; King 2011). The text processing stage gen-
erally includes the text normalization, phrasification and lex-
ical analysis modules. The role of the text processing mod-
ule is to provide a unique contextual description about the
sound units across the entire utterance. This abstract linguis-
tic representation drives the waveform generation module to
synthesize the speech in accordance with the text given. For
the waveform generation from the abstract linguistic repre-
sentation, there are four approaches namely,

• Articulatory speech synthesis
• Formant speech synthesis
• Concatenative speech synthesis
• Statistical parametric speech synthesis

4.1 Articulatory speech synthesis

The objective of articulatory speech synthesis is to model
various articulatory processes involved during speech pro-
duction and use that knowledge to synthesize good quality
speech sounds. Various stages in the development of articu-
latory speech synthesizers are the following:

• Articulatory data acquisition
• Geometric modeling of vocal tract
• Acoustic modeling for the synthesis

In articulatory data acquisition, the positions of various
articulators are studied during the production of various
sound units. In articulatory data acquisition, snapshots of
the speech production organs are taken during the produc-
tion of various sound units. The articulatory data is ac-
quired using various sensors like fiberscope (Gauffin and
Sundberge 1978), x-ray (Mermelstein 1973; Maeda 1979;
Beautemps et al. 2001) and Magnetic Resonance Imaging
(MRI) (Narayanan et al. 1995). The popular commercially
available devices for measuring articulation are developed
using electro magnetic articulography (EMA) and electro
palatography (EPG). After acquiring the articulatory data,
geometric models are built for the vocal tract which is in
turn used for the acoustic synthesis of the sound units. There
are a number of 2D and 3D models proposed in the lit-
erature for the accurate geometric modeling of vocal tract
system using the available articulatory data (Palo 2006;

Heinz and Stevens 1964; Engwall 1999). After generating
a complete geometrical model from the articulatory data for
various sound units, these parameters in terms of the area
functions have to be mapped into acoustic parameters for
the speech synthesis which is the final stage of the articula-
tory speech synthesis. The source filter theory of speech pro-
duction proposed by Fant (1960) is the basis for the speech
synthesis from the acoustic parameters. The VT tube acous-
tics is obtained by solving Websters horn equations for the
sound pressure. The area functions of the geometrical mod-
els are mapped to simple 2D circular cross-sectional areas
for applying Websters Horn equations. Once the acoustic
parameters of VT tube is obtained, the electrical analogue
circuit can be designed for the synthesis (Dunn 1950). The
acoustic parameters can also be simulated by estimating
the digital filter coefficients (Kelly and Lochbaum 1962;
Badin and Fant 1984). The source information (pitch and
intensity) required for the acoustic synthesis can be directly
computed for each sound unit from the recorded data. Palo
(2006) provides a detailed review of articulatory speech syn-
thesis in his MSc Thesis.

Even though articulatory synthesis is based on physi-
cal theory, construction of geometrical models and their
mapping makes it computationally complex. Also improper
coarticulation modeling causes degradations in the synthe-
sized speech. Computational complexity and reduced nat-
uralness makes the articulatory speech synthesis approach
less popular compared to other existing approaches for
speech synthesis.

4.2 Formant speech synthesis

Formant speech synthesizers are example of the speech syn-
thesizers using a speech production model. The formant
speech synthesizer is developed based on source filter theory
of speech production (Fant 1960). From a historic perspec-
tive Dudley’s (1939) channel vocoder developed in 1939 is
a primitive form of formant synthesizer. In Dudley (1939),
the distribution of the formant energies and voicing are ad-
justed by an expert human to synthesize speech like wave-
form. Formant speech synthesis involves the simulation of
formant frequencies, formant amplitudes and glottal source
characteristics for each sound unit. The vocal tract is sim-
ulated using a set of resonators connected in cascade or
parallel. The popular technique for the formant synthesis
is developed by Klatt (1980). The parameters corresponds
to formants and voicing source are tuned manually for syn-
thesizing a good quality speech. After the development of
Klatt formant synthesizer, Fant and Liljencrants came up
with an improved parametric glottal model to provide a bet-
ter shape for the glottal waves used in the Klatt synthesizer
(Fant et al. 1985). As the formant synthesizers provide flexi-
bility to vary the voice qualities of the synthesized speech by
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varying the control parameters of the source and the system,
formant synthesizers are used in emotive speech synthesis
applications (Cahn 1989). Recent development in the for-
mant speech synthesis is the data driven formant synthesis
(Carlson et al. 2002). Here formant parameters stored in the
units library are selected and set as the control parameters
for the formant synthesizer.

Even though formant synthesizers provide flexibility for
varying voice qualities in the synthesized speech, increases
complexity due to large number of control parameters. This
necessity of setting the control parameters for speech syn-
thesizer increases the time required to build speech syn-
thesizer with good intelligibility and improved naturalness.
Even though formant synthesized speech is observed intelli-
gible, but sounds unnatural which is its main drawback.

4.3 Concatenative speech synthesis

The basic idea in concatenative speech synthesis is syn-
thesis by joining the segments of the natural speech wave-
form that are stored in the database (Hunt and Black 1996;
Clark et al. 2007). These segments can be words, subword
units like phonemes, diphones and syllables. The widely
used concatenative speech synthesis works on the princi-
ple of unit selection. The popular unit selection speech
synthesis systems are unisyn, clunits and multisyn (Olive
1977; Black and Campbell 1995; Hunt and Black 1996;
Clark et al. 2007). These systems differ to each other in
terms of the type of unit, database and unit selection cri-
teria used for synthesizing the speech. The unisyn unit se-
lection system uses diphones as the basic units for con-
catenation. A diphone is defined from the stable middle
region of one phone to the stable middle region of an-

other phone. Unisyn attempts for building a diphone syn-
thesizer by storing fixed size diphone units obtained from
natural recordings stored in the repository (Olive 1977;
Courbon and Emerald 1982). However, due to the availabil-
ity of only single example of diphone units representing all
the phonetic contexts, causes unnaturalness in the synthe-
sized speech. To overcome this problem, clunits speech syn-
thesis system is proposed in Black and Campbell (1995),
Hunt and Black (1996). In clunits, the basic units of con-
catenation are mono phones. Here a large phonetically la-
beled database of 4–5 hours of continuous speech is used
as unit inventory. The similarly sounding phonemes of dif-
ferent phonetic contexts in the entire database are clustered
for the same phoneme class. During the synthesis, according
to the phonetic context, the appropriate cluster of the same
phone class are picked from clustered database and optimum
units are selected for the reduced temporal and spectral dis-
continuities (join cost) at the concatenation points by the ef-
ficient Viterbi search algorithm. In multisyn based speech
synthesis systems, use diphones as the basic unit of con-
catenation. Here the diphones required for the concatena-
tion are selected from a large diphone labeled database of
4–5 hours of continuous speech recordings. The two cost
functions are used for the optimum unit selection by the
viterbi search are join cost and the target cost functions. The
join cost computes the penalty cost in terms of the spec-
tral and temporal distortion while joining two units and tar-
get cost gives the penalty cost of the unit with respect to
the target diphone context. Figure 3 shows the example of
unit selection for the text “two”. For each target unit, the
example candidate units are listed from the database. The
variable size of the candidate units shown in Fig. 3 indicate
that the size of the listed candidate units from the database

Fig. 3 Unit selection in
concatenative speech synthesis
system: the bold-dotted lines
indicate the optimum path of the
diphone units to be
concatenated for the text “two”
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Fig. 4 Statistical parametric speech synthesis: the block diagram showing training and synthesis phases in building a statistical parametric speech
synthesizer (King 2011)

need not be fixed size units. Also variable number of can-
didate units per target unit indicate that, the number of ex-
ample units available in the database are different for each
target unit having specific linguistic context. The path in
bold dotted line indicates the optimum path obtained by the
Viterbi search algorithm which has total minimum sum of
target and join costs. As unit selection speech synthesis ap-
proach requires a large repository of labeled database, it de-
mands higher memory requirements. The unit selection sys-
tems also suffer from the spectral and temporal mismatches
at the concatenation points to some extent. Signal processing
techniques, like Time Domain Pitch Synchronous Overlap
Add (TD-PSOLA), are used to smooth the discontinuities at
the concatenation points (Moulines and Charpentier 1990;
Taylor 2009). Even though there are advances in the articula-
tory and formant synthesis approaches, unit selection based
speech synthesis approach remain as the mostly used speech
synthesis approach.

4.4 Statistical parametric speech synthesis

Statistical parametric speech synthesizers follow a model
based approach for speech synthesis. In contrast to concate-
native systems, instead of storing the units here the models
corresponding to each unit will be stored in the repository. In

the model based approach, the speech is parameterized and
uses statical methods to build models for those speech pa-
rameters, hence the name statistical parametric speech syn-
thesis (King 2011). In statistical parametric speech synthe-
sis, the statistical parametric models are built using HMM
models.1 Hence statistical parametric speech synthesis is
also known as HMM-based speech synthesis. The schematic
block diagram of statistical parametric speech synthesis is
given in Fig. 4. The HMM based speech synthesis is pro-
posed in Yoshimura et al. (1999). The increased popu-
larity of the HMM in speech recognition and availability
of efficient learning algorithms (Forward-Backward algo-
rithm, EM algorithm), computationally efficient search algo-
rithms (Viterbi search) and parameter tying methods by de-
cision tree clustering, are the motivation behind the develop-
ment of HMM based speech synthesis systems (King 2011;
Zen et al. 2007).

In HMM based speech synthesis, the speech in the
database is parameterized into system and excitation source

1In contrast with the HMM based speech recognition, HMM based
speech synthesis uses Hidden Semi Markov Models (HSMM) for rep-
resenting the speech parameters for each sound unit (King 2011). The
terminology of HMM models used in this chapter refers to HSMM
models that is used for the speech synthesis.
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components. The context dependent HMM models are built
by training the HMMs simultaneously with source and sys-
tem components for all the training data set. The HMM pa-
rameters during training are estimated using maximum like-
lihood criterion.

The speech parameters used for HMM training include,
value of F0 and 5 parameters for spectral envelope of the
aperiodic excitation as the excitation parameters and 40 to
60 parameters are used for the spectral envelope (mel cep-
stral coefficients) (Zen et al. 2009; Yoshimura 1999). For
the natural synthesis of speech dynamic features (delta and
delta-delta coefficients) of both F0 and spectrum are also
used for modeling. These parameters are extracted typically
at 5 ms frame rate. Like in speech recognition HMM mod-
els are trained with labeled speech data. Unlike the speech
recognition case, here full context labels are used for the
training. Use of these full contexts for the HMM modeling
increases the complexity as compared to speech recognition
case where simple context models like triphone HMM mod-
els are used. For the model complexity control, model pa-
rameter tying techniques are adopted where model param-
eters shared among models having similar contexts. Deci-
sion tree based clustering techniques are commonly used for
parameter tying for HMM based speech synthesis. These
parameter tying is responsible for retrieving models cor-
responding to the unseen contexts (for which there were
no examples in the training data) during the synthesis. To
synthesize a sentence, the text processing block generates
the context dependent phoneme sequence. The correspond-
ing stored HMM models are then retrieved (decision tree
based clustering is used to find the model parameters for
the phonemes with the unseen context factors) and concate-
nated to form the sentence HMM. From the sentence HMMs
the speech parameters are generated. The number of frames
of speech parameters to be generated is determined by the
explicit duration model. The speech parameter trajectories
are generated based on maximum likelihood parameter gen-
eration algorithm (MLPG) using the model parameters for
dynamic features (Tokuda et al. 1995). The generated spec-
tral and F0 parameters are used for vocoding to synthesize
the speech. The STRAIGHT (Speech Transformation and
Representation using Adaptive Interpolation of weiGHTed
spectrum) vocoder is generally used for synthesizing the
speech in HMM based speech synthesis systems (Kawahara
et al. 1999). Some HMM based systems also use MLSA
(MeL Spectral Approximation) algorithm for synthesizing
the speech (Imai 1983).

Statistical parametric speech synthesis offers more flex-
ibility to adjust the speech characteristics as compared to
unit selection synthesis systems. Due to these parameter
flexibility, speaker independent speech synthesis systems
are developed using various adaptation techniques (speak-
ing style adaption, speaker adaption) using limited train-
ing data. Since statistical parametric speech synthesizers use

vocoders for synthesizing the speech, synthesized speech
sounds a little unnatural as compared to the speech syn-
thesized using concatenative speech synthesizers. However,
different techniques are being developed for improving the
quality of the synthesized speech in statistical paramet-
ric synthesizer by incorporating glottal source parameters
(Cabral et al. 2011), articulatory parameters (Ling et al.
2011), etc.

Despite the development in articulatory and formant
speech synthesis in the recent years, currently the unit selec-
tion based concatenative and HMM based speech synthesis
systems are the mostly used approaches in the area of speech
synthesis. Hence to develop a good quality neutral speech
synthesizer in the context of expressive speech synthesis, we
can use either unit selection based speech synthesis system
or HMM based speech synthesis system.

5 Analysis and estimation of expressive parameters

5.1 Expressive speech database

As analysis and estimation of expressive parameters are
performed on an expressive speech database to frame the
explicit rules for the ESS, the development of expressive
speech database is a crucial step for the present work. Hence
the present section starts with the review of expressive
speech databases used for the ESS. Very few works related
to ESS used commonly available database for ESS. Most
of the works are based on the data collected by their own
and publicly unavailable. These expressive databases dif-
fer by the language, type of expressions considered, type of
text materials used, number of speakers and so on Schroder
(2009).

In the literature two types of expressive data are col-
lected. One is the expressive data simulated by actors
(Burkhardt et al. 2005; Pitrelli et al. 2006; Fairbanks and
Hoaglin 1939; Banks and Hoaglin 1941; Whiteside 1998)
and the second is the spontaneous expressive data col-
lected from a real life scenario (Williams and Stevens 1972;
Jhonstone and Scherer 1999; Campbell 2004; Ishii and
Campbell 2002). Most of the ESS systems described in
Sect. 2 used expressions simulated by actors. Angry, happy,
sad, fear and disgust are the commonly used emotions for
the analysis in the case of simulated emotions. Williams and
Stevens (1972) compared the spontaneous fear and sorrow
emotions obtained from the radio announcer recording of
the Hindenburg aircraft disaster, with the same sentences
simulated by professional artists. This work concluded that,
emotion specific parameters estimated from simulated emo-
tion speech data is comparable with that of the real life
emotion speech data. Johnston collected multimodal sponta-
neous data from the subjects by making them to participate
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in a competitive computer game (Jhonstone and Scherer
1999). The various instants of the game are manipulated
in order to obtain various emotional responses from the
subjects. Speech, electroglottogram (EGG) and electromyo-
gram (EMG) are collected for tense, neutral, irritated, happy,
depressed, bored and anxious expressions. Despite the prac-
tical difficulties in inducing the emotions in speaker, the
combined analysis of acoustic features (from speech) and
physiological features (EGG and EMG) gave a clearer in-
dications of emotional states of the speakers. JST/CREST
database collected by Campbell (2004) consists of natural
telephonic conversation of various social interactions. The
databases of spontaneous expressions are used for synthe-
sizing expressive speech by unit selection approach.

If the goal of ESS system is to deploy in cartoon ani-
mations, call center applications or any other commercial
applications the simulated expressions can be used for anal-
ysis. Since actors are well trained to produce emotions
effectively, the use of these simulated emotions by them
are recommended. The expressive data collected from non-
professionals can also be used. If the application of ESS
system is to deploy a dialogue system where the machine
should interact more naturally with the user, the analysis of
spontaneous expressions is better. Theune et al. (2006) de-
scribed an interesting application of ESS aimed at children
story telling. The database collected for this application is
recordings of story narrated by professional artists. Johnson
et al. (2002) discussed the ESS for military applications to
simulate the shouted commands, shouted conversation, nor-
mal spoken commands and normal spoken conversation for
animated characters. The data set used for training is the
recordings of simulated shouting and normal commands.

5.1.1 Berlin emotional speech database

Burkhardt et al. (2005) described the development of acted
emotion speech corpus in German language. The database
is created with 10 professional actors (5 Males and 5 Fe-
males) of 10 emotionally unbiased sentences in six target
emotions (Angry, Happy, Fear, Boredom, Sad and Disgust).
Each file is recorded at 48 kHz sampling rate is downsam-
pled to 16 kHz sampling rate with 16 bits per sample resolu-
tion. The listening test conducted on the recorded emotions
gave more than 80 % emotion recognition rate by the listen-
ers. Each recorded speech file is annotated at the word and
syllable levels.

5.1.2 LDC emotional prosody speech transcripts database

The data collected in this database are grouped into dis-
tance/dominance category and emotional state category
(Liberman et al. 2002). In the distance category the speakers
have to give data by imagining whether speaker is speaking

in a close room environment with a single listener or speak-
ing with one or more people or speaking to someone who
is standing far way of a room. In the emotional category,
speakers have to give data in 14 different emotions with each
of the emotions are well defined with a context. The data is
collected from 8 professional actors (three males and five fe-
males). The actors were asked to speak semantically neutral
English phrases with dates and numbers in a given cate-
gory (emotional or distance category). 14 emotional states
are hot anger, cold anger, panic, anxiety, despair, sadness,
elation, happiness, interest, boredom, shame, pride, disgust
and contempt. Each speaker is given a script card in which
the emotion category and phrases to be spoken are written
and they are allowed to utter the phrase until the speaker is
satisfied about the emotional category conveyed. The data is
recorded in 22.5 kHz with 16 bits per sample bit resolution.

5.2 Studies on the analysis of expressive parameters

The following parameters are used for the expressive speech
analysis,

• Prosodic parameters
• Excitation source parameters
• Vocal tract parameters

5.2.1 Studies on prosodic parameters

The typical prosodic features used for expressive analysis
are parameters of F0 contour, duration (sentence duration,
syllable duration etc.) and intensity (Fairbanks and Hoaglin
1939; Williams and Stevens 1972; Bulut and Narayanan
2008; Hashizawa et al. 2004). F0 is the average rate at
which vocal folds vibrate for voiced sounds. The F0 con-
tour refers to the variation of F0 with respect to time. The
characteristics of these F0 can be considered as the prosodic
parameters. The duration parameters can be the total du-
ration of the utterance or duration of the sound units like
phones, syllables or words etc. The intensity parameter of
the prosody is measure of loudness in the utterance. Fair-
banks and Hoaglin (1939) studied the F0 characteristics of
five expressions (anger, fear, indifference, grief and con-
tempt) simulated by actors. They found that the expressions
can be classified on the basis of F0range (absolute difference
between F0min value and the F0max value), F0avg, overall F0

inflections (variations in F0 values) and F0 slope of F0 con-
tour. Based on the analysis of F0 characteristics, the indiffer-
ence expression showed lowest F0avg and narrowest F0range.
Fear expression exhibited widest F0range and highest F0avg.
The angry expression shows highest F0 inflection.

Studies on duration characteristics by Fairbanks et al. on
the same simulated expressions showed that the duration
features like speech rate (number of words per minute), vari-
ation in number of pauses, length of the pauses and ratio of
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pause duration to total phonation time affects expressions
(Banks and Hoaglin 1941). For instance, anger, indifference
and fear expressions showed higher speaking rate and the
expressions grief and contempt showed lower speaking rates
(Banks and Hoaglin 1941). Williams explored the effect of
prosodic parameters on actor simulated emotional expres-
sions such as neutral, sorrow, angry and fear. The prosodic
parameters considered for the study are F0med (median of F0

values), F0range and speech rate. According to this study, the
angry expressions found to have increased F0med and F0range

and sorrow expressions showed reduced F0med and reduced
F0range (Williams and Stevens 1972). The duration of the ut-
terance spoken in fear expressions found to be longer than
that of the anger expression.

The intensity parameter computed as the average spec-
tral energy, found to be higher for anger for some sylla-
bles as compared to neutral speech (Williams and Stevens
1972). The proposed prosodic parameters for the simulated
expression case is compared with various emotion contexts
of the broadcast recordings during the Hindenburgh aircraft
crash disaster. The study concluded that the characteristics
of F0 contour alone gives the indication of the emotional
state of the speaker (Williams and Stevens 1972). Vroomen
et al. showed that emotions can be accurately expressed by
manipulating F0 contour and sentence duration in a rule
based manner. The seven expressions (neutral, joy, anger,
boredom, indignation, sadness and fear) of two sentences in
Dutch recorded by an actor are considered as the expres-
sive data for their work. Based on perceptual and acoustic
analysis, the F0 contour of each expression is modeled us-
ing Dutch intonation rules (Vroomen et al. 1993). During
the synthesis, the F0 contour for each expression is gen-
erated and used to manipulate the F0 contour of the neu-
tral speech. The duration is modified by the linear com-
pression according to the optimum modification factors ob-
tained from the analysis stage. Various prosodic parameters
by Murray and Arnott (1993) are F0avg, F0range, F0 changes
(F0 inflections, F0 inclination, F0 declination), intensity and
speech rate. Six expressions (anger, sadness, happiness, fear
and disgust) along with the neutral expression are consid-
ered for the analysis. According to the analysis the fear ex-
pressions and disgust expressions showed the highest and
lowest speech rate, respectively. The F0avg was highest for
anger and lowest for disgust. F0range was narrower for the
sad expressions. Anger and happiness got the highest inten-
sity whereas disgust showed lower intensity. Among the F0

changes, anger showed abrupt F0 changes in stressed vowels
and happiness showed smooth and upward F0 inflections.
Sadness and disgust showed downward deflections whereas
fear expression showed normal F0 changes. The rule based
expressive speech synthesis system developed by Murray
and Arnott (1995) modifies the prosodic parameters at the
phoneme level according to the prosodic analysis described

in Murray and Arnott (1993). The rules are set for each
prosodic parameter in the HAMLET neutral formant speech
synthesizer for synthesizing the speech in the target expres-
sion (Murray and Arnott 1995). Hashizawa et al. considered
F0max, speech rate and F0 of the pitch accented syllables for
the analysis. The analysis showed that, the F0max is the high-
est for anger emotion, F0 and pitch accents are enhanced for
joy and F0max is minimum for sad emotion (Hashizawa et al.
2004). Tao et al. (2006) used F0avg, F0topline, F0baseline, syl-
lable duration and intensity as the prosodic parameters. The
F0topline is the mean of the line connecting the peaks in F0

contour and F0baseline is the mean of the line connecting the
valleys in F0 contour. According to Tao et al., the F0avg and
F0topline provide more classification abilities for five emo-
tions (neutral, anger, happiness, fear and sadness). Murtaza
et al. showed the significance of F0range than F0avg in clas-
sifying four emotions (neutral, anger, happy and sad) of two
sentences from two speakers.

5.2.2 Studies on excitation parameters

Excitation parameters refer to the parameters representing
the characteristics of the excitation source. The excitation
source parameters are analyzed at subsegmental and seg-
mental levels. The parameters computed within 2 to 3 pitch
periods (10–20 ms) of speech are termed as the segmental
parameters. The parameters such as jitter and shimmer are
examples of excitation parameters estimated at the segmen-
tal level. The parameters estimated within a pitch period of
speech are subsegmental parameters. The glottal flow pa-
rameters like open quotient (OQ), Return quotient (RQ) and
speech quotient (SQ) are examples of excitation parameters
at the subsegmental level.

Jitter is the average change of F0 from one cycle to
another, where as, shimmer is the change in the excita-
tion strength from one cycle to another. Whiteside (1998)
has shown the significance of jitter and shimmer in dis-
criminating various emotions. Seven expressions (neutral,
cold anger, hot anger, happiness, sadness, interest and ela-
tion) of 5 sentences from two speakers are used for this
study. The prosodic parameters like mean intensity, stan-
dard deviation of intensity and F0avg are also used along
with mean of shimmer and jitter for the analysis of seven
expressions. According to the analysis done in this work,
hot anger possessed highest mean jitter and mean shim-
mer and sadness showed minimum mean jitter and mean
shimmer. Using these five parameters, the expression dis-
crimination accuracy was found to be 88.9 % and 85.7 %
for the two speakers, respectively (Whiteside 1998). Jhon-
ston et al. performed the expressive analysis on both spon-
taneously recorded expressions and simulated expressions.
The first part of the paper used multimodal (speech, EGG,
EMG) data of spontaneous emotions collected from subjects
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by exposing them to different instants of a manipulated com-
puter game (Jhonstone and Scherer 1999). The participants
were asked to pronounce the sentences to be recorded and
asked them to choose one expression from the list of ex-
pressions (irritated, disappointed, surprised, relieved, help-
less and alarmed). Based on the choice of expressions made
by the participants at different situations of the game, the
recorded expressions are categorized into low coping, high
coping, obstructive and constructive responses. The param-
eters used for the analysis are glottal slope, F0range, heart
period, respiratory period and respiratory depth. According
to the analysis, the glottal slope obtained from the EGG and
the heart rate tend to be higher for obstructive situations and
the low coping situations are characterized by the longer res-
piratory cycle. The second part of the study consisted of
glottal analysis on EGG data of seven expressions (tense,
neutral, happy, irritated, depressed, boredom and anxious)
of 5 digit strings, short phrases and sustained vowel /a/. The
expressive data of these seven expressions were collected
from eight speakers. The speakers were asked to imagine
the emotions for recording the expressive data. The excita-
tion parameters used for the analysis are mean jitter, closing
quotient (glottal closing time of the glottis as a percentage
of pitch period, T0). According to the analysis, mean jitter
was highest for happy and anxious expressions and low-
est for boredom and depressed expressions. The depressed
and boredom expression showed the higher values of clos-
ing quotient and anxious expression showed lowest values
for closing quotient. Cabral et al. used jitter, shimmer and
glottal flow parameters like OQ, RQ and SQ as the exci-
tation parameters for synthesizing emotion (Campell et al.
2006). In this work, the excitation parameters are extracted
from seven emotions (angry, happy, fear, boredom, neutral,
sad and disgust) of German emotional speech database. Ac-
cording to the excitation parameter analysis presented in this
work, happy and fear expressions tend to show decrease in
OQ. The breathy quality of the anger expressions are con-
firmed by the decrease in SQ and RQ compared to other ex-
pressions. Along with prosodic parameters Tao et al. (2006)
used jitter to analyze five emotional expressions like neutral,
anger, happiness, fear and sadness for the task of neutral to
expressive speech conversion. According to this study, the
happiness expression tend to have highest jitter and sadness
showed lowest jitter.

5.2.3 Studies on vocal tract parameters

Formant frequencies (F1, F2, F3, F4 and F5) and bandwidth
associated with each formant form important characteristics
of the vocal tract system. Mean F1, mean F2 and F1 band-
width are the vocal tract cues reviewed by Scherer (1986).
The acoustic characteristics of around 14 expressions are
reviewed in Scherer (1986). Compared to other emotions,

lower mean F1 was observed for happy and elation expres-
sions and higher mean F1 was observed for other expres-
sions. Whereas lower mean F2 was observed for all the ex-
pressions other than happy and elation. The expressions, hot
anger, cold anger, disgust and fear, tend to show narrower
F1 bandwidth (Scherer 1986). The parameters considered
for these articulatory stimulus are F1 mean, F2 mean and
corresponding formant bandwidths. Ishii et al. used a sub-
set of spontaneous expressions collected in JST (Japan Sci-
ence & Technology) CREST (Core Research for Evolutional
Science and Technology) ESP (Expressive Speech Process-
ing) project. The spontaneous expressive data is collected by
recording subject’s daily spoken conversations using mini
recording devices and wearing head mounted close speak-
ing microphones. After recording the data, speakers were
asked to label the expressions based on their mood at vari-
ous times in the conversations such as neutral, worried, con-
tend, happy, bright, sad, angry, tension, energy (“Energy”
is categorized based on the global intensity of the speech)
etc. By analyzing the average F3 and average F4 parame-
ters of words in bright, energy and tension expressions, Ishii
et al. found that the average F4 is higher for bright expres-
sions than the expressions labeled with energy. There was no
correlation observed for average F3 values indicating incon-
sistency of F3 parameter for the same expressions. Erickson
et al. (2008) studied the effect of formant frequencies on
spontaneous sad emotions. The spontaneous sad emotional
data is collected in two sessions through the telephonic con-
versions with the subject. The spontaneous sad emotions
were evoked by asking about the sad demise of the subject’s
mother. Lowering of F2, F3 and F4 was observed for the sad
emotions when compared with the non emotional data.

Table 1 presents the summary of the review of the studies
made on expressive parameters. The columns given in the ta-
ble represent the contributors, choice and type of expressive
data used in their work, expressive parameters considered
and the important findings of their work.

5.3 Estimation of expressive parameters

This section reviews various studies made on estimation of
prosodic, excitation and VT parameters from speech.

5.3.1 Estimation of prosodic parameters

As most of the works related to expressive speech synthe-
sis use prosodic parameters as the expression dependent pa-
rameters, it is essential to accurately estimate these prosodic
parameters for the expressive speech analysis. The features
of F0 contour, speech rate and intensity are the prosodic pa-
rameters reviewed in this section.

F0 or pitch is the fundamental frequency of vibration
of the vocal folds during the production of voiced sounds.
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Table 1 Summary of various studies about expressive parameters

Author Expressions Type of expressive
data used

Expressive parameters
explored

Findings

Williams and Stevens
(1972)

Anger, sorrow, fear and
neutral

Simulated by actors F0 mean, F0 range,
speech rate and Energy

1. F0 contour as the indicator of
different emotional states
2. F0 parameters of simulated and
real emotions are similar

Scherer (1986) Happy, cold anger, hot
anger, anxiety, disgust
and sad

Simulated by actors F0 parameters, F1
mean, F2 Mean and
Formant Band width

F0 parameters along with VT
parameters represents the acoustic
properties of emotion

Murray and Arnott
(1993)

Angry, happy, sad, fear
and disgust

Simulated by actors Speech rate, F0 mean,
F0 range and Intensity

Emphasizes the role of prosodic
parameters in synthesizing
emotions

Whiteside (1998) Cold anger, hot anger,
happy, sad, interest and
elation

5 Short sentences
simulated by two
speakers

Mean of overall jitter,
Mean of overall
shimmer

Significance of jitter and shimmer
in discriminating the emotions

Jhonstone and Scherer
(1999)

Tense, neutral, irritated,
happy, depressed, bored,
anxious

data (EGG, EMG
and speech)
collected during
computer game
events

Jitter, Glottal closing
Time

EGG signal gives emotion
dependent characteristics

Ishii and Campbell
(2002)

Neutral, worried, bored,
polite, depressed, angry

Natural telephonic
conversation
recorded

F0 parameters, F3
mean, F4 mean

F4 influences different voice
qualities

Hashizawa et al. (2004) Angry, happy and sad Isolated Words by
professional
announcers

Speech rate, F0 max
and Pitch Accent

1. F0 max is higher for anger
2. For happy both accents and F0
will be enhanced
3. F0 and accents were
suppressed for Sad

Cabral and Oliveira
(2006a)

Angry, happy, sad, fear,
surprise, boredom,
disgust

Simulated by actors Jitter, shimmer, glottal
wave parameters (OQ,
SQ, RQ)

Better recognition rates obtained
for happy, angry and fear

Bulut and Narayanan
(2008)

Angry, happy, sad and
neutral

Simulated by
professional and
non-professional
actors

F0 mean, F0 range, F0
stylization
characteristics

Changes in F0 range significantly
changes perceived emotions

Since vocal folds vibrate only during the production of
voiced sounds, F0 is defined only for voiced sounds. F0

is undefined or represented by random values during the
production of unvoiced sounds such as fricatives. Repre-
sentation of F0 values versus the time instants at which
they are calculated is termed as F0 contour or pitch con-
tour. In order to derive F0 contour, F0 values have to be
accurately estimated from the speech. F0 estimation tech-
niques described in the literature are broadly classified into
block processing based approach and event based approach
(Hess 1983; Yegnanarayana and Murty 2009). Block pro-
cessing approach computes the average F0 from block of
speech segment where as event based approach accurately
determines the instantaneous F0 by processing entire speech
utterance. Most of the earlier works employ block process-
ing approach for estimating F0 for expressive speech anal-
ysis (Williams and Stevens 1972; Scherer 1986; Murray
and Arnott 1993; Whiteside 1998; Jhonstone and Scherer
1999; Ishii and Campbell 2002; Hashizawa et al. 2004;

Bulut and Narayanan 2008). Auto correlation (Hess 1983;
Deller et al. 1993), cepstral analysis Deller et al. (1993), sim-
plified inverse filtering (SIFT) (Markel 1972) and average
magnitude difference function (AMDF) (Ross et al. 1974)
are the popular methods for estimating F0 by block process-
ing. A robust method by exploiting the properties of Hilbert
envelope (HE) of LP residual for reliably estimating aver-
age F0 in adverse conditions is proposed by Prasanna and
Yegnanarayana (2004).

In order to accurately estimate all the instantaneous F0

values for the entire speech utterance, the event based ap-
proach is used. The instantaneous pitch period is defined
as the interval between glottal closing instant of one cycle
to the next. As the discontinuities related to pitch occurs
at the instants of glottal closure where the maximum ex-
citation of the vocal tract occurs, accurate determination of
these instants of significant excitation or epochs are essential
for computing the instantaneous F0. The epochs or instants
of significant excitation can be defined as instants of glottal
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closure incase of voiced speech or onset of burst or frication
incase of unvoiced speech (Murty and Yegnanarayana 2008;
Yegnanarayana and Murty 2009). The interaction of vo-
cal tract in the produced speech makes the estimation of
epochs location a challenging task. There are several meth-
ods proposed in the literature to estimate the epochs location
accurately. The epoch estimation using group delay (GD)
functions (Smits and Yegnanarayana 1995), Dynamic pro-
gramming based projected phase-slope algorithm (DYPSA)
(Naylor et al. 2007), HE based method and Zero Frequency
Filtering (ZFF) (Murty and Yegnanarayana 2008) of speech
based methods are the popular existing methods for the
epoch estimation. The instantaneous pitch period is com-
puted as the interval between successive epochs location
(Rao and Yegnanarayana 2006b). The instantaneous pitch
period is also termed as the epoch interval (Rao and Yeg-
nanarayana 2006b). The instantaneous F0 is computed by
scaling the reciprocal of epoch interval with Fs . The rep-
resentation of instantaneous F0 values at the corresponding
epochs location gives the instantaneous F0 contour of the ut-
terance. The significant F0 parameters derived from the F0

contour are F0avg, F0max , F0min, F0range. These F0 parame-
ters can be computed using the following equations,

F0avg = 1

N
.

N∑

i=1

F0i (1)

F0max = max{F0i , i = 1,2, . . . ,N} (2)

F0min = min{F0i , i = 1,2, . . . ,N} (3)

F0range = F0max − F0min (4)

Various duration parameters that are used for expressive
analysis are the speech rates at sentence, syllable and
phoneme levels and number of pauses. Unlike the F0 param-
eters, the estimation of duration parameters are mostly mea-
sured directly from the database. Fairbanks et al. computed
the speech rate by counting the number of words uttered
per second for analyzing emotional expressions (Banks and
Hoaglin 1941). Burkhardt et al. (2005) used syllable dura-
tion as the prosodic parameter for the analysis of the expres-
sions given in German emotional speech database. The syl-
lable boundaries are labeled manually by listening, analyz-
ing spectrograms and simultaneous EGG recordings. Cabral
et al. used sentence duration of each utterance as the du-
ration parameter for analyzing various expressions. Murray
and Arnott (1993) analyzed duration at the phoneme level.
The duration of phonemes are estimated directly from the
phone boundary labeling of the utterances. The automatic
phone boundary marking can also be done using HMM
based force alignment techniques (Clark et al. 2007). Other
prosodic parameter used for emotion analysis is the inten-
sity. The intensity is measured by computing the energy of
the utterance.

5.3.2 Estimation of excitation parameters

According to the review of excitation parameters given in
Sect. 5.2.2, various excitation parameters used for expres-
sive speech analysis are the segmental parameters like jitter
and shimmer, and subsegmental parameters related to glot-
tal flow and strength of excitation. This section reviews the
method employed to estimate these parameters.

Shimmer is a measure of strength of excitation (Murty
and Yegnanarayana 2009) of the glottal wave which is de-
fined as the change of strength of excitation pulses from one
cycle to another. One of the method to characterize the glot-
tal activity is from the LP residual obtained by the LP anal-
ysis of speech (Makhoul 1975). During the glottal activity,
the LP residual has high energy region and during non glot-
tal activity region, LP residual shows noisy characteristics.
Analysis of the excitation source based on LP residual de-
pends on the accuracy of LP analysis. Murty and Yegna-
narayana (2008) described a method to compute the glottal
activity and strength of excitation in speech based on the
ZFF of speech. Since the rate of vibration of the vocal folds
is proportional to the glottal air flow, the excitation strength
can be found by measuring the sharpness with which glot-
tal closure occurs. This can be computed by measuring the
slope of the ZFF signal around the epochs location. Now
shimmer can be measured as the change of excitation pulse
between successive epochs location. Farrus and Hernando
(2009) computed shimmer as the variation of the peak to
peak amplitude values in consecutive pitch period and then
proposed shimmer measurements in the various levels for
speaker verification. The average shimmer measurement de-
scribed in Farrus and Hernando (2009) is given by (5)

Savg = 1

N − 1

N∑

i=1

|Ai − Ai+1| (5)

where Ai is peak to peak amplitude in the ith pitch period
and N is the total number of pitch periods.

Jitter is estimated by measuring the average change in
pitch period from one pitch cycle to another. Jitter is derived
from the instantaneous F0 contour. Method to estimate the
jitter in different levels for speaker verification task is de-
scribed in Farrus and Hernando (2009)

Javg = 1

N − 1

N∑

i=1

|T0i − T0i+1| (6)

where T0i is ith pitch period and N is the total number of
pitch periods.

These shimmer and jitter measurements can be used to
find the variation of target expressions with respect to the
neutral speech.

There are several methods discussed in the literature to
estimate glottal waveform parameters directly from speech.
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Fig. 5 Locating the instant of glottal opening in a short time segment
of LP residual (figure used with the permission of J.P. Cabral)

Fant et al. (1985) developed LF (Liljencrants and Fant)
model to uniquely represent glottal flow derivative for a
given pitch period. The LF model is a four parameter model
developed based on the glottal closure instants and glottal
closure discontinuity points. The four parameters are fre-
quency, amplitude, growth constant of sinusoid and recovery
time constant. Cabral et al. estimated the expression depen-
dent glottal flow parameters from the LP residual. These pa-
rameters are estimated by integrating the LP residual. These
glottal flow parameters are measured by estimating the fol-
lowing time instants first:

• Glottal closure instants, no: By estimating the instants of
glottal closure from the LP residual.

• Closed phase instants, ncl: It is the instant at which closed
phase of the glottis starts. ncl is calculated by finding the
instant of the first peak after the zero crossing.

• Glottal Opening instants, nop: The time instant of the
opening phase is calculated by setting a positive (thpos)
and negative threshold (thneg) to the short time signal.
where thpos is the 75 % of the maximum value of the sig-
nal energy and thneg = −thpos. The first point of the pos-
itive growing part that intercept with the negative thresh-
old and the last point of the growing part of the opening
phase that intercepts the positive threshold are calculated
(Cabral 2006). The average signal amplitude value, kmean

between the two estimated points is calculated. The last
positive crossing point of the signal over the kmean axis
is estimated to be nop. The calculation of nop is shown in
Fig. 5.

• Maximum of glottal flow, np: The zero crossing of DC
value between nop and end of the short time signal.

The estimated time instants are used to compute the du-
ration of the glottal cycle phases, Return phase (Na), Peak
flow duration (Ne), Closed phase (Nc), Opening phase (Nop)
and Closing phase, (Ncl)

Na = ncl (7)

Fig. 6 Representation of glottal phases in a (a) glottal cycle and (b) in
its derivative for a short time segment of LP residual (figure used with
the permission of J.P. Cabral)

Ne = N − nop (8)

Nc = N − Na − Ne (9)

Nop = np − nop (10)

Ncl = N − np (11)

where N is the total duration of the glottal cycle. The du-
ration of these phases in a glottal cycle is pictorially repre-
sented in Fig. 6. The glottal flow parameters like OQ, RQ
and SQ are calculated as given by the following equations,

OQ = Na + Ne

N
(12)

RQ = Na

N
(13)

SQ = Nop

Ncl
(14)

The other important excitation source parameter is the
strength of excitation. The strength of excitation is a sub-
segmental feature which is the strength with which the vocal
folds are vibrating during the production of voiced speech
(Murty and Yegnanarayana 2009). One of the methods to
compute the excitation strength is from the LP residual ob-
tained by the LP analysis of speech (Murthy and Yegna-
narayana 1999). In the glottal activity region, the LP residual
has high energy and during non-glottal activity region, LP
residual shows low energy noisy characteristics (Murthy and
Yegnanarayana 1999). The strength of excitation is com-
puted by computing the energy of the residual samples in
the region around the glottal closure instants. Murty and
Yegnanarayana (2009) described a method to compute the
glottal activity and strength of excitation in speech using
the ZFF based epoch extraction. Since rate of vibration of
the vocal folds is proportional to the glottal air flow, the
excitation strength can be found by measuring the sharp-
ness with which glottal closure occurs (Murty and Yegna-
narayana 2009). This can be computed by measuring the
slope of the ZFFS around the epochs location.
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Fig. 7 The formant estimation from LP spectrum: this figure shows
the linear prediction spectrum and Formant locations (indicated by ‘*’)
obtained from the peaks in the LP spectrum

5.3.3 Estimation of vocal tract parameters

There are many methods discussed in the literature to es-
timate the formants from speech. In Schafer and Rabiner
(1970) used a method to extract formants by picking peaks
from smoothed log-spectra obtained by cepstral analysis.
Figure 7 indicates how the formants are located by pick-
ing the peaks in the LP spectrum. The spurious peaks in
the log magnitude spectrum causes wrong identification
of the formants and is the main disadvantage of the ap-
proach. Formant extraction by the linear prediction analy-
sis solved the issue of spurious peaks appearing in the LP
spectrum (Atal and Hanauer 1971). But here also peak pick-
ing wrongly estimates the formants in the case of merged
peaks in the LP spectrum. Yegnanarayana (1978) showed
that the differentiated linear prediction phase spectrum can
clearly resolve the merged peaks because of the additive na-
ture of the phase of cascaded digital resonators. The For-
mants can be extracted by picking peaks of the differentiated
LP phase spectrum. To further resolve the spectral peaks
in the smoothed log spectra, properties of the group delay
function of minimum phase signals are utilized in Murthy
and Yegnanarayana (1991). The significance of measuring
the free resonances of the vocal tract to analyze various re-
gions like consonant vowel transitions is described in Yeg-
nanarayana and Veldhuis (1998). The speech produced dur-
ing the closed phase of the vocal folds are mainly due to
vocal tract. At this time the vocal tract tube is closed at
one end and hence the resonances produced are free from
the vocal fold vibrations and glottal air flow that occur
during the opening phase of the glottis. The formant pa-
rameters are extracted from the analysis segments taken
around the glottal closure instants. The pole zero model of
these analysis frames are determined. This can be repre-

sented mathematically as follows (Yegnanarayana and Veld-
huis 1998):

r(n) =
p∑

k=1

Akρ
n
k eiθkn =

p/2∑

l=1

ρn
l

(
Ale

iθln + Ale
−iθln

)
(15)

where n is the discrete time index and p/2 is the num-
ber of formants. The variable θk is the kth formant fre-
quency such that −π < θk ≤ +π . As r(n) is real, it can
be represented as complex conjugate pair. The factor Ak

is the formant amplitude and ρk is the formant damping
factor, where 0 < ρk ≤ 1. It can be seen that the for-
mant frequency Fk and bandwidth Bk can be computed
from (16) and (17) as given in Yegnanarayana and Veldhuis
(1998)

Fk = Fs

2π
θk (16)

Bk = −Fs

π
ln(ρk) (17)

6 Incorporation of expressive parameters

The expressive parameters have to be incorporated into the
neutral speech according to rules set in the expressive anal-
ysis stage for effective synthesis of the speech in the target
expression. The incorporation of expressive parameters are
performed at the prosodic, excitation and vocal tract levels.
This section reviews methods used to incorporate the expres-
sive parameters at each level.

6.1 Methods to incorporate prosodic parameters

The expression specific F0, duration and intensity param-
eters can be incorporated by prosody modification algo-
rithms. Manipulation of F0, duration and intensity of the
given speech without affecting the perceptual quality is
termed as prosody modification (Rao and Yegnanarayana
2006b; Mourlines and Laroche 1995). There are several
methods discussed in the literature for prosody modification
(Rao and Yegnanarayana 2006b; Hardam 1990; Mourlines
and Laroche 1995). The approaches like Over Lap Add
(OLA), Synchronous Over Lap Add (SOLA) and Pitch
Synchronous Over Lap Add (PSOLA) operate directly on
the speech waveform to modify the prosodic parameters
(Mourlines and Laroche 1995). The OLA and SOLA meth-
ods are mainly used for time scale modification of the
given speech signal (Hardam 1990). The duration modifica-
tion here is achieved by overlap adding the analysis frames
having time scaled length chosen from the crosscorrelation
with the actual frames of the given speech signal. Devel-
opment of the PSOLA allowed both time scale and pitch
scale modification by using pitch marks as the anchor points
(Rao and Yegnanarayana 2006b; Mourlines and Laroche
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1995). In PSOLA method, in general, the pitch modifica-
tion is achieved by placing the analysis windows around
the modified pitch marks and adding the overlap regions. In
the timescale modification, first resampling the actual pitch
mark locations according to the desired timescale and then
the analysis frames around the actual pitch mark is copied
and overlap added to the new pitch locations closest to the
original location. The resulting signal obtained will be dura-
tion modified according to the desired modification factor.

Depending on the domain in which PSOLA is applied
there are Time Domain PSOLA (TD-PSOLA), Frequency
Domain (FD-PSOLA) and Linear Prediction PSOLA (LP-
PSOLA) (Mourlines and Laroche 1995). In FD-PSOLA
prior to overlap add, the spacing between the pitch and
harmonics of excitation signal obtained by the source-filter
decomposition are modified according to the desired pitch
modification factors by resampling in the frequency do-
main (Mourlines and Laroche 1995). Unlike TD-PSOLA,
LP-PSOLA operates on the LP residual of the speech sig-
nal to be prosody modified. As the LP residual samples are
less correlated than speech samples, the overlap-adding of
residual analysis frames give less distortion. H. Kawahara
developed a method to manipulate the speech parameters
like F0, speech rate and vocal tract length using speech rep-
resentation and transformation using adaptive interpolation
of weighted spectrum (STRAIGHT) (Kawahara 1997). Here
a pitch adaptive speech analysis is carried out for speech
parameter manipulations. The instantaneous F0 estimation
method developed as part the work uses Gabor filters for
finer frequency resolutions. The manipulated speech is ob-
tained by reconstructing the smooth time frequency repre-
sentation using bilinear transformations. Smoothing is done
to remove the pitch periodicity effects in the time-frequency
surface representation of the original speech. Muralishankar
et al. proposed F0 modification method using discrete time
cosine transformation (DCT) of pitch synchronous resid-
ual frames (Muralishankar et al. 2004). Here the DCT co-
efficients are estimated from the pitch synchronous resid-
ual frames obtained after the LP analysis. According to the
pitch modification factors the DCT coefficients are either
truncated (increase in F0) or padded with zeros (decrease
in F0). For instance, if N1 is the number of DCT coeffi-
cients in residual frame, N2 point IDCT is taken where N2

is N1 divided by the F0 modification factor. N2 − N1 trail-
ing end DCT coefficients are removed for increasing F0 and
N1 − N2 zeros are padded to decrease F0. Each frame of
speech is then synthesized by the LP filtering with the LP
coefficients computed.

A method of prosody modification by accurately deter-
mining the epochs location is proposed in Rao and Yeg-
nanarayana (2006b), Smits and Yegnanarayana (1995), Rao
and Yegnanarayana (2003). This type of prosody modifica-
tion is generally known as epoch based prosody modifica-

tion. The steps involved in the epoch based prosody modifi-
cation are the following:

• Finding the accurate epochs location
• Modifying the epochs location according to the desired

prosodic parameters
• Reconstruct the prosody modified speech

6.1.1 Estimating epochs location

As described earlier epochs in speech can be defined as
the instants of glottal closure in voiced speech and onset
of burst or frication in unvoiced case (Smits and Yegna-
narayana 1995; Murty and Yegnanarayana 2008). Due to the
effect of vocal tract, the accurate estimation of epochs loca-
tion from speech is a challenging task. There are many meth-
ods proposed for the estimation of the epochs location from
speech (Naylor et al. 2007; Smits and Yegnanarayana 1995;
Murty and Yegnanarayana 2008). Smits and Yegnanarayana
(1995) proposed group delay (GD) based approach to esti-
mate the epochs location from LP residual of speech. In GD
method, GD function is computed from the LP residual by
considering in blocks of about 1–2 pitch periods length with
shift of every sample. If e(n) is the LP residual, the Fourier
transform of e(n) and its time weighted function are given
by (18) and (19)

E(ω) = FT
[
e(n)

] = ER + jEI (18)

F(ω) = FT
[
ne(n)

] = FR + jFI (19)

The computation of GD function τ(ω) is given in (20)

τ(ω) = −φ′(ω) = ERFR + EIFI

E2
R + E2

I

(20)

After removing isolated peaks from τ(ω) using a 5 point me-
dian filter, average value of the GD function is computed for
each block of residual with a shift of one sample. The aver-
age GD function obtained for every sample shift is known
as the phase slope function. The epochs are estimated as
the zero crossings of the phase slope function. Later, the ro-
bustness of GD based method against various degradation
are studied by Satyanarayana et al. in Murthy and Yegna-
narayana (1999). As the GD function is computed from LP
residual frames for every sample shift, the GD based epochs
estimation is a computationally complex task (Smits and
Yegnanarayana 1995). To reduce the time complexity in es-
timating the epochs from LP residual, a two stage processing
approach is proposed by Rao et al. (2007). In the first stage,
the approximate epochs location are estimated from the HE
of LP residual and in the next phase, the GD function calcu-
lated around the approximate epochs location obtained from
the HE of LP residual. Dynamic programming based pro-
jected phase slope algorithm (DYPSA) is proposed by Nay-
lor et al. (2007) found to provide better epochs estimation
accuracy than GD method.
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Recently, a simple, fast and accurate method for estimat-
ing epochs from speech is proposed by Murty and Yeg-
nanarayana (2008). In ZFF method, the speech is passed
through the cascade of two zero frequency resonators (ZFR).
The ZFR output y(n) is given by (21)

y(n) = −
4∑

k=1

aky(n − k) + x(n) (21)

where a1 = 4, a2 = −6, a3 = 4, a4 = −1 and x(n) is differ-
ence speech obtained by the successive difference of sam-
ples in the speech signal which is given by x(n) = s(n) −
s(n − 1). The variations in the ZFR output due to epochs
are obtained by subtracting local mean from the ZFR out-
put. This local mean subtracted ZFR output is termed as the
zero frequency filtered signal (ZFFS). The local mean sub-
straction from ZFR output can be expressed as,

ŷ(n) = y(n) − 1

2N + 1

N∑

n=−N

y(n) (22)

Here 2N + 1 corresponds to the size of window used for
computing the local mean, which is typically the average
pitch period computed over a long segment of speech. Thus,
the epochs location will be the positive zero crossings of
the ZFFS. The accuracy of the epochs estimated using ZFF
method is more as compared to DYPSA and GD method
(Murty and Yegnanarayana 2008). In ZFF method, as the
epochs are estimated directly from speech without comput-
ing LP residual, the method is found to be computationally
fast as compared to DYPSA and GD methods (Murty and
Yegnanarayana 2008).

6.1.2 Modifying epochs location for prosody modification

Rao and Yegnanarayana (2006b) described a method to
modify the epochs location according to the desired prosody
modification factors. In this method the modified epochs
location are obtained by deriving the epoch intervals. The
epoch intervals are derived as the difference between suc-
cessive epochs location. The epoch interval plot is then
generated by interpolating the epoch intervals of succes-
sive epochs location. In the case of F0 modification, this
epoch interval plot obtained for the entire utterance is scaled
according to desired pitch modification factor. The epoch
interval plot is resampled according to the desired duration
modification factor in case of duration modification. Modi-
fied epochs location are obtained from the resampled and/or
scaled interpolated epoch interval plot. For instance, if A is
the starting sample index of the modified epoch interval plot,
the modified epoch location B is computed by adding, the
modified epoch interval number of samples at Ath location
in the modified epoch interval plot, to Ath time index. Sim-
ilarly, modified epoch location sample index C is obtained

by adding modified epoch interval number of samples at
Bth location in the modified epoch interval to the location
sample index B .

6.1.3 Reconstructing the prosody modified speech

The prosody modified speech is synthesized by generating
the modified residual waveform. For generating the modi-
fied LP residual, the modified epochs location that are near-
est to the original epochs location are found. Perceptually
relevant (20 % epoch interval region starting from the epoch)
residual samples starting from original epochs location are
copied to the new modified epochs location. The perceptu-
ally relevant residual samples in the epoch interval refers
to human listening in TTS and speech enhancement tasks.
The remaining residual samples in the original epoch inter-
val other than the samples in the perceptually relevant re-
gion, are resampled to fill up the modified epoch interval.
Resampling is used mainly to avoid the spectral discontinu-
ities introduced due to truncation of epoch intervals (in case
of raising F0) and replication of samples (in case of lower-
ing F0). This way the prosody modified LP residual is re-
constructed. In pitch modification, as the duration of the ut-
terance remains same, the LPCs computed from the original
speech signal are excited by the modified LP residual to syn-
thesize the pitch modified speech. In duration modification,
since overall duration of the utterances are changing, LPCs
of original speech are updated for very frame shift accord-
ing to duration modification factors. These new LPCs are
excited by the modified LP residual to synthesize the dura-
tion modified speech. The perceptual quality of the synthe-
sized files for various pitch and duration modification factors
are evaluated using perceptual tests. 25 research scholars of
the lab participated in the perception experiments. Here, the
subjects were asked to evaluate the prosody modified speech
files based on the distortion present in the speech file. The
filenames of each method are coded to avoid the biasing to-
wards a particular method. The subjects were asked to judge
their opinion scores on a five point scale where score 1 cor-
responds to poor quality with objectionable distortion and
score 5 is excellent quality with no perceptual distortion.
For moderate pitch and duration modification factors, the
epoch based residual modification and LP-PSOLA based ap-
proaches provide almost equal mean opinion scores (MOS).
As compared to LP-PSOLA approach, epoch based prosody
modification approach had higher MOS scores for the case
of extreme modification factors (modification factors greater
than 2 and less than 0.5).

Figure 8 plots the pitch modification example by increas-
ing the pitch of the original speech segment by factor of 1.5.
As we can observe that there are around 13 pitch cycles in
Fig. 8(c) which is 1.5 times than the number of pitch cycles
(8 pitch cycles) in the LP residual segment of the original
signal as shown in Fig. 8(b).
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Fig. 8 Pitch Modification: (a) Longer Segment of a voiced speech, (b) its LP residual, (c) modified LP residual by increasing the pitch by 1.5
times and (d) reconstructed pitch modified speech

Fig. 9 Duration Modification: (a) Longer Segment of a voiced speech, (b) its LP residual, (c) modified LP residual by increasing the duration by
2 times and (d) reconstructed duration modified speech

Figure 9 plots the duration modification example by in-
creasing the duration of the original speech segment by fac-
tor of 2. As we can observe that the overall duration of the
signal is doubled compared to the original duration of the
signal. Also it has to be observed that the pitch intervals in
the duration modified speech remain unaltered as in origi-
nal speech. Figure 9(c) has duration that is 2 times that of
the LP residual segment of the original signal as shown in
Fig. 9(b).

Some of the neutral to emotion converted samples for
various emotions in German emotion speech database are
available in the following link: http://www.iitg.ac.in/eee/
emstlab/demos/demo4.php. The neutral to emotion conver-
sion is achieved by residual prosody modification, where

the prosodic parameters are fixed scaling factors. This demo
is a part of the work done by the authors in Govind et al.
(2011).

6.2 Methods to incorporate excitation parameters

The rules related to the excitation parameters like jitter,
shimmer and glottal flow parameters have to be incorporated
to effectively convey the expressive information in the syn-
thesized speech. Cabral (2006) described one method to in-
corporate the jitter into the neutral speech by adding a ran-
dom value to the pitch period. Here the time index of the
synthesis pitch marks are randomly varied (according to jit-
ter modification factor) for incorporating the voice quality
that is related to jitter. Also the shimmer is incorporated by

http://www.iitg.ac.in/eee/emstlab/demos/demo4.php
http://www.iitg.ac.in/eee/emstlab/demos/demo4.php
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Fig. 10 The formant frequency
modification: this plot
demonstrate the shifting of the
first formant (F1) by a factor of
1.5 times the actual formants
locations (dotted plot)

Fig. 11 The formant frequency
modification: this plot
demonstrate the bandwidth
scaling corresponds to the
second formant (F2) by a factor
of 0.25 times the actual formant
bandwidth (dotted plot)

scaling the energy envelope of the short time signal by a
random number (whose variation is according to shimmer
modification factor). The glottal flow parameters like OQ,
SQ and RQ can be modified by scaling the time indices used
to estimate them (Campell et al. 2006).

Ruinskiy and Lavner (2008) brought another method to
incorporate shimmer and jitter for simulating hoarse voice
quality in a given speech. Here the jitter is introduced by
relative stretching and shortening of pitch cycles. The jit-
ter modification factor for the modification is retrieved from
a jitter bank which stored the trends in the jitter values for
every 2 to 4 pitch cycles. The residual samples in the given
pitch cycle is resampled to modify jitter. Similarly, the shim-
mer modification factors are also stored across consecutive
pitch cycles. The shimmer is introduced by multiplying each
pitch cycle by a window function with varying peak ampli-
tudes according to the shimmer factor (Ruinskiy and Lavner
2008).

6.3 Methods to incorporate vocal tract parameters

Even though there are little works discussed in the litera-
ture towards incorporating VT parameters for ESS, there
are some works done towards voice conversion (Rao and

Yegnanarayana 2006a; Rao 2010). Rao and Yegnanarayana
(2006a) achieved vocal tract modification by the linear trans-
formation of formant locations and bandwidth in the z-
plane. The formant frequencies are modified by shifting the
polar angle that the corresponding conjugate pair of poles
make with respect to positive real axis of the z-plane. For-
mant frequency shifting of the LP spectrum is demonstrated
in Fig. 10. In Fig. 10, the first formant of the modified LP
spectrum, F ′

1, located at 393 Hz (shown by the thicker plot)
is shifted 1.5 times the formant value of the original LP spec-
trum, F1 which is at 262 Hz (shown by the dotted plot).

The formant bandwidth is modified by scaling the mag-
nitude of the conjugate pair of poles for the corresponding
formant. The bandwidth scaling corresponding to F2 in the
LP spectrum is demonstrated in Fig. 11. In Fig. 11, the band-
width of F2, B ′

2 scaled 0.25 times (thick plot) the original F2

bandwidth, B2 (dotted plot).
In a recent work on voice conversion, Rao (2010)

achieved the VT modification by deriving mapping func-
tions using a feed-forward neural networks (FFNN). Here,
the line spectral frequencies (LSF) derived from LPCs are
used to represent vocal tract characteristics. The mapping
functions that represent the relation between the VT charac-
teristics of source and target speakers are derived by feeding
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the time aligned LSFs of both source and target speakers
to the FFNN using a database containing 500 Hindi utter-
ances (Rao 2010). The dynamic time warping (DTW) is
used to time align the LSFs of source and target speakers.
Joseph et al. (2010) used multi-layer FFNN to map the vo-
cal tract parameters of throat microphone to close speak-
ing microphone to enhance throat microphone speech. Here,
the objective was to bring a nonlinear relationship between
source and system features of throat microphone data and
speech from close speaking microphone for the enhance-
ment of throat microphone data. The LP cepstral coefficients
(LPCC) derived from LPCs are used to characterize the vo-
cal tract parameters.

7 Evaluation of the synthesized expressions

Most of the works in ESS reviewed in this paper use sub-
jective tests for evaluating the perceptual quality and level
of expressiveness in the synthesized expressive speech. The
ESS works described in the papers (Cahn 1989; Murray and
Arnott 1995; Murray and Arnott 1993; Cabral and Oliveira
2006a) generate the stimuli for subjective test by pooling
original neutral, original target and synthesized expressive
speech. In these studies, subjects were asked to forcefully
categorize into any of the expressive categories. Due to lack
of reference expressive model (in terms of expressive con-
texts or reference prosody) for the subjects, the reliability of
the perception results were questioned in van Santen et al.
(2003). Following the perception experiments conducted in
Johnson et al. (2002), House et al. (1999), Theune et al.
(2006) used comparative subjective studies for evaluating
the expressive fragments synthesized for story telling appli-
cations. Here, the subjects were presented with both orig-
inal reference fragments and synthesized fragments. The
subjects judged the quality of the synthesized story frag-
ments by comparing the original neutral and original cli-
max fragments of the story. The higher quality synthesized
files were given a score of 5 and poor quality synthesized
files were given a mean opinion score of 1. For neutral
to emotion speech conversion applications, the synthesized
emotions can be evaluated based on the comparison sub-
jective tests. Where the subjects were asked to compare
the synthesized expressive speech with the original neutral
and target expressions to provide comparison mean opin-
ion scores (CMOS). Higher score is given for a synthesized
file if the synthesized file is close to the target expression
and a low CMOS is obtained if synthesized speech sounds
like the neutral speech. Steidl et al. proposed a method
for evaluating the synthesized emotional speech by emotion
identification. The emotion specific acoustic features used
in the INTERSPEECH 2010 paralinguistic challenge base-
line, are used to develop the emotion identification system

Steidl et al. (2012). The level of expressiveness present in
the synthesized expressive speech is determined by mea-
suring emotion recognition rate of the synthesized expres-
sions.

8 Summary of the works related to ESS by explicit
control and discussions

As the unit selection based neutral speech synthesis pro-
vides more naturalness compared to statistical parametric
speech synthesis systems, unit selection based speech syn-
thesis systems can be used as NSS system for the ESS by
explicit control. From the studies on expressive parameters,
most of the works use prosodic parameters as common ex-
pressive parameters. Also, many of the works use the ex-
pression dependent excitation parameters and vocal tract pa-
rameters as the supplementary features with prosodic pa-
rameters. Hence it is necessary to accurately estimate and
analyze these prosodic parameters for various expressions.
It has been observed that almost all the studies use con-
ventional methods for estimating prosodic parameters for
expressive speech analysis. As expressions are character-
ized by the presence of prosodic variations that are much
more than that of the neutral expressions, the accuracy of
the estimated parameters using conventional methods have
to be verified for different expressions. The recently devel-
oped ZFF method which provides best accurate estimates of
various prosodic parameters as compared to other existing
methods. This can be used for accurate speech analysis of
various expressions. Most of the expressive speech systems
use conventional PSOLA based methods to incorporate the
expression specific prosodic variations for ESS. Since the
epoch based prosody modification provides improved per-
ceptual quality for moderate prosody modification factors
than PSOLA based methods, epoch based prosody modifi-
cation can be applied for ESS. The GD method of epochs es-
timation increases the computational complexity of the ex-
isting epoch based prosody modification. Hence more accu-
rate and computationally faster ZFF epochs can be used in-
stead of epochs estimated using GD method for epoch based
prosody modification. Based on the review of incorporation
of prosody parameters for ESS, the ESS achieved in most
of the studies are by modifying the prosody parameters for
fixed scale factors. However, fixed scaling of the prosodic
parameters will not capture the dynamics of the prosody
due to various expressions. Hence the prosody modification
methods that incorporate the time varying dynamics of the
prosodic parameters have to be used for ESS.

To evaluate the epoch estimation performance across var-
ious expressions, five expressions (Neutral, Angry, Happy,
Boredom and Fear) of German emotional speech database
having simultaneous EGG recordings are used. The epochs
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Table 2 Epoch estimation performance of conventional ZFF algo-
rithm for different emotional speech signals taken from the German
database Burkhardt et al. (2005)

Emotion IDR
(%)

MR
(%)

FAR
(%)

IDA
(ms)

ZFF

Neutral 99.12 00.08 00.79 0.3194

Angry 87.93 00.41 11.66 0.4115

Happy 90.66 00.33 09.02 0.3858

Boredom 98.75 00.04 01.20 0.3495

Fear 94.90 00.13 04.97 0.2774

estimated from EGG recordings of these expressions, are
used as the reference epochs location for epoch estimation
performance analysis. The performance measures as used in
Naylor et al. (2007) are used for evaluating the epoch esti-
mation performance. The identification rate (IDR), miss rate
(MR), false alarm rate (FAR) and identification accuracy
(IDA) are the various measures used for evaluating epoch
estimation performance. Table 2 shows the epoch estima-
tion performance for each expression as given in Govind and
Prasanna (2012). Here, we can observe that, even though
the ZFF method gives a reliable epoch estimate for neu-
tral speech, significantly degrades in the case of expressive
speech. For instance, there is a significant drop in IDR for
angry emotions as compared to neutral speech. The reason
may be the rapid source and prosodic feature variations in
emotional speech as compared to the neutral speech. Hence
a refined epoch estimation method has to be proposed for
reliable epoch estimation from emotional speech.

In another way, since the degradations in epoch esti-
mation performance in emotional speech is due to effect
of emotions ZFF signal. For instance, the increase in false
alarm rate is due to additional zero crossing occurring in the
ZFF signal which is treated as the epochs location. How-
ever, this additional zero crossing incurred in the ZFF signal
can be studied to explores some emotion specific activities
at the source level. Also, another epoch performance mea-
sure, IDA provides variation of the genuinely (without miss-
ing and false estimations) estimated epochs with respect to
the actual location of reference epochs obtained from EGG.
Here the IDA provides an absolute gross level variation of
the estimated epochs with respect to the reference epochs.
This difference in absolute gross level variation for each
emotion can be observed in Table 2 for each emotion. Hence
more careful analysis has to be done to track the variation in
estimated epochs for various emotions. The IDA, if properly
analyzed can be used as an objective measure for neutral to
emotion conversion along with the conventional subjective
evaluations for judging the level of expressiveness induced
in the synthesized speech. The other expressive parameters
like F0Avg, sentence duration and strength of excitation have

to be estimated and analyzed across various expressions.
A dynamic prosody modification method has to be devised
to incorporate dynamic variations of these parameters in the
neutral speech to synthesize the speech in the target expres-
sion.

The unit selection based speech synthesis system can be
used as NSS to synthesize neutral speech from the text. The
proposed prosody modification method can then be used to
incorporate the prosodic variations according to the target
expression. Modification of the prosody parameters can be
made according to the scale factors derived for the desired
target expression in the expressive speech analysis stage.
The resulting prosody modified speech will sound like from
the target expression.
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