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Abstract

Distributed speech recognition arises for solving compu-
tational limitations of mobile devices like PDAs or mobile
phones. Due to bandwidth restrictions, it is necessary to develop
efficient transmission techniques of acoustic features in Auto-
matic Speech Recognition applications. This paper presents
a technique for compressing acoustic feature vectors based on
Differential Vector Quantization. It is a combination of Vector
Quantization and Differential encoding schemes. Recognition
experiments have been carried out, showing that the proposed
method outperforms the ETSI standard VQ system, and classi-
cal VQ schemes for different codebook lengths and situations.
With the proposed scheme, bit rates as low as 2.1 kbps can be
used without decreasing the performance of the ASR system in
terms of WER compared with a system without quantization.

Index Terms: speech recognition, distributed systems, vector
quantization

1. Introduction
Distributed Speech recognition (DSR) Systems are based on
the client-server paradigm, in which the Front-End (usually the
client) extracts feature vectors from speech and sends them out
to the Back-End (the server) where the decoding process takes
place. This distributed architecture is necessary for running
high performance speech recognition applications over mobile
devices, due to their computational limitations.

Sometimes, due to the bandwith limitations it is convenient
to develop efficient and robust compression techniques for fea-
ture vector transmission. Nevertheless, although a large band-
width were available, a server could be serving a high number
of clients, so the available bandwidth should be divided for all
of them and a non-efficient transmission scheme would reduce
the system performance due to network latencies.

In this work, a technique for MFCC compression is pro-
posed. This method makes use of Differential Vector Quanti-
zation (DVQ) that tries to exploit temporal correlation between
adjacent frames, due to both, the overlapping of the windowing
step and the relatively slow variation of speech production.

This paper is organized as follows, in Section 2 vector quan-
tization techniques are analysed. Section 3 presents the pro-
posed DVQ technique, and other VQ based techniques evalu-
ated in this work. In Section 4 experimental results of the pro-
posed technique are presented, and finally Section 5 shows the
conclusions.

This work has been partially funded by the national project
TIN2008-06856-C05-04.

2. Vector Quantization
Vector Quantization (VQ) is a source coding method employed
for representing in a compact way a value collection. It can
be shown that if mutual information of individual features is
greater than zero, the use of VQ improves quantization perfor-
mance compared with scalar quantization.

It was in the eighties when the practical realization was pos-
sible thanks to Linde, Buzo and Gray work [1]. This method
arises as a generalization of the Lloyd’s algorithm [2], which
can be seen as an heuristic solution of the k-means problem [3].

The k-means algorithm describes a procedure for clustering
data into k classes. It constitutes a method for obtaining a code-
book, in such a way that in the quantization process an input
vector is represented with the closest codeword, in a minimum
distortion sense. The codeword index is then sent to the decoder
which is able to reconstruct the original vector with a quantiza-
tion error. One of the most commonly distortion measure used
is the Euclidean distance

The k-means algorithm has some similarity with the Expec-
tation Maximization (EM) algorithm for Gaussian mixtures [4]
under some constraints:

• The mixture components have diagonal covariance ma-
trix with unitary elements, and Euclidean distance is
used as distortion measure.

• The weights of the components have all the same value.

• While k-means algorithm makes hard assignments of the
elements to the clusters, the EM algorithm performs a
computation of the membership probability of a cluster.

However, the EM algorithm can be modified to allow hard
allocations of elements, reaching the k-means solution [5].

3. Feature Vector compression techniques
Optimal bandwidth resource allocation is essential for dis-
tributed speech applications. For improving the performance of
the quantizer supplied by the ETSI standard ES 201 108 V1.1.2
[6] (which offers a bit rate of 4.4 kbps) several feature vector
compression techniques are presented in this work.

On the one hand, for evaluating the efficiency of the ETSI
standard quantizer, several codebooks of different lengths that
use the same pairs defined by the standard were generated mak-
ing use of the k-means algorithm.

On the other hand, two alternative methods for compress-
ing feature vectors are proposed and evaluated. The first one is a
combination of the well known differential pulse code modula-
tion (DPCM) with vector quantization that can be called Differ-
ential Vector Quantization (DVQ). This codification approach
tries to exploit temporal correlation between adjacent frames,
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Figure 1: Block Diagram of the proposed DVQ scheme.

due to the window overlapping in the feature extraction process
and also to the slow variation of speech production.

On the other hand a method of codebook generation based
on two classes is also proposed. This method consist on the
generation of two codebook families, a family is responsible
for the quantization of high energy frames, and the other for the
low energy ones. Using this approach, more specific codebooks
are generated and the overall quantization error can be reduced.

3.1. ETSI 201 108 V1.1.2 Front-End

ETSI 201 108 V1.1.2 standard presents a collection of algo-
rithms for extracting acoustic features, and their posterior trans-
mission for distributed speech recognition systems. The feature
extraction algorithm offers 13 cepstral coefficients, and the log-
energy coefficient, with window shifts of 10 ms. Furthermore,
it defines a compression algorithm for reducing the transmis-
sion rate. This compression is based on vector quantization of
feature vectors pairs, resulting at 7 quantized pairs, in which C0
is jointly quantized with log-energy, and the rest of cepstral co-
efficients are quantized in adjacent pairs. The bit rate obtained
using this VQ is 4.4 kbps without error protection.

3.2. Differential vector quantization (DVQ) of MFCC

Differential vector quantization (DVQ) is a compression
scheme that makes use of linear prediction jointly with vec-
tor quantization of the residual prediction error and has been
successfully used in digital video and audio compression [7].
In the proposed scheme, DVQ uses linear prediction over each
cepstral coefficient separately, while quantization is performed
taking the error prediction by pairs (as defined by the ETSI stan-
dard).

The block diagram of the proposed DVQ technique is
shown in Fig. 1. Each pair of cepstral coefficients is denoted
by the tuple x = (xa, xb). Over this tuple, two predictions
are extracted x̂ = (x̂a, x̂b) made from quantized values of the
previous frame, getting the prediction error pairs

d = (da, db) = x − x̂. (1)

Subsequently, these values are quantized resulting in
d̃ = (d̃a, d̃b) and the quantized prediction error

d̃ = d + eq, (2)

where eq = (eqa
, eqb

) is the quantization error.
The prediction errors in (2) will be used to obtain a pair

of quantized coefficients using the predicted value of the next
frame. Linear prediction filters are denoted as ha[n] and hb[n],
and for this work, they have been substituted by a single delay
line of one sample to reduce the computational cost. Therefore,
the predicted value for each coefficient is directly the difference
between the current value and the value of the previous frame.
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Figure 2: Histograms of the C1-C2 cepstral coefficient pair (left
side) and its corresponding prediction errors (right side).

One of the main advantages of applying this predictive
scheme is that prediction error will not affect forthcoming
frames, so the quantization error of a single coefficient is equal
to the quantization error of the prediction error.

Similar MFCC quantization schemes have been proposed,
in [9] the system is composed of a linear predictor followed
by a two stage vector quantizer. This approach presents the
problem that quantization error will affect the quantization of
forthcoming frames (on the contrary to the proposed DVQ),
which can degrade recognition performance. If adaptive fil-
tering were used, the filter coefficients could not be computed
with the Backward approach because signals in reception would
be different than signals in transmission. Therefore, the coeffi-
cients of the predictor filter should be sent, as in the Forward
approach, increasing the bandwidth required.
The system proposed in [8] consists of a DPCM codifi-

cation of each cepstral coefficient, performing uniform scalar
quantization (USQ) over the prediction error, followed by an
entropy coder. Instead of using USQ, VQ can be used, obtain-
ing better results if the mutual information of each feature pair
is greater than zero. A study of mutual information over the
prediction error of the cepstral coefficients pairs used in differ-
ential vector quantization was carried out, showing that mutual
information was positive for all the pairs.

Comparing VQ with DVQ, the later has the advantage that
variance and dynamic range is dramatically reduced in all co-
efficients, so quantization error will be consequently reduced
for the same codebook length (same bandwidth), and recogni-
tion performance is expected to be improved. As an example of
such a dynamic range reduction, in Fig.2 histograms of the cep-
stral coefficient pair C1-C2 (left side) and its prediction errors
(right side) have been plotted.

4. Performance Evaluation
In order to evaluate the performance of the proposed DVQ
scheme compared with the rest of quantization techniques (VQ,
two class VQ, and the ETSI VQ), a collection of measures and
recognition experiments were carried out. In these experiments
the quantization error and recognition accuracy for every VQ
method was evaluated under different situations.

The databases used for this evaluation were Albayzin [11]
and the Spanish part of Speechdat-Car [10]. Albayzin is a Span-
ish corpus that contains phonetically balanced sentences uttered
under noise-free conditions. On the other hand, Speechdat-Car
contains noise-free signals recorded using a close talk micro-
phone and noisy speech recorded using a Hands-Free micro-
phone placed on the ceiling of the car in front of the speaker in
different driving conditions. In Speechdat-Car isolated words,
navigation commands, isolated and connected digits, phoneti-
cally rich words and sentences, etc. can be found.

As mentioned before, the codebooks of DVQ, VQ and two-
class VQ were trained using different numbers of codewords
under three different conditions:
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• WELL MATCHED CONDITIONS

Under these conditions, VQs are adapted to both the task
and the environment. The codebooks were trained with
the training set of the isolated and connected digits task
of Speechdat-Car using the hands-free microphone when
hands-free signals are used in the recognition step and
using the close-talk microphone when close-talk signals
are used for recognition.

• MEDIUM MISMATCHED CONDITIONS

In this case, VQs are adapted to the acoustic environ-
ment but not to the task, hence, codebooks are well suited
for working in a specific acoustic environment, but they
can be used for any task. For the experiments, the code-
books were trained using the parts of the training set of
Speechdat-Car that do not contain digits. Again close-
talk microphone signals are used for training if clean
speech is going to be used in the decoding stage and
hands-free mic signals when noisy speech is going to be
recognized.

• HIGHLYMISMATCHED CONDITIONS

This is the case where the generated VQs are adapted
neither to the task nor to the acoustic environment. They
can be exported to any other task and environment.
This is the case of the ETSI standard VQ. For this pur-
pose, the codebooks of the VQs were trained using the
training-set of the phonetically balanced databased Al-
bayzin recorded under laboratory conditions.

Quantizers trained under highly matched conditions are ex-
pected to perform better, in terms of quantization error and
recognition accuracy, than VQs trained under mismatched con-
ditions. However, the former has the disadvantage of being less
portable to any other environment or task. Moreover, quantiz-
ers with shorter codebook lengths would be desirable without
degrading recognition performance since larger codebooks will
need higher bandwith.

4.1. Quantization Mean Square Error

The quantization mean square error (MSE) obtained with a spe-
cific VQ approach can give an idea of its behaviour regard-
ing recognition accuracy. Fig. 3 shows the MSE obtained for
the three different VQ methods along with the MSE obtained
with the ETSI Front-end VQ. Phonetically balanced sentences
of the Albayzin database were used to obtain the codebooks
and Speechdat-Car connected digit sentences were used to es-
timate the MSE for every VQ approach. It can be seen that
DVQ obtains better performance in terms of quantization error
than the rest of methods which indicates that a higher recog-
nition accuracy is expected to obtain. As shown in Fig. 3 the
MSE decreases when the length of the codebook increases, as
expected, but DVQ achieves low levels of MSE even for very
small codebooks.

4.2. Recognition Accuracy Evaluation
Recognition experiments were carried out using the Spanish
part of Speechdat-Car database and the connected digits task.
For all the recognition experiments, the Back-end of the auto-
matic speech recognition engine is based on continuous HMMs
with 16 component Gaussian Mixture Models as observation
pdf. The acoustic feature set is the ETSI standard Front-end for
all the experiments.
Acoustic units consist of three state word models for dig-

its and cepstral mean subtraction (CMS) was applied right after
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Figure 3: MSE for the different proposed methods.
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Figure 4: WER with Close-Talk Mic.for different VQ methods
and codebook lengths. Medium mismatched conditions.

vector de-quantization in the back-end. Acoustic models are
always adapted to the previously trained VQ and to the environ-
mental acoustic conditions, therefore, with respect to acoustic
models, matched conditions are always considered.

In Fig. 4 the experimental results for medium mismatched
conditions and close-talk signal are displayed. It can be seen
that under these conditions the performance of all the methods
is very high even for small codebooks. Nevertheless, DVQ out-
performs the rest of the systems obtaining as good results as
performing the recognition without quantizing the MFCC. The
results for the matched conditions and close-talk signals are pre-
sented in Fig. 5, obtaining lower WER as expected. Again,
DVQ achieves the best results even for very low bit rates.
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Figure 5: WER with Close-Talk Mic.for different VQ methods
and codebook lengths. Well matched conditions.
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Figure 6: WER with Hands-Free Mic.for different VQ methods
and codebook lengths. Highly mismatched conditions.
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Figure 7: WER with Hands-Free Mic. for different VQ methods
and codebook lengths. Medium mismatched conditions.

When dealing with noisy signal higher error rates are ex-
pected to be obtained. Figs. 6, 7 and 8 show the results for
hands-free microphone recognition using highly mismatched,
medium mismatched and well matched VQs respectively.

As can be seen in Figs. from 4 to 8, the DVQ method has a
consistent behaviour along all bandwidths both for clean and for
noisy conditions. The WER obtained is similar to that obtained
both by the ETSI standard VQ and by non-quantized MFCC.

Traditional VQ and two-class VQ obtain higher WER when
very low bandwidth is used, especially for noisy conditions.
However, for bandwidths higher that 3 kbps VQ and two-class
VQ have a similar performance to that obtained without using
VQ. It can be seen also that matched condition codebooks ob-
tain especial importance in low bit rates for VQ and two-class
VQ, improving WER under highly mismatched conditions.

5. Conclusions
In this work a method for compressing acoustic feature vec-
tors based on Differential Vector Quantization has been pro-
posed and evaluated. Several experiments have been carried out
showing that Differential Vector Quantization outperforms tra-
ditional Vector Quantization and the ETSI Standard Front-End
Vector Quantization when low bit rate conditions are desired.
Several situations have been considered regarding the degree
of matching between the data used to train the codebooks and
the data that will be used in the recognition stage. Differen-
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Figure 8: WER with Hands-Free Mic. for different VQ methods
and codebook lengths. Well matched conditions.

tial Vector Quantization obtains similar performance to that ob-
tained without using traditional Vector Quantization even when
the data used for training the codebooks are adapted neither to
the acoustic environment nor to the recognition task for bit rates
as low as 2.1 Kbps. Recognition performance for the rest of the
Vector Quantization techniques degrades when available band-
with is reduced but Differential Vector Quantization can offer
similar performance to that obtained using the standard ETSI
Vector Quantization (which has a transmission rate of 4.4 kbps)
and that obtained using MFCC without any kind of quantiza-
tion, both for clean signal and noisy signal.
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