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ABSTRACT

This paper examines techniques that allow a well-trained source
system built on one task to be rapidly adapted, or ported, to an-
other target task. The two tasks considered in this paper are Hub5,
or Switchboard, as the source system and VoiceMail as the target
task. The two tasks are acoustically similar, both being telephone-
bandwidth speech tasks, but differ in speaking style. SwitchBoard
is conversational speech, VoiceMail is a set of voicemail messages.
Various porting schemes for acoustic models are examined includ-
ing discriminative MAP and heteroscedastic LDA. Using around
28 hours of data the error rate on the VoiceMail was reduced by
42% relative compared to the baseline Switchboard performance.

1. INTRODUCTION

As speech recognition performance improves it is being applied
to a wider range of applications. It is well known that for best
possible performance on any specific task it is necessary to train a
system on large amounts of data collected for that particular task.
For many applications this is often impractical or too expensive.
This has led to the need for techniques that allow either rapidly
adapting an existing system to a particular task using little data,
sometimes known as porting, or building systems that work on a
wide range of tasks, generic systems.

This paper investigates schemes for rapidly porting a source
system to a new target task. In previous work [1] an initial porting
scheme was described. The source acoustic models were adapted
using MAP [2] adaptation, in this paper referred to as ML-MAP,
and the source language model adapted by interpolating the source
language model with a target-task specific language model. Two
forms of source acoustic model were investigated, maximum like-
lihood (ML) trained models and maximum mutual information
(MMI) [3] trained models. This set-up will be the baseline porting
scheme for this paper. A number of techniques for improving the
recognition performance on the target task are investigated.

� Generic systems: all available training data is pooled to-
gether and treated as single block of data. A system is then
trained, either using ML or MMI, estimation on this data.
In contrast to the porting schemes, generic systems should
yield good performance on both the source and target tasks.

� Herteroscedastic linear discriminant analysis: in recent
years the use of linear transformations and projections have
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become popular in large vocabulary speech recognition sys-
tems [4, 5]. Using HLDA, a linear projection scheme, it is
possible to “tune” a frontend for a specific task and model
set. The frontend can thus be “ported” to the target task.

� Discriminative MAP adaptation: a new technique related
to discriminative training has been proposed for adaptation,
MMI-MAP [6]. As the amount of target task data increases
this will tend to the discriminatively trained system perfor-
mance, rather than the ML trained system performance.

The tasks selected to examine the porting problem are Hub5,
or SwitchBoard, and VoiceMail [7]. The SwitchBoard system sys-
tem used as the source system to be adapted to the VoiceMail task.
The next section describes the data setups used in the experiments.
The results for the various porting schemes are given in section 3.

2. DATA SETS & EXPERIMENTAL SETUP

The source system to be ported to the VoiceMail was a Hub5,
or SwitchBoard, system. SwitchBoard is a telephone bandwidth
spontaneous speech recognition task. The acoustic training data is
obtained from two corpora: Switchboard-1 (Swb1) and Call Home
English (CHE). The training corpus consists of a 265 hour train-
ing set, 4482 sides from Swb1 and 235 sides from CHE. This is
the “h5train00” training set described in [8] and will be referred to
as the swbd training data. The speech waveforms were coded us-
ing perceptual linear prediction cepstral coefficients derived from a
Mel-scale filterbank (MF-PLP) covering the frequency range from
125Hz to 3.8kHz. A total of 13 coefficients, including ��, and
their first and second order derivatives were used. Cepstral mean
subtraction and variance normalisation were performed for each
conversation side. Vocal tract length normalisation (VTLN) was
applied in both training and test. The pronunciation dictionaries
used in training and testing were originally based on the 1993
LIMSI WSJ lexicon, but have been considerably extended and
modified. A gender-independent cross-word-triphone Gaussian-
mixture tied-state HMM system was built. The baseline trigram
language model, Swbd-LM, was built from two sources of data,
Broadcast news data (204MW) and SwitchBoard transcriptions
(3MW). The interpolation weight between the two model was opti-
mised for the Hub5 task. The Hub5 test set used to evaluate gener-
icity of the systems was a three hour subset of the 2001 develop-
ment data, dev01sub.

The target task was VoiceMail [7] (VM). The data for this task
consists of telephone messages addressed to IBM employees. The
training data was released in two stages. The first set of training
data, vmtrain1, consists of 1801 messages of total length 14.6
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Subset Amount Comment

1hr 1.0hr randomly selected from vmtrain1
4hr 4.0hrs randomly selected from vmtrain1
15hr 14.6 hrs vmtrain1
20hr 21.0 hrs vmtrain1 + 6.4hrs

randomly selected from vmtrain2
30hr 28.1 hrs vmtrain1 + vmtrain2

Table 1. Voicemail training data partitions for experiments

hours1. In addition a test set, vmdevtest, of 42 messages, a to-
tal of 11 minutes of data, was released. The second phase of data
was originally split into 14.5 hours of training data and 23 min-
utes of test data, vmtest2. Due to the small amount of test data
the second set of training data was further split into 13.5 hours of
training data, vmtrain2, and 60 minutes of test data, vmtest3.
The training data was then partitioned into subsets as described in
table 1. All results quoted are averaged over the three tests, a total
of 243 messages, 94 minutes of data. This complete test set will
be referred to as vmtest.

An important issue in any porting experiment is how the recog-
nition vocabulary is specified. Three vocabularies were used for
the experiments described in this paper. For systems using the
standard Switchboard language model, Swbd-LM, a 27 thousand
word vocabulary was used. For language models built on, or in-
terpolated with, the 1hr, 4hr and 15hr VoiceMail subsets, the
27 thousand word Switchboard wordlist had an additional 2,000
words from the VoiceMail 15hr training data added. For the lan-
guage models using the 21hr and 30hr subsets an additional
3,500 words from the 30hr subset were added to the original
Switchboard wordlist. Where interpolated language models are
used for the interpolation weights were optimised on a subset of
vmtest2.

3. PORTING SWITCHBOARD TO VM EXPERIMENTS

This section describes the experimental results of porting a source
SwitchBoard system to the VoiceMail task. The baseline porting
results are an extension to previously published porting results [1]
making use of the additional VoiceMail training data, vmtrain2
and the larger VoiceMail test set vmtest.

3.1. Baseline Porting Performance

For this paper the baseline porting approach is to use ML-MAP
adaptation [2] to modify the acoustic models and interpolation
Swbd-LMwith a target-task language model for the language model
adaptation.

Figure 1 shows the recognition performance of the baseline
porting system against amount of VoiceMail data, source acoustic
model, and whether the language model was adapted. The base-
line performance of the source SwitchBoard, swbd, acoustic mod-
els on the VoiceMail task with source language model, Swbd-LM,
was quite poor, 50.8% word error rate for the ML system. As
previously noted in [1], using an MMI trained Switchboard sys-
tem yields improvement even when there is a mismatch between

1In previous work on this data [1] vmtrain1 was incorrectly de-
scribed as being 20 hours of data.

2In experiments this was found to produce a negligible bias.
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Fig. 1. Performance with amount of adaptation data on vmtest
for ML and MMI swbd trained acoustic models, using ML-MAP
adaptation (AM) and/or language model interpolation (LM)

training and test tasks. On the vmtest data a 7% relative re-
duction in error rate was achieved using the MMI source models.
Using ML-MAP adaptation the performance of both the ML and
MMI swbd systems were improved. Using the 30hr subset the
error rate of the adapted ML system using Swbd-LM was 44.0%
and for the MMI system 42.6%. As expected the difference be-
tween the two system decreases as the the amount of porting data
increases. As previously observed [1] for this problem the gains
obtained by adapting the language model are greater than those
obtained from adapting the acoustic models using ML-MAP. The
best performance was obtained using the 30hr data set, adapting
both the acoustic and language models using a source MMI trained
SwitchBoard system. This gave an error rate of 32.6%, a 36% rel-
ative reduction in error rate compared to the baseline SwitchBoard
performance.

Training Acoustic Language System
Subset Model Model ML MMI

adapt adapt 36.7 34.9
15hr pure adapt 39.9 37.7

adapt pure 38.7 37.1
pure pure 41.9 40.3

adapt adapt 33.8 32.6
30hr pure adapt 35.6 33.5

adapt pure 35.2 34.0
pure pure 37.3 35.5

Table 2. Performance on vmtest of adapted Switchboard acous-
tic and language models (adapt) with “pure” VoiceMail acoustic
and language models (pure)

Rather than porting an existing system to a new task, it is
possible to simply build a system on the available task-specific
data. Table 2 shows the performance of these “pure” systems us-
ing the 15hr and 30hr training sets on vmtest. For both ML
and MMI training it was better to port existing systems rather than
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train pure systems. For example the performance of the pure MMI
trained 15hr system with the adapted language model is about
the same as the 4hr fully adapted MMI SwitchBoard system. The
pure 30hrVoiceMail MMI trained system performance, 35.5%, is
worse than that of the 15hr fully adapted system, 34.9%. Using
the baseline porting set-up with upto 28.1 hours of task-specific
training data, on this task it is better to adapt a good system to the
task, rather than build a pure task specific system.

3.2. Generic SwitchBoard and VoiceMail System

A standard approach to obtaining good performance on a range of
tasks is to combine the training data from the multiple tasks and to
train a generic system on all the data.

Test swbd+VM-30hr-�
— 1 2 5 10

ML vmtest 50.8 47.5 46.5 45.3 44.5
dev01sub 38.1 37.8 37.8 38.1 38.4

MMI vmtest 47.0 41.8 41.6 41.6 41.8
dev01sub 34.8 34.9 35.1 36.0 36.4

Table 3. Performance on vmtest and dev01sub using ML and
MMI trained generic systems with variations in weighting of the
VoiceMail 30hr data using Swbd-LM

Table 3 shows the performance on the vmtest and dev01sub
test sets of generic SwitchBoard/VoiceMail systems (swbd+VM-
30hr). As the amount of training data for VoiceMail is signifi-
cantly smaller (28.1 hours) than the swbd training data (265 hours),
systems were built at various weightings of the VoiceMail data.
The source language model was used, Swbd-LM. Using ML train-
ing the performance on vmtest improved as the weighting of
the Voicemail data increased. Using a weighting of 10 the error
rate of this generic system, 44.5%, is similar to the adapted sys-
tem performance of 44.0%. The performance on the SwitchBoard
dev01sub data improved slightly when the Voicemail data was
added at relatively low weightings (1 or 2). This may be a result of
more robustly estimating model parameters. At a weighting of 10
there was only a slight degradation in performance, 38.4%, com-
pared to the pure Switchboard system, 38.1%. The performance
of the adapted system on the dev01sub data was 39.5%. This is
1.4% absolute worse than the source system and 1.1% worse than
the generic system

Table 3 also shows the performance when using MMI training
to build a generic acoustic model. For the vmtest data there is
very little performance difference as the weighting of the Voice-
Mail data is varied from 1 to 10. The performance at a weight-
ing of 1 for the VoiceMail data, 41.8%, is better than the MMI
MAP-adapted system, 42.6%. This is due to the baseline porting
scheme using ML-MAP which will tend to the ML system perfor-
mance. In contrast the generic MMI system solely uses discrimi-
native techniques. For the dev01sub test set the performance of
the MMI trained system decreased slightly as the weighting of the
VoiceMail data increased. The performance at a weighting of 1,
34.9%, was little changed from the baseline system, 34.8%. The
ML-MAP-adapted MMI-trained system had an error rate of 37.5%
on the dev01sub data, significantly worse than that of the MMI
trained generic system.

Comparing the two forms of training for building generic sys-
tems it is interesting to note that for ML training it was necessary
to significantly weight the data, to the point of approximate equal
amounts of VoiceMail and SwitchBoard data, whereas for MMI
training no weighting was required. Overall building a generic
MMI trained system gave slight performance gains, even on the
target-task data, than the baseline porting of an MMI source model.

3.3. Heteroscedastic LDA

The systems described so far have been based on MF-PLP fron-
tend with first and second order derivatives. In recent years the
use of linear transformations and projections have become popu-
lar for speech recognition. This section examines the performance
of HLDA, a standard projection scheme, for use with porting and
generic system building. For this task the projection was from a
52 dimensional frontend consisting of static, first, second and third
order derivatives to a 39-dimensional feature-space. All linear pro-
jections were estimated using maximum likelihood training.

HLDA Acoustic VM WER (%)
Training Training � vmtest dev01sub

ML — 49.2 37.0
swbd MMI — 45.9 34.0

ML 10 42.1 37.2
MMI 1 39.5 34.1

swbd+ ML 10 42.4 37.5
VM-30hr MMI 1 39.8 34.5

VM-30hr ML 10 41.7 37.6
MMI 1 40.2 36.0

Table 4. Performance on vmtest and dev01sub using ML and
MMI trained generic systems (swbd+VM-30hr) and variations
in HLDA transform estimation with the Swbd-LM

Table 4 shows the performance using a swbd trained HLDA
transform. Using the source SwitchBoard ML system, the error
rate was reduced by about 3% relative, and about 2% for the MMI
system on the vmtest data compared to the standard frontend.
Similar gains were obtained on the dev01sub data. Even when
using an HLDA transform trained on swbd it is still beneficial
when recognising VoiceMail data. Table 4 also gives the perfor-
mance of ML and MMI trained generic systems. In both cases
the error rate is reduced by using the Switchboard trained HLDA
transform.

Rather than using a generic system the ML-MAP-adapted sys-
tem may be used with HLDA. Using the 30hr ML-MAP-adapted
MMI system and the Swbd-LM language model the error rate on
vmtest was 40.2% compared to 42.6% for the standard fron-
tend. The error rate on dev01sub was 36.6%. For both test sets
the performance using HLDA was better than the standard fron-
tend, but the performance was again slightly worse than that of the
generic system for vmtest and significantly worse on dev01sub.

The HLDA projection may also be tuned for the particular
task in question. Table 4 shows the effect of training an HLDA
transform on both the SwitchBoard and VoiceMail (30hr) train-
ing data, and on just the VoiceMail (30hr) data. There is no con-
sistent significant variation in performance. The original Switch-
Board transform is comparable, or better, than the target task tuned
transforms.
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3.4. Discriminative-MAP

The baseline porting scheme described in this paper uses ML-
MAP adaptation of the source acoustic models. When ML-MAP
adaptation is applied with sufficient adaptation data the perfor-
mance tends to the ML system performance. Thus any gains from
improved source models are reduced, or disappear. Recently a
modified version of MAP, based on discriminative training, has
been proposed [6]. When there is large amounts of adaptation data
available, this should tend towards the performance of an MMI
trained system.

Adaptation 1hr 4hr 15hr 20hr 30hr

ML-MAP 46.1 44.8 43.3 42.8 42.6
MMI-MAP 46.1 44.0 41.4 41.1 40.5

Table 5. Performance on vmtest comparing standard MAP
(ML-MAP) with discriminative MAP (MMI-MAP) from an MMI
system using Swbd-LM

Table 5 compares the performance of ML-MAP with discrimi-
native MMI-MAP using a MMI-trained SwitchBoard source model.
For very limited porting data the performance of both adaptation
schemes is the same, 46.1%. As the amount of porting data in-
creases the MMI-MAP schemes makes better use of the avail-
able data than the ML-MAP scheme. For the 15hr VM subset
the MMI-MAP scheme is 4% relative better than the ML-MAP
scheme and for 30hr subset 5% better. The performance of the
MMI-MAP adapted scheme, 40.5%, is better than the generic MMI
trained system, 41.8%. However, the performance of this MMI-
MAP 30hr system on the dev01sub test data was 36.6%. Not
surprisingly this is significantly worse than the generic system per-
formance of 34.9% as the MMI-MAP adaptation has tuned the
system to the VoiceMail task.

3.5. Combined System for Porting

System Style Std HLDA

ML (VM���) generic 34.1 32.6
MMI generic 31.7 30.3

MMI ML-MAP 32.6 31.4
MMI MMI-MAP 30.8 29.7

Table 6. Performance on vmtest using the VM-30hr training
subset to produce a generic system (generic) or for adaptation, the
SwitchBoard trained HLDA transform, and interpolated language
model Swbd-LM+VM-30hr

The porting schemes may be combined to obtain the best re-
sults on the vmtest data. Table 6 shows the performance for
various combination of porting schemes. The best performance
was obtained using an MMI-trained source model, MMI-MAP,
HLDA with the interpolated Switchboard language model with the
VoiceMail language model. This gave an overall 42% relative re-
duction in word error rate over the baseline SwitchBoard system
and 9% relative reduction over the baseline porting scheme for the
30hr data. The best generic system performance on the vmtest
data was using MMI training with HLDA. This was 0.6% absolute

worse than the MMI-MAP system, but the performance of this
generic system on the dev01sub data was significantly better.

4. CONCLUSION

This paper has examined the problem of porting a SwitchBoard
system to the VoiceMail task. The baseline porting scheme con-
sidered was ML-MAP adaptation for adapting the acoustic mod-
els and language model interpolation with a task-specific language
model for the language model adaptation. Using 28.1 hours of
target-task data the error rate was reduced by 36% relative com-
pared to the source SwitchBoard model performance. The baseline
porting performance was significantly better for both acoustic and
language models than building pure task specific models. Using
MMI training to build a generic system on both the SwitchBoard
and VoiceMail data gave a slightly lower error on the VoiceMail
task than the baseline porting scheme, with only minimal degrada-
tion in the performance on the SwitchBoard task. Using a Switch-
Board trained HLDA transform further decreased the error rate.
Discriminative MAP for porting was found to outperform both
standard MAP adapted and generic systems. Overall using the
best new porting scheme the VoiceMail error rate was reduced by
42% relative compared to the source SwitchBoard system perfor-
mance and 9% relative compared to the baseline porting scheme.
Future work will concentrate on improving the porting scheme for
the language model.
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