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Abstract 

Extensive research has been devoted to robustness in the 

presence of various types and degrees of environmental noise 

over the past several years, however this remains one of the 

main problems facing automatic speech recognition systems. 

This paper describes a new variable frame rate analysis 

technique, based upon searching a predefined lookahead 

interval for the next frame position that maximizes the first-

order difference of the log energy (ΔE) between the 

consecutive frames. The application of this novel technique to 

noise-robust ASR front-end processing is also reported. In 

comparison with existing variable frame rate methods in the 

literature, the proposed energy search approach is simpler and 

achieves similar recognition accuracy improvements at lower 

complexity. Experimental work on the Aurora II connected 

digits database reveals that the proposed front-end, together 

with cumulative distribution mapping, achieves average digit 

recognition accuracies of 78.32% for a model set trained from 

clean data and 89.95% for a model set trained from data with 

multiple noise conditions, representing 6.1% and 2.3% 

reductions in word error rates respectively over a cumulative 

distribution mapping baseline. 

1. Introduction 

In recent years, numerous improvements to the performance of 

automatic speech recognition (ASR) systems have been 

proposed, however these are often undermined in practical 

conditions, due to the presence of environmental noise. 

Typically, the deterioration in recognition accuracy as the 

noise level approaches that of the speech renders all but the 

smallest vocabulary ASR systems unusable. Various types of 

approaches have been employed by other researchers to 

improve speech recognition robustness, including pre-

enhancing the noisy speech (e.g. [1]), feature-space 

compensation of clean/noisy feature mismatch (e.g. [2],) and 

model-space methods that account for the effects of noise in 

the speech models (e.g. [3]). 

One approach, variable frame rate analysis [4], is based 

upon the assumption that the fixed frame rate employed by 

nearly all ASR systems is merely a convenient approximation, 

the legacy of fixed-frame speech processing applications such 

as speech coding. Furthermore, it seems plausible that the 

human auditory system allows some degree of flexibility in 

the analysis period, since no physical mechanism has yet been 

identified that would support a fixed-duration approach. 

These considerations have motivated various variable frame 

rate (VFR) ASR front-ends, all of which report improvements 

over their fixed-frame counterparts. 
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inting and Peeling [4] used a Euclidean distance 

en consecutive feature vectors, an approach that has 

quently been shown [5] to outperform the more recently 

sed feature vector time-derivative [6]. To date the most 

ive approach appears to be one exploiting the entropy of 

ature vector [7], however all these approaches come at 

st of requiring that feature vectors be pre-computed 

 any variation to the frame rate is applied. 

 this work, a new method for determining the 

taneous frame rate (or frame advance) is introduced 

 upon the change in log energy. It is demonstrated that 

ethod can produce good front-end compensation for the 

s of additive noise for model sets trained on clean 

h in particular, at lower complexity than alternative 

ds. The organization of this paper is as follows. Details 

 proposed energy search VFR analysis are given in 

n 2, and related recognition experiments on the Aurora 

its database are described in Section 3. Following this is 

ussion of the findings in Section 4 and a summary of the 

sions in Section 5. 

Energy Search-Based Variable Frame Rate 

Analysis 

 New Criterion for Frame Rate Variation 

ble frame rate analysis relies upon some criterion to 

ine at what point a new feature should be extracted. 

vely, new features should be extracted only after 

ient changes have occurred within the speech signal to 

nt their extraction. Previously [4, 5, 6, 7, 8], features 

been extracted and then tested against some threshold in 

to determine whether they should be retained or not, 

er in principle any criterion that yields similar 

minating power can be used. 

etailed investigations previously reported in the 

ure [9] into the properties of components of the 

rd Mel cepstral front-end have shown that the first-

difference in frame-to-frame energy, ΔE, provides 

r discriminative power than any other component of the 

requency cepstral coefficients (MFCCs). Conveniently, 

 also be computed without requiring the calculation of 

ther components of the MFCCs, i.e. without the discrete 

r transform, Mel filter bank and discrete cosine 

orm. For this reason, it has significantly lower 

lexity than previous schemes as a criterion for VFR 

is. 

us, the criterion employed in this paper is to determine 

ptimum relative position of the next frame k̂  by 

izing the difference in log energy between the current 

 and possible next frame, so that 
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where k is the candidate frame advance relative to the current 

frame position in samples, Em is the energy of the current 

frame, Em+1(k) is the energy of the next frame, m is the frame 

index, and Kmin and Kmax are the minimum and maximum 

admissible values of frame advance in samples. 

2.2. Energy Calculation 

Here, energy is calculated according to the usual formula, 

except that the energy of the next frame is dependent upon the 

candidate frame advance k, i.e. 
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where k is defined relative to the beginning of the current 

(mth) frame, as shown in Figure 1. 

sample index n

current frame 

N

Kmin

Kmax

candidate frame 
at k = Kmin 

candidate frame 
at k = Kmax 

energy search interval 

Figure 1: Parameters used in the proposed energy 

search VFR scheme. 

In order to achieve good computational efficiency in 

calculating the 1minmax +− KK  sample-by-sample next frame 

candidate energies { }maxmin1 |)( KkKkEm ≤≤+ , these are 

calculated in a pipelined manner, taking advantage of the fact 

that 

)()1()()1( 22
11 kxkNxkEkE mmmm −+++=+ ++ , (3) 

Implicitly, equation (3) implies the use of a rectangular 

window for energy calculation, a window that is susceptible to 

pitch period artefacts. If the rectangular window is replaced by 

a tapered window, however, the computational burden of 

computing the energy on a sample-by-sample basis is greatly 

increased by this choice. 

The efficient computation of all possible candidate next 

frame energies allows a very fine-grained search, which 

cannot easily be replicated by existing Euclidean MFCC 

distance [8] and entropy-based MFCC [7] VFR methods. 

Since in this scheme, the frame advance k̂  is selected by 

search, the main design consideration is the setting of the 

predefined search interval limits Kmin and Kmax. 

3. Experimental Results 

3.1. Experimental Setup 

The proposed front-end was evaluated on the Aurora II 

database, test set A, with various configurations described in 

this section. This test set contains noisy connected digits 

created by adding subway, babble, car, and exhibition noise at 
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3.3. R

In th

maxim
ent SNRs to the original clean utterances. Model sets can 

atively be trained on clean or multi-condition data, so 

valuation can be performed under mismatched and 

ed training/testing conditions respectively. The SNRs of 

st data range from -5 dB to more than 20 dB, while the 

g data SNRs range from 5 dB to more than 20 dB. In 

g with the conventional reporting of Aurora II results, 

e recognition accuracies throughout this section are the 

accuracies over the 0 dB to 20 dB conditions. 

ll the pre-processing and Mel filtering of speech signals 

ed the ETSI standard MFCC front-end. The Hidden 

v Model (HMM) Toolkit (HTK) was used for the 

h recognition experiments. Each model was represented 

a continuous density HMM with left-to-right 

uration. Digit models had 16 states with 3 Gaussians 

ate, while the noise model had 3 states with 6 Gaussians 

ate. An inter-digit silence model with 1 state was also 

and it was tied with the middle state of the 3-state 

e model. 

o sets of HMMs were trained for the evaluation. The 

model set was trained from clean speech data only and 

ulti-condition model set was trained from the noise-

 version of the same training data. All the test and 

g data were obtained from the original Aurora II CDs 

ut end-point detection. 

ample-by-Sample Energy Variation 

ample of the sample-by-sample energy variation in the 

h signal is shown in Figure 2, for which the optimum 

 advance according to (1) occurs at around 12ms. In this 

le, the delta energy contour is 

( ) ( )) }20060log)(g 1 ≤≤−+ kEkE mm , where the 

t energy Em is calculated from a 25ms frame centred 

d 12.5ms, and Em+1(k) is calculated from a 25ms frame 

d between 7.5 and 25ms ahead relative to the current 

 centre. Here, because the peak in delta energy in Figure 

ccurs at about 24.5ms, the optimum next frame would 

tred at 24.5 ms. 

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50
Time (ms)

igure 2: (a) A 50 ms speech signal excerpt, (b) its 

g energy contour, and (c) its delta energy contour. 

esults for Different Search Intervals 

is experiment, both Kmin and Kmax (the minimum and 

um frame advance) were varied, and model sets were 

(a)

(b)

(c)



trained on clean speech data. The trained model sets were then 

applied to the entire test set A, and the resulting accuracies are 

shown in Figure 3, where each curve represents the variation 

in accuracy with different values of Kmax, for constant Kmin. 

The highest accuracy found in this experiment was for Kmin

and Kmax set to 8.75 and 16.75 ms respectively. 
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Figure 3: Recognition results from Aurora test set A 

(clean models), showing the accuracies resulting from 

different search interval limits (Kmin is marked on each 

curve) against the average frame shift, compared with 

the ETSI standard front-end, marked ‘x’. 

3.4. Results for Different Noise Types 

In order to investigate the results of section 3.3 a little more 

deeply, energy search VFR (ES-VFR) with Kmin and Kmax

equivalent to 8.75 and 16.75 ms respectively was compared 

with the ETSI standard front-end by noise type for both clean 

and multi-condition model sets, as seen in Figure 4. 

Figure 4: Recognition results from Aurora test set A 

comparing ES-VFR with the ETSI standard front-end 

by noise type, for clean and multi-condition models. 

3.5. Results for Different Signal to Noise Ratios 

For the purposes of SNR comparisons, ES-VFR was compared 

against two baselines: the ETSI standard front end and the 

standard front end with cumulative distribution mapping 

(CDM) applied [10]. The motivation for using a second 
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clean multi
ne was both to test the hypothesis that ES-VFR should 

ce additive improvements to other robust front-end 

ds, and in recognition of the fact that contemporary 

ends have significantly better performance than the 

rd front-end. Figures 5(a) and (b) thus show the 

nition accuracies for all four schemes: the ETSI standard 

end, the standard front-end using energy search VFR, the 

rd front end using CDM, and finally the standard front 

sing both CDM and ES-VFR. The recognition results 

ed across all SNRs and noise conditions are 

arized in Table 1. 

lean 20 15 10 5 0 −5
SNR (dB)

ETSI Standard Front End
Energy Search VFR
Cumulative Density Mapping
CDM and Energy Search VFR

lean 20 15 10 5 0 −5
SNR (dB)

ETSI Standard Front End
Energy Search VFR
Cumulative Density Mapping
CDM and Energy Search VFR

igure 5: Recognition results from Aurora test set A 

owing the proposed ES-VFR based front-end 

mpared with the ETSI standard front-end for (a) 

ean- and (b) multi-condition model sets. 

ble 1: Recognition accuracy results from Aurora 

st set A. ‘% impr.’ denotes the relative reduction in 

ror rate over the corresponding baseline (i.e. ETSI 

 CDM).

nt-end clean % impr. multi % impr. 

SI 61.34 N/A 87.82 N/A 

-VFR 68.58 18.7 86.21 -13.2 

M 76.92 N/A 89.71 N/A 

M+ES-VFR 78.32 6.1 89.95 2.3 

(a)

(b)



3.6. Complexity Comparison 

In order to estimate the complexity of the proposed variable 

frame rate scheme, the ETSI standard and ES-VFR front-ends 

were run on the clean and multi-condition training data and 

the test set A data (a total of 45000 files), and the duration was 

recorded. Again, the optimum front-end configuration from 

previous experiments (Kmin and Kmax equivalent to 8.75 and 

16.75 ms respectively) was used, and no other processes were 

running on the processor (2.66 GHz CPU, 2 GB RAM) at the 

time. The ETSI standard was found to require 778s of 

processing time, while the proposed ES-VFR took 888s. 

4. Discussion 

From the results in section 3.3, it becomes evident that there is 

an optimum average frame shift for the proposed ES-VFR 

approach, around 11.75 ms in the case of the test set used in 

section 3. Compared with earlier VFR approaches using model 

sets trained on clean Aurora II data, ES-VFR (68.58%) yields 

comparable, but slightly poorer performance averaged over all 

SNRs than the energy-weighted Euclidean MFCC distance [8] 

(70%) and entropy-based MFCC [7] (71.54%) VFR schemes. 

The energy-weighted Euclidean MFCC distance [8] and 

entropy-based MFCC [7] VFR schemes both produce 

significantly poorer accuracy under clean conditions, with 

their word error rates degrading by 42% and 89% [7] 

respectively relative to the ETSI front-end. By contrast, the 

new ES-VFR produces a more acceptable degradation of 10% 

in relative error rate for the clean condition. 

From sections 3.4 and 3.5, it appears that the ES-VFR 

accuracy improvements over the ETSI front-end for a clean 

model set are consistent across all SNRs except clean, and 

across all noise types. Interestingly, for the multi-condition 

model set ES-VFR yielded poorer accuracies than the ETSI 

front-end, with the schemes, and it would be interesting to 

know whether this result generalizes to other VFR 

approaches. Although You et al. [7] also performed Aurora II 

evaluations on their VFR schemes, they did not give results 

for a multi-condition model set. A remarkable feature of the 

ES-VFR scheme is that it seems to perform well in babble 

noise relative to the ETSI standard front-end, producing a 

26% reduction in word error rate for a clean model set and 

barely degrading the accuracy at all in the multi-condition 

case. 

The most encouraging result from section 3 is the 

consistent improvement over the CDM baseline found for 

both clean and multi-condition model sets and over all SNRs. 

Since the ES-VFR approach provides an improvement based 

on the temporal characteristics of the speech signal, it is 

suggested that the performance gains observed in section 3 

would be largely independent of performance gains from 

many other front-end improvements in the literature. This 

implies that the combination of ES-VFR with pre-

enhancement, feature-space or model-space techniques has 

good prospects for further improvements in recognition 

accuracy. 

The 14% increase in processing time relative to the ETSI 

standard front-end required by ES-VFR qualitatively 

compares well with previous VFR schemes [4, 5, 6, 7, 8], 

which have required all candidate MFCCs to be pre-

computed, presumably resulting in complexities significantly 

greater than that of the ETSI standard front-end. 
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5. Conclusions 

se-robust variable frame rate ASR front-end based upon 

ergy search that maximizes the first-order difference of 

g energy between consecutive frames has been presented. 

experiments with the Aurora II database, ES-VFR shows 

se for improving recognition of speech in the presence of 

es of noise, particularly where the test data are less well-

ed to the training data. Further, this approach is faster 

xisting methods for VFR speech analysis as it does not 

e candidate features to be pre-computed. When 

ined with cumulative distribution mapping, the proposed 

end obtains a relative error rate reduction of 6.1% for the 

model set, and 2.3% for the multi-condition model set. 

 research will focus on investigating means for 

ving the multi-condition performance of the proposed 

e, and on the possibilities for combining ES-VFR with 

robust front-end techniques. 
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