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BIC-based Speaker Segmentation Using
Divide-and-Conquer Strategies with Application to
Speaker Diarization

Shih-Sian Cheng, Hsin-Min Wan@lember, IEEEand Hsin-Chia FuMember, IEEE

Abstract—In this paper, we propose three divide-and-conquer measure. In contrast to model-decoding-based segmentation,
approaches for BIC-based speaker segmentation. The approacheswhich detects acoustic changes in a supervised manner,
detect speaker changes by recursively partitioning a large analy- gjstance-hased segmentation has the advantage that acoustic

sis window into two sub-windows and recursively verifying the h be detected i ised ;
merging of two adjacent audio segments usindA BIC, a widely- changes can De detected In an unsupervised manneral.e.,

adopted distance measure of two audio segments. We Comparepnon knoWIedge about the content of the Input audio stream
our approaches to three popular distance-based approaches,is unnecessary. In this paper, we focus on distance-based
namely, Chen and Gopalakrishnan's window-growing-based ap- segmentation.

proach, Siegleret al's fixed-size sliding window approach, and  \yhen |ow-level acoustic features like mel-scale frequency

Delacourt and Wellekens’'s DISTBIC approach, by performing . L
computational cost analysis and conducting speaker change de-CGpStr":lI coefficients (MFCCs) are used in distance-based seg-

tection experiments on two broadcast news data sets. The resultsmentation, the distance measure is usually derived from a
show that the proposed approaches are more efficient and achieve statistical modeling framework. More precisely, it is assumed
higher segmentation accuracy than the compared distance-basedthat the feature vectors in each of the two audio segments
approaches. In addition, we apply the segmentation approaches 4yise from some probability distribution (e.g., the multivariate
discussed in this paper to the speaker diarization task. The Gaussian distribution); then, the distance between the two
experiment results show that a more effective segmentation . ! ! R
approach leads to better diarization accuracy. segments is represented by the dissimilarity between the two
distributions. Several distance measures have been proposed,
e.g., the Kullback-Leibler distance (KL or KL2) [10], the
Generalized Likelihood Ratio (GLR) [9], [14IABIC [11],
[15], [16], [13], [17], [18], the Bhattacharyya distance [12],
and the XBIC [19]. In addition, some high-level features have
|. INTRODUCTION been used for audio segmentation; e.g., the spectrum flux and

The goal of speaker (audio) segmentation is to dete%gro-crossing rate (ZCR) [20], [21], and the smoothed zero-
speaker (acoustic) change boundaries in an audio stream. InQ¥$sing rate (SZCR) [22]. _ _
last decade, researchers in the speech processing communi¥/indow-growing-based segmentation (WinGrow) [11],
have expended a great deal of effort on this problem becatﬂ_%@  [23], [17], fixed-size sliding window segmentation (FixS-
of its application to many speech and audio processing tasid) [10], [12], [24], [25], [26], and DISTBIC [9] are three
such as audio classification [1], [2], automatic transcription ®PPular distance-based segmentation approaches.
audio recordings [3], [4], speaker tracking [5], [6], and speaker 1) The WinGrow approach was first proposed by Chen
diarization [7], [8]. and Gopalakrishnan [11]. For the distance measure of

Existing audio segmentation approaches generally fall into  tWo audio segments, they used the Bayesian Information
two categories, namely, distance-based segmentation [9], [10], Criterion (BIC) [27], [28] to evaluate the following two
[11], [12], [13] and model-decoding-based segmentation [4], hypotheses: 1) the union of the feature vectors of the
[11]. In distance-based segmentation, a distance measure of WO segments forms a Gaussian cluster in the feature
two audio segments is defined first, and then an acoustic SPace, and 2) the feature vectors of each segment form

change detection strategy is designed based on the distance @ distinct Gaussian cluster. Then, the difference between
the two evaluation scored BIC, is used as the distance

Index Terms—speaker segmentation, speaker change detection,
Bayesian Information Criterion, divide-and-conquer, speaker di-
arization
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measure. In the acoustic change detection procedure, a
small analysis window is put at the beginning of the
audio stream initially. If no change point is detected in
that analysis window, the search range is increased. The
decent segmentation accuracy of this approach is widely
recognized; however, as the window size grows, it incurs
a heavy computational cost due to numerah87C
computations, especially when the audio stream contains
many long homogenous segments. To reduce the com-
putational cost, Tritschler and Gopinath [29] proposed
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2)

3)

some heuristics that ignore the distance computationsveg propose three divide-and-conquer approaches for distance-
locations where acoustic changes are unlikely to occlrased speaker segmentation. The first approach (DACDecl)
Zhou and Hansen [17] used HotellingE2-Statistic, detects speaker changes by recursively partitioning a large
which has the advantage of low computational cost, amalysis window into two sub-windows at the position with
the distance measure in the WinGrow detection procesise largest positiveABIC value obtained by Chen’s one-
and only usedABIC to verify the acoustic change change-point detection algorithm [11], rather than by applying
candidates. In addition, [15] and [13] proposed mora size-growing analysis window. All the divided points are
efficient implementations for thé\BIC computation output as change points. The second approach (DACDec2),
that do not affect the segmentation accuracy. which is a variant of DACDecl, recursively partitions a large
In FixSlid, a certain distance measure is used to evaluamgalysis window into two sub-windows at the position with the
the dissimilarity between two adjacent windows thdargestABIC value, no matter whether it is larger than zero
slide along the audio stream to produce a distanoe not. It then recursively verifies whether the divided points
curve; then, some heuristic thresholds are used to judgiéh negative ABIC values calculated in the division stage
whether the locations of peaks are acoustic changese speaker changes based on the fef&/C' measurements

To detect the change boundary associated with a shofttheir left and right neighbor segments. The third approach
homogeneous segment, the size of the analysis wind@ACDec3) is a recursive variant of DISTBIC. It recursively

is usually set at a small value (e.g., two secondg)artitions an audio stream at the locations of speaker change
This is a dilemma because a small analysis windoeandidates obtained by FixSlid, and then recursively verifies
does not contain sufficient feature vectors to obtain those candidates based on thé3/C measurements of their
reliable distance statistic. For this approach, the KL2Zeft and right neighbor segments. To compare the performance
GLR, andABIC derived from the uni-Gaussian modebf WinGrow, FixSlid, DISTBIC, the HAC-based approach and
are popular distance measures because they have ttieproposed approaches, we conducted speaker change detec-
advantage of low computational cost; however, thefion experiments on two broadcast news data sets, hamely the
effectiveness may be limited due to the limited geneMATBN corpus [31] and the broadcast news data in the 2003
alization ability of uni-Gaussian. In [25], the authorNIST rich transcription evaluation data (RT03) [32]. For the
proposed a bilateral scoring approach for calculatirgfficiency comparison, we analyzed their computational costs
the distance between two segments based on adapded reported their respective run times in the experiments. The
Gaussian mixture models (GMMs). Because of the go@kperiment results show that DACDecl and DACDec?2’s re-
generalization ability of GMMSs, this approach has beecursive (top-down) multiple-change-point detection strategies
shown to be more effective than WindGrow and XBICare more effective and efficient than WinGrow’s bottom-up
which are developed on the basis of the uni-Gaussianultiple-change-point detection strategy. The results also show
model; however, it suffers from a higher computationahat, by providing a more effective and efficient segment merg-
cost due to the requirement for the adaptation of GMMgg process, DACDec3 outperforms DISTBIC and the HAC-
and calculation of mixture likelihoods in the distancdased approach. Moreover, it achieves similar segmentation
measure. accuracy as WinGrow at a much lower computational cost. We
Under the DISTBIC approach, the input audio streampplied the segmentation approaches discussed in this paper to
is first segmented by FixSlid; then, the acoustic changlee speaker diarization task, where the segmentation result is
candidates are verified sequentially by segment mergimgput to a HAC speaker clustering module. The experiment
using ABIC. In practical use of this approach, FixSlidresults on RT03 show that a more effective segmentation
is usually applied to over-segment the audio stream &pproach leads to better diarization accuracy.

ensure a low miss detection rate at the cost of a highThe remainder of this paper is organized as follows. To
false alarm rate; then, the segment merging processhisip explain our proposed approaches, we reviewAt/ C
applied to reduce false alarms while maintaining th@istance measure and the WinGrow approach in Section II.
low miss detection rate. This approach is highly effiwe then present the proposed divide-and-conquer approaches
cient. Moreover, it has been reported that this approaght speaker segmentation in Section Ill. In Section IV, we
achieves decent segmentation accuracy [9]. The sequgRalyze the computational costs of the baseline approaches and
tial segment merging process can be replaced by thf proposed approaches. Section V details the experiments on
hierarchical agglomerative clustering (HAC), which hagpeaker segmentation, Section VI details the application of the
been widely used in many speaker diarization systergggmentation approaches to the speaker diarization task, and

[7], [8], [30]. However, it is not as efficient as DISTBIC Section VII contains some concluding remarks.
because of the essential computational cost of HAC.

Although WinGrow is more efficient than the adapted-
GMMs approach while maintaining high segmentation accu- !l WINDOW-GROWING-BASED SEGMENTATION
racy, the computational cost is still quite considerable when
applying it to a large-scale task, e.g., the indexing of a databasé&Ve review the ABIC distance measure of two audio
containing thousands of audio recordings. Therefore, ma@egments in Section II-A and window-growing-based segmen-
efficient segmentation approaches are desirable. In this papation (WinGrow) in Section 1I-B.
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A. ABIC as the distance measure of two audio segments Audio stream

1) Model selection and BIC:Given a data setZ = Seg1 | Seg2 | Seg3
{z1,22,--,2,} C R? and a set of candidate modelsl = N ,‘, é
{Mi,M>,---, M}, the purpose of model selection is to =4 N,
choose the model that best fits the distribution Hffrom =
M. When using the Bayesian Information Criterion (BIC) for e
model selection, the BIC value dff; for Z is N,

. 1 The initial —
BIC(M;, 2) =logp(Z | ©;) — = #(M;)logn, (1) analysis
2 window ) Nonax

where )\ = 1, ©, is the maximum likelihood estimate of the N,
parameter set ol/;, and#(M;) is the number of parameters N
of M;. The model with the largest BIC value will be selected. —

2) ABIC as the distance measuré&iven two audio seg- :
ments represented by feature vectots= {x1,xa2, -+, X, }
c R*andY = {y1,y2,--*,¥n,} C R% we evaluate the _ ‘ _ _ o _
following two hypotheses [11]: Fig. 1. Diagram of the multiple-change-point detection in window-growing-

based segmentation (WinGrow). The audio stream contains three segments,

namely Segl, Seg2, and Sed3;and @ denote the change points.
Hy:x1,X2, , Xn,, Y1,¥2, *» ¥n, ~ N(@, X),

Hy :x,%X2,-+,Xn, ~N(py,Bx);

Y1 ¥2, 0 Yny, ~ Ny, By). (2)  where$:, iy, andXy, are, respectively, the sample covari-

H, posits thatt’ and) are derived from the same multivariate?Ce matrices ofz, Xi={z1, 22, -+, z;}, and V;i={zi11,

Gaussian, whileH; posits that they are derived from twoZi+2> "> z,}. If mawimmgiSnﬂmmAB]_C{XmM}(i) > 0,
distinct multivariate Gaussians. the time index corresponding to the maximum value is output

Let 2 = X|JY andn = n, + n,. Then, theABIC value &S the change point; otherwise, there is no change point in
- - x Y- 1 . .
can be computed as the difference between the BIC valuesZof !t IS not necessary to compute the53/C’ value for time

H, and H, as follows: indices w_ithin the ranges 1 t6,,;, andn — i, + 1 ton
because in these cases the number of sample¥; ior V;
ABIC(x yy = BIC(H,Z) — BIC(Hy, Z) is insufficient to give a reliable estimate of the parameters.
— log p(X | fiy, ﬁlx) +1ogp(V | 1y, 2)}) Empirically, it is appropriate to set,,;, at a value within the

A 1 1 range 30 to 50 for practical applications. According to the
—logp(Z | 1, %) — 5)\(d+ 5d(d+ 1))logn BIC theory, the penalty factok in Eq. (4) is 1; however, in
practical segmentation tasks, it is usually adjusted to allow a
tradeoff between error types.
2) Multiple-change-point detectionOCD-Chen outputs at
) most one change point, even though there are multiple change
L N : oints in the analysis window. To detect multiple change points
where 4, fiy, and aiy are, respectively, the sample meari‘?n an audio stream, as shown in Fig. 1, OCD-Chen can be

vectors ofZ, X, andy; %, 3y, and Xy are, respectively, .y 4 cooentially to a sliding, size-growing analysis window
the sample covariance matrices 8f X, and Y; and d is pplied sequentially 9, 9 9 Y
whose initial size isN;,; samples. The window repeatedly

the dimension of the feature vector [13]. The larger the vaIU(?0 by N samples. until a chanae boint is detected o
of ABIC, the less similar the two segments will be; thugd'OWs DY /¥y samples unti ge point s r

the larger the distance between the two segments will 515‘. size exceeds a pre-defined upper PQM{JM- Here, the
When A = 0, the ABIC distance between two segments igPper boupd ensures the §earch efflmency [15.]’ [13]. If a
equivalent to the GLR distance [11], [33]. changg point is detected during the WlndOW'gl’OV\./Ing step, thg
detection process restarts at that change point with an analysis

window of N;,,; samples. When the size of the window grows
B. Window-growing-based segmentation to N,.qz, it is repeatedly shifted by, samples until a change

1) One-change-point detectiori:et the feature vectors of Point is detected or the analysis window reaches the end of
the input audio stream b& = {z,, z5, - - -, z,,}. In Chen and the audio stream. In this way, the change points in the audio
Gopalakrishnan’s one-change-point detection algorithm [13jream can be detected sequentially.
(denoted as OCD-Chen in this paper), it is assumed that there

= 7 log |8 — = log[Sx| - 2 log Sy

1 1
—5/\(d + id(d +1))logn,

is at most one change point . Then, theABIC(x, v, (i) [1l. DIVIDE-AND-CONQUER-BASED SEGMENTATION

value fori, <i < n —imn, IS computed as In this section, we present three implementations of the
n R i ) n—i R divide-and-conquer paradigm for detecting multiple change

ABICx,y,3(1) = 5 log |3] =  log B, | — ——log [Xy:| points in an analysis window. Note that the proposed ap-

1 1 proaches are based on the same assumption as that of
—gAd+ 5d(d+1))logn, (4) WinGrow, i.e., the feature vectors of audio segments from



ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 4

Algorithm 1 ¢P—DACDecl(V) However, if two or more segments in the analysis win-
Egglljri;e_ic";{ ttfrl]ee eslg?lc))lfsfhgri?deowoints detectediin dow are derived from the same speaker, the performance of
Begn gep DACDecl may decline dramatically. For example, in Fig. 4

1) detect whether there is a change point/ih by OCD-Chen; (a), the first and third segments are derived fr_om the same
2) /iICheck termination speaker (Speakerl), while the second segment is derived from

i]fv(the;e is no change point i or the size ofli is smaller than gnother speaker (Speaker2). When applying OCD-Chen to the
"CP < ¢ llempty set audio stream in Fig. 4 (a) with the samevalue of BIC used
goto End; /ireturn in the example in Fig. 2, we obtain th®BIC' curve in Fig.
3) I”?i%’ige e o - detected in 1) 4 (b). The curve still has two peaks at the change paiits
;\,ideew ,emf, 3,\',1325’& '\zind%;gfvl 'gnJ’WQ, ati: and C, because thel; hypothesis models the distribution
4) //Solve sub-instances of the data samples better at change points than it does at
5 ,?(;V,‘ﬁb;;eDACDEd(Wl); CPw, — DACDecl(W2); non-change points. We use Figs. 4 (c) and (d) to explain
CP « U CPy, UCPyw,: this perspective. Fig. 4 (c) diagrammatically illustrates the two
End hypotheses af’;, where all the data samples of Speaker2 (the

circles) are used with those of Speakerl (the stars) to estimate
one Gaussian itt{;. In contrast, at the non-change poftin

different speakers are derived from different Gaussian distribid- 4 (0). as shown in Fig. 4 (d), the data samples of Speaker2
are divided into two parts, each of which is combined with the

utions.
data samples of Speakerl (one with the stars and the other with
the diamonds) to estimate a distinct Gaussiattfin Clearly,

A. The DACDecl approach the H, hypothesis in Fig. 4 (c) fits the data better than that in

Fig. 4 (d).

We use the example in Fig. 2 to explain the concept of |n this example, we have peaks @ and C,. However,
divide-and-conquer-based segmentation. It is assumed thatt@r ABIC values are negative, and no change point will be
audio stream in Fig. 2 (a) consists of three homogeneoyigtput by OCD-Chen because, as illustrated in Fig. 4 k),
segments derived from different speakers. Initially, OCD-Chejver-fits the data samples of Speakerl and obtains a smaller
is applied in an analysis window that covers the entire audBC value than that offf,. We may adjust the value of
stream. After the change poirdt; has been detected withso that, atC,, the ABIC value will be positive (i.e., the
the ABIC curve in Fig. 2 (b), the audio stream is dividechypothesis test favor&l;). However, this may result in false
into two analysis windows. Then, OCD-Chen is recursivelylarms when the recursive process continues to detect change
applied in these two windows to search for the remainingpints in a homogeneous segment. In other words, it is difficult
change points so thaf’; can be detected. This approachio determine a reliable value for an audio stream like the
called DACDec1, allows us to detect the change points byegample in Fig. 4 (a). Moreover, it is infeasible to adjust

divide-and-conquer (DAC) strategy. As described in Algorithihe value of A for each specific audio stream in practical
1, DACDec1 terminates (returns) if no change point is detectggplications.

by OCD-Chen in the analysis window or the size of the

analysis window is smaller than a pre-defined value, denoted

as N, samples. In th®ivide stage, the analysis window isB- The DACDec2 approach

partitioned into two sub-windows at the change point detectedTo overcome the performance limitation caused by un-

by OCD-Chen. Then, the sub-windows are input to DACDeakliable ABIC measurements of the over-fitting cases in

in the Solve sub-instancestage. Finally, theCombinestage DACDecl, we developed an alternative implementation of

outputs all the change points detected in step 1) and steptHg divide-and-conquer paradigm, called DACDec2. In this

(i.e., theSolve sub-instancestage). approach (Algorithm 2), thé\ BIC value is not used to check
1) Discussion:In general, when the data samples are d#ie termination in th&€€heck terminatiorstage because it may

rived from more than one Gaussian distribution, two Gaussialpg unreliable, as illustrated in Figs. 2 and 4. The recursive

(the H; hypothesis) fit the distribution of the data better thaprocess terminates (returns) when the size of the analysis

one Gaussian (th&, hypothesis) if the samples belonging tavindow is smaller thanV,,;, samples. In théDivide stage,

the same Guassian are used together to estimate the pardhee-analysis window is partitioned into two sub-windows at

ters. For example, Fig. 3 schematically illustrates a case whéhne time indexi that has the largesh BIC' value located by

the three audio segments are derived from three differ€ed€D-Chen. Then, the sub-windows are input to DACDec2

speakers and their feature vectors distribute as three Gaus#iathe Solve sub-instancestage. In theCombinestage,? is

clusters. This case explains why theBIC values atC; and labeled as a change point if taeBIC value att calculated

Cs in Fig. 2 (b) are positive. From the above perspective, if the the Divide stage is positive; otherwise, it needs to be

homogeneous segments in the analysis window of DACDewgrified using its two neighboring segmeritsand ). In the

are always derived from different speakers during the recursiverification process{ is only labeled as a change point if

process, we can be confident that, at each change point, IhBIC{X,y}(f) > 0.

H, hypothesis will fit the data better than ti#& hypothesis; Fig. 5 illustrates a recursive tree that simulates the recursive

thus, theABIC value will be positive. process of DACDec2 on the audio stream in Fig. 4 (a). We
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Fig. 2. (a) An audio stream comprised of three speech segments, each derived from a distinct SheakdiC are the change points. (b) TReBIC
curve obtained by applying OCD-Chen to the audio stream in (a).

Algorithm 2 ¢ P—DACDec2(V)

Require: W: the analysis window
Ensure: CP: the set of change points detectedlin
Begin
1) //ICheck termination
if (the size of W is smaller thanV,,,;,)
CP «— ¢; llempty set
goto End; //return
2) /IDivide
apply OCD-Chen tdV and letf be the time index with the largest
ABIC value;
divide W into two sub-windows\W; and W, at{;
3) //Solve sub-instances
CPyw, «— DACDec2(W1); CPy, <+ DACDec2(W2),
4) /[/[Combine
if (ABIC{WhWﬂ({) calculated in 2) is positive)

CP —tUCPw, UCPy,; Fig. 3. An illustration that data samples distribute as three Gaussian clusters.
else A For this case, generally, two Gaussiati J fit the distribution of the data

let X’ be the segment on the left ofn 11 and) be the segment petter than one Gaussiaffg) if the samples belonging to the same Gaussian
on the right oft in W; cluster are used together to estimate the parameters.

if (ABIC{%y}(tA) > 0) /lf is a change point
C!D —tuU CP‘/V1 @] CPW2§
else /t is not a change point
mergeX and);
CP «— CPw, UCPw,; 1) Advantages of DACDecl and DACDec®le use Fig.

End 6 to explain the potential advantages of using DACDecl and
DACDec? for speaker change detection. In the figure, there
are two change pointg;; andCs,. For WinGrow, if there is a
false alarm error at' nearC}, the detection process restarts

assume that there are no miss and false alarm errors in @, but the false alarm error may lead to miss errors in
detection process. In the figure, each tree node correspoHifs subsequent detection process. For example, if the three
to a divide-point(i.e., f) in the analysis window; the numbersegments are derived from different speakers, like the case in
inside the node indicates the order of the division, while tHag. 2 (a), it is very likely thatC; will be detected and’,
number below the node indicates the order in which the dividelll be missed because the analysis window does not contain
point is verified in theCombinestage_ In F|g 4 (b), Node 1 sufficient data from Segl On the other hand, if Segl and Seg3
(C») has a negativé BIC value in theDivide stage; however, are spoken by the same speaker and Seg2 is from another
it will be labeled as a change point by the verification proce§§urce,C1 may be missed for the same reason mentioned
with segmentgc, d, e, # and{g, h, i} in the Combinestage. above. If C; is missed, we may suffer from the unreliable
Node 2 Cl) has a posmveﬁB[C’ value in theDivide stage; ABIC measurement issue as the example in Flg 4 when
thus, it is labeled as a change point and verification is n@{CD-Chen continues to detecty; thus, C; may also be
necessary. Segmenfs} and {b} will be used for verifying Missed.

Node 3; segmentéc, d} and{e, f} will be used for verifying In DACDecl, theDivide stage partitions the audio stream
Node 4, and so on. into two sub-streams at the point with the largest positive
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(a) An audio stream comprised of three speech segments; the first and third segments are derived from the same speaker (Speakerl), while the

second is derived from another speaker (Speaker2). (b)AB&C curve obtained by applying OCD-Chen to the audio stream in (a). (c) The diagram of
the hypothesis test at the change pdint in (b). (d) The diagram of the hypothesis test at the non-change point(b).
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ABIC value. As shown in Figs. 4 (c) and (d), change points
usually have largetABIC values than non-change points;
thus, false alarm errors may only occur after the true change
points have been detected, and they will not lead to miss errors
in the subsequent detection process. For example, in Fig. 6,
the false alarm errors in Segl only occur after has been
detected, and so on.

In DACDec?2, false alarm errors may not cause a true
change point with a positiv BIC' value calculated in the
Divide stage to be missed; however, the false alarm points’
neighboring true change points with negat®e37C values
calculated in theDivide stage may be missed. For instance,
for the example in Fig. 4, DACDec2 first divides the audio
stream atC, and generates the recursive tree shown in Fig.
5. Cy needs to be verified in th€ombinestage because its
ABIC value calculated in th®ivide stage is negative, as
shown in Fig. 4 (b). However, if there is a false alarm point
nearCy, it may be missed. We explain this phenomenon as

Fig. 5. A recursive tree that simulates the recursive process of DACDefgllows. In Fig. 5, the boundary between segmefesand{f}

on the audio stream in Fig. 4 (a).

(i.e., Node 6) is verified befor€s. If it is detected as a change
point, {f} and {g, h, i} are used to verifyfC>. However, the
number of data samples in segméghf may be insufficient to



ACCEPTED TO APPEAR IN IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 7

Audio stream

L c
Seg1 1 Seg2 2 Seg3 Seg1, Seg2, Seg3 | Seg4
‘ | w >
DACDec1 or
DACDec2
!
]vini
— False alarm
: Analysis ! ‘
WindOW ————
]Vini
— Fig. 7. Diagram of the detection process of SeqDACDec1 and SeqDACDec?2.

If a change point is detected in the fixed-size analysis window by DACDec1
or DACDec2, the window is moved to the change point with the largest time
index. Otherwise, it is moved forward byL samples, wherd., denotes the
window size, and; > 0.

Fig. 6. An example of the WinGrow detection process. The audio stream
contains two change points; and C2, and the detection process generates

a false alarm error aF'. we use FixSlid instead of OCD-Chen to detect the divide-
points of an input audio stream. As shown in Fig. 8 (a), given
the distance curve obtained by FixSlid using the GLR [9]
obtain a reliableA BIC' measurement, thus, may be missed. distance measure, the time indexassociated with the peak
On the other hand, if DACDec?2 first divides the audio streathat has the largest GLR value within the intervalpRange,
at C; and outputs a false alarm point &t nearC1, like the ¢+ pRange] is considered a divide-point. In this example, all
case in Fig. 61 may be missed for the same reason. Evethe peaks except are divide-points. LeD P,.; be the set of
s0, missingC; may not cause DACDec2 to migs, because, divide-points obtained by FixSlid. As described in Algorithm
in the Divide stage,Cy will be determined whether it is a 3, DACDec3 returns if a divide-point is not found inP,.;.
change point using complete, pure Seg2 and Seg3; therefdnethe Divide stage, the analysis window is partitioned at the
it is very likely that the ABIC value will be positive. In time index of the divide-point with the largest GLR value.
contrast, WinGrow may not be able to use complete, puféen, in theCombinestage, each divide-point is evaluated to
Seg2 and Seg3 for speaker change detectid@ry ifs missed. determine whether it is a change point based onAt®RIC
2) Sequential segmentation by DACDecl and DACDec2measurement of its two neighboring segmehitand V.
For a long audio stream, such as a one-hour broadcast newshe major difference between DACDec2 and DACDec3
program, the segmentation task becomes computationally ig-as follows. DACDec2 detects change points by OCD-
tractable when DACDecl or DACDec2 are used to detechen in theDivide stage. Then, only the divide-points with
change points. Moreover, if the initial analysis window comegative ABIC values calculated in th®ivide stage are
tains too many segments, it may be difficult for OCD-Chen tgerified by segment merging based on thé/C values of
find an appropriate\ value to obtain robush B/C' measure- their neighboring segments in ti@mbinestage. In contrast,
ments for the various hypothesis tests in the recursive proceSaCDec3 detects change points by verifying all the input
Therefore, in practical applications, we apply DACDecl andivide-points indicated by FixSlid using segment merging. For
DACDec? in a large analysis window of fixed-size (e.g., 28xample, if we apply FixSlid to the audio stream in Fig.
seconds) that moves from the beginning to the end of tBeand obtain the distance curve in Fig. 8 (a), the recursive
audio stream to detect the speaker changes sequentially. free for DACDec3 will be the same as that in Fig. 5. In this
proposed sequential segmentation algorithms, SeqDACDegikse, DACDec?2 finds the change poiit using OCD-Chen
and SeqDACDec2, are shown in Fig. 7. In SeqDACDecl (@i the Divide stage, while DACDec3 finds it in th€ombine
SeqDACDec?2), if a change point is detected in the fixed-sizeage using segment merging; however, both DACDec2 and
analysis window by DACDecl (or DACDec?2), the windowDACDec3 find the change poirtt; in the Combinestage.
is moved to the change point with the largest time index. There is a close link between DISTBIC [9] and DACDec3.
Otherwise, it is moved forward by)L samples, wherel. |n DISTBIC, a distance curve is first generated by FixSlid, and
denotes the window size, amd> 0. Note that a smal) will  then the “significant” local maximums on the distance curve
allow a missed change point to be checked again by DACDegfe evaluated to determine whether they are change points

(or DACDec?) in the subsequent fixed-size analysis windowy a sequential, left-to-right (in time order) segment merging
Like WinGrow, SeqDACDecl and SeqDACDec2 are suitablgrocess. As shown in Fig. 9, a local maximum is significant

for on-line applications. if |d(max) — d(min)| > ac and |d(max) — d(mlin)\ > ao,
where o is the standard deviation of the distance values on
C. The DACDec3 approach the distance curveq is a positive real number, anthin

The third implementation (DACDec3) of the divide-and@nd min are, respectively, the locations associated with the
conquer paradigm is detailed in Algorithm 3. In DACDec3right minimum and left minimum around the local maximum.
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Algorithm 3 CP—DACDec3W, DPsct, GLRset)

Require: W: the analysis window
DPset = {DP1,...,DPy}: the divide-points inl¥ obtained by FixSlid using the GLR distance measure
GLRset = {GLR1,...,GLRN}: GLR; denotes the GLR value d@P; fori =1,2,---,N
Ensure: CP: the set of change points detectediin
Begin
1) //ICheck termination
if (DPset Is empty)
CP — ¢; llempty set
goto End; //return
2) //Divide
search inD Pse¢ and letD P, be the divide-point whose GLR value is the largestiii Re¢;
let ¢ be the time index ofD Py; divide W into two sub-windows¥; and Wa, att;
divide D Ps¢; into two sub-setsPPsety = {DPi,...,DPy_1} and DPger2 = {DPy41,...,DPN};
divide GLRse¢ into two sub-setsGLRset1 = {GLR1,...,GLR;_1} andGLRsct2 = {GLRk+1,...,GLRN};
3) //Solve sub-instances
CPW1 — DACD@C?)(WL DPsetl, GLRSSH); C'}DV(/2 — DAC’I)€C3(VV27 DPset27 GLRsetz);
4) //[Combine
let X be the segment on the left 6fin W; and) be the segment on the right 6fin W;
if (ABIC{x () > 0) /i is a change point
CP «— tUCPy, UCPy,;
else /£ is not a change point
mergeX and);
CP «— CPw, UCPy,;

End

If DISTBIC takes the divide-points of DACDec3 as changéation task because the goal is to merge adjacent segments
point candidates to be verified (we denote this approach iato longer segments. For example, in Fig. 5, the goal of the
DISTBIC_pR), it is identical to applying DACDec3 in thatsegment merging process in the speaker segmentation task is
the recursive division is performed in a right-to-left mannetp merge segments} and{b} into one larger segment and to
whereas the recursive segment merging is performed in a lefterge segmentsg}, {h} and{i} into another larger segment,
to-right manner. As shown in Fig. 8 (b), Node 8 is verifiedather than to merge these five segments into one cluster.
by segments{a} and {b} first, then Node 7 is verified by In FixSlidHAC_pR, if segment{h} is incorrectly merged
segmentga, b} and{c}, and so on. with a segment of a different speaker, s@g}, the error

DACDec3 should be more effective than DISTBIER will propagate in the following clustering process. DACDec3
because it evaluates the divide-points with smaller GLR valuB¥ght not suffer the same fate because its locality constraint
to determine whether they are change points before those vffiforces that segmeih} is first checked with its neighboring
larger GLR values. In contrast, in DISTBIPR, the divide- Ssegment{g} or {i}. Therefore, we think DACDec3’s segment
points are simply verified sequentially without considerinfl€rging process meets the goal of speaker segmentation better
the GLR information. The advantage of DACDec3 can p@an that of FixSlidHACpR. Moreover, it is clear that the
seen by comparing the recursive tree of DACDec3 in Fi§omputational cost of FixSlidHAGR is much larger than
5 to that of DISTBICpR in Fig. 8 (b). In DACDec3,C; that of DACDec3 due to the essential computational cost of
may be verified with segmentga, b} and {c, d, e, #, the HAC-based global clustering process.
which are complete homogeneous segments of Speakerl andkeé DACDecl and DACDec2, DACDec3 can also be
Speaker2, respectively; whereas, in DISTBIR, C; can only applied sequentially in a fixed-size analysis window for on-
be verified with segmentga, b} and{c} or segmentgb} and line applications.

{c}, where only a small portion of Speaker2’s data is used.

In addition to the recursive (sequential) segment merging IV. COMPUTATIONAL COST ANALYSIS
process of DACDec3 (DISTBI(pQR), one can use the hier-
archical agglomerative clustering (HAC) to merge the seg- WinGrow, DACDecl, and DACDec2 detect acoustic
ments obtained with DACDec3's divide-points [7], [8], [30].changes by applying the OCD-Chen process to the analysis
We denote this segmentation approach as FixSlidH#&C window. From Eq. (4), it is clear that the computational cost
Compared to DACDec3 (or DISTBIQR), which performs of ABIC is mainly from the cost of calculating covariance
segment merging locally, FixSlidHA®R performs segment Matrices, which is proportional to the number of data samples.
clustering globally. When performing HAC, each segment Iset the time cost of calculating\ BIC' with m samples be
considered as a cluster initially; then, in each merging step, thg, Wherer represents the time unit; them?r denotes the
two clusters with the smallest distance are merged into a néf#e cost of applying OCD-Chen to an analysis windowof
cluster. The globality feature of FixSlidHA®R is particularly samples,
beneficial to the speaker diarization task because the segment

. " 1 ) . . .
merglng process groups the Segments into clusters such thdbs mentioned |n. Sgctlon 1I-B1, thA BIC value |S nOF Computed for
samples at the beginning and the end of the analysis window. However, to

e‘%Ch cluster Clontains segments Of_ the same speaker. Howeyg ify the analysis, we assume that the31C value is computed for each
this feature might not be as beneficial to the speaker segmesimple of the window.
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(a) samples, | \ | | .
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1 2 v l' cee k_l k
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a c € i .. .
L ;4 ; 8 ; h L divide-point
: | : HE :
G Fig. 10. An audio stream comprised kff- 1 homogeneous segments, each
containingm samples. The stream is divided at théh change point.
Recursive
tree for costs of applying DACDecl in the left sub-stream and the
DISTBIC_pR right sub-stream, respectively. We halig0) = m?>r, since it
Q represents the time cost of applying OCD-Chen ta-aample
%)) homogeneous segment.
9 C We assume that the division occurs at each change point
a M p with equal probability; therefore, the average time cost of
(b) DACDecl is
k
1
Fig. 8. (a) The distance curve obtained by FixSlid using the GLR distancely (k) = — Z(Tl (i — 1)+ Ti(k — i) + (k+ 1)*>m?r. (6)
measure, where the time indéxassociated with the peak that has the largest k i—1

GLR value within the interval{{ — pRange, t + pRange] is considered a . . . . . .
divide-point in DACDec3. On this curve, all the peaks, excgptre divide- After the algebraic manipulation detailed in Appendix A,
points. (b) The recursive tree representation of DISTBIR based on the \we obtain

divide-points in (a) for the audio stream in Fig. 5.

Ti(k) =~ (3(k +1)* = 2(k + 1) In(k 4 1))m>r
= O(K*m?7). 7
To simplify the analysis, we assume that each homogeneous

segment in the input audio stream (i.e., the initial analysisz) For DACDec2: Compared to DACDecl, DACDec2 in-
window for DACDec1, DACDec2, and DACDec3) contains curs an additional time cost in the@ombinestage as it has

samples. Moreover, we assume the detection process is perft%chetermine whether the divide-point with a negativé@IC

l.e., miss and false alarm errors never occur. ) value calculated in thBivide stage is a change point. The cost
1) For DACDecl: Let Ti(k) denote the time cost of s o, phecause each of the divide-point's two neighboring

a}pplylng DACDecl to an audio stream &f change pomts segments containg: samples. To simplify the analysis, we

(i.e., k +1 homogeneous segments). When the audio stregy;me that each divide-point must be verified, even though

is divided at thei-th change point, as shown in Fig. 10, Weis A B7¢r value calculated in thdivide stage is positive.

obtain the following recursive expression Bf(k): Hence, the average time cost of DACDec2 is

Ti(k) =Ti(i — 1)+ Ti(k —4) + (k+1)*>m?r,  (5) k

(To(i — 1) + To(k — i) + (k+1)*m?7 + 2mr.
1

T =

Th(k) =
where (k + 1)?m?27 is the time cost of finding the divide- 2(k) =
point by OCD-ChenTy(i — 1) and Ty (k — 4) are the time (8)
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Unlike DACDecl, DACDec2 recursively partitions each hoanalysis windowl initialized with a small number ofV;,;
mogeneous segmentof samples until the analysis window issamples grows repeatedly By, samples until it contains more
smaller than the pre-defined minimum valig,;,,. Therefore, thanm samples, so that there is at least one change point in
T5(0) is equivalent to the time cost of applying DACDec?2 tdV. SupposelV needs to grow toym samples to detect the
an m-sample stream in which each sample can be a dividehange point, wherg > 0; then, the time cost of sequentially
point. The cost of finding a divide-point in an-sample stream detectingk change points will be
in the Divide stage ism?. In the Combinestage, the cost
of verifying the divide-point is at most.m because the two
segments used for verification are sub-segments ofnthe

(ym—=Nini)/Ng
Ti(k) =k[INZ;+ > (Numi+iNy)%r. (14)

sample segment. Therefore, the upper boun@>g0) is =t
m After the k-th change point has been detected, the detection
T'(m) = 1 Z(T/(Z- —1)+T'(m —1i)) + m?>r +mr, (9) Process continues to search in the last homogeneous segment;
m = the time cost is
whereT”(0) = 0. After the algebraic manipulation detailed in (m—=Nini)/Ng
Appendix B, we obtain C, = [N2, + Z (Nini +iNy)?]T. (15)

=1
T»(0) <T'(m) ~ (3m+4 —4In(m +1))(m + 1)7.  (10) ) o
In practical applications, botlV;,; and N, are set at small
Then, we can solve the recursive equation in Eq. (8) witfalues. To simplify the analysis, we assumvg,;~N,. Then,
T5(0) in Eg. (10). After the algebraic manipulation detailed ifihe time cost of WinGrow is '
Appendix C, we obtain

To(k) < 3k +5—2In(k + 1)) (k + 1)m?r (vm—N,)/N, (m—Ny)/N,
+(9+2Ink —2In(k+1) —4In(m+1))(k+ 1)mr ~ k| Z (iNg)2)7 + Z (iN,)?r
+4—4ln(m+ 1))(k+ )7 i=1 i=1

= O(K*m?7). (11) _ (73m3 7 ¥2m? n ’ymNg)k
~ V3N, 2 6
- m3  m?  mN,
3) For FixSlid, DACDec3, and DISTBI@R: Suppose +(3T_ 7+ 5 )T

FixSlid uses GLR ABIC) as the distance measure and the g

analysis window consists @ samples. Then, the time cost = O(km*7). (16)

of FixSlid is

T3(k) = 2wt)(k+1)m 5) Discussion: From Egs. (7), (11), (12), (13), and (16),
= O(kmr) (12) it is obvious that FixSlid, DACDec3, and DISTBIPR are

more efficient than DACDecl1, DACDec2, and WinGrow.
DACDecl and DACDec2 are more efficient than WinGrow
DACDec3 and DISTBICpR incur a higher time cost thanwhen the input audio stream is composed of long homoge-
FixSlid when verifying divide-points in the segment mergingeous segments. For example, if the frame rate is 100 frames
process. Suppose the audio stream is equally divided imter second (i.e., there are 100 feature vectors for a one-second
ktDm gyp-segments of3 samples, where3 > 0. Since audio stream), it is appropriate to set the valuévgf; and N,
we assume that the segmentation derived by DACDec3 amd100. Moreover, the value of can be set at 1.5 generally.
DISTBIC_pR is perfect, each of the change points is also&hen, for a 30-second audio stream (which consists of 3000
divide-point and the time cost of segment merging verificatidieature vectors) containing only one change point (kes 1
is less thar2m for each divide-point. Therefore, the time cosand m = 1500), the speedups of DACDecl and DACDec2

of DACDec3 and DISTBICpR is less than over WinGrow are 2.55 and 1.78, respectively. When there
(k + )m is no change point in the 30-second stream, the speedups of
Ty(k) = Qwr)(k+1)m+ (——— — 1)2mr DACDecl and DACDec2 over Wingrow are 10.51 and 3.51,
5 Z respectively. In contrast, when the audio stream is composed of
= O(km*1). (13)

short homogeneous segments, WinGrow is more efficient than
DACDec1 and DACDec2. For example, for a 30-second stream

4) For WinGrow: We analyze the case where the maximuriontaining five change points (i.é:,= 5 andm = 500), the
window sizeN,,.. is large enough to ensure that the searciPeedups of DACDecl and DACDec2 over WinGrow are 0.42

process always restarts at a true change pdinthis case, the and 0.37, respectively.

2Without this assumption, the time cost analysis for WinGrow might be
intractable. However, this assumption is appropriate for many kinds of real-
world data. For example, in our experiments on the broadcast news data\N . .
described in Sec. V, it is appropriate to S¥},q, at 20 seconds, which e conducted experiments on a synthetic data set us-

is longer than most of the homogeneous segments in the data set. ing SeqDACDecl and SeqDACDec2 to verify the unreliable

V. EXPERIMENTS ON SPEAKER SEGMENTATION
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ABIC measurement issue in DACDecl, and on two real [
world broadcast news data sets to evaluate the performanc
of the baseline and proposed segmentation approaches. sl
For feature extraction, we used a 32-ms Hamming windov
shifted with a step of 10-ms to extract 24 mel-frequency _
cepstral coefficients as the acoustic features [11]. There we < |
100 24-dimensional feature vectors in a one-second aud g
stream.
For the performance evaluation, we used the Receive< —#— SeqDACDec1, L=10 sec
Operating Characteristic (ROC) curve to show the various ., | £ gzggﬁggggi: 1220 sec
miss detection (MD) rates and false alarm (FA) rates yielde: —%- SeqDACDec2, L=10 sec
by adjusting the threshold parameters. A true change point jﬁ ggggﬁgggggz 1720 e
was counted as a miss detection if there was no hypothesiz
change point withint—¢&, t+¢] (a 2¢-second window centered

ont); and a hypothesized change padintas counted as a false . ‘ ‘

I I I I
10 15 20 25 30 35 40 45 50

35

larm

251

alarm if there was no true change point within— ¢, 4 £]. Miss Detection Rate (%)
The miss detection rate (MDR) and false alarm rate (FAR) are
defined as Fig. 11. ROC curves obtained by running SeqDACDecl1 and SeqDACDec?2

on the synthetic data using 10-second, 20-second, and 30-second analysis
number of MD windows. L. denotes the size of the analysis window.

number of true change poirits
number of FA

number of hypothesized change points window are derived from different acoustic sources is not met.

MDR=100% x

FAR=100% x

A. Experiments on the synthetic data B. Experiments on broadcast news data

1) Data set description:We used the training data of six 1) Data set description:We evaluated FixSlid, FixSlid-
speakers from the 2001 NIST speaker recognition evaludAC_pR, DISTBIC pR, DISTBIC, WinGrow, and the pro-
tion corpus [34] to create three artificial audio streams @osed methods on two broadcast news data sets. The broadcast
conversational speech as the synthetic data set. The spaemhis data in the 2003 NIST rich transcription evaluation
from speaker#5077 and speaker#5232 was divided into threeta [32], which is comprised of six 30-minute audio streams
second utterances and interlaced to form an audio streanredorded from channels ABC, NBC, CNN, PRI, VOA, and
conversational speech of two speakers. In the same way, B, was used as the evaluation set (denoted as RTO03).
speech from speaker#5326 and speaker#5333 was used to fohmee one-hour broadcast news programs (PTSND-20011203,
the second audio stream; and the speech from speakers#3248ND-20011204, and PTSND-20011205) selected from the
and speaker#5269 was used to form the third audio stredATBN corpus [31] were used as the development set (de-
There were 231 speaker change points in total in the thneeted as MATBN3hr). To be consistent with RT03, each file
audio streams. in MATBN3hr was divided into two 30-minute audio streams

2) Experiment results:Fig. 11 shows the ROC curvesin the experiments. According to the manual transcriptions,
obtained by running SeqDACDecl1 and SeqDACDec?2 on tiieere were 1261 and 444 speaker change points in MATBN3hr
synthetic data with different analysis window sizgsvas set and RTO3, respectively. Note that, in the evaluation, we
at 0.25, N,,.;, in DACDecl and DACDec2 was set at onégnored the hypothesized change points that locate in the non-
second (i.e., 100 samples), and the penalty fastor ABIC  speech regions labeled in the transcription when evaluating the
was set at 0.7 initially and increased to 1.7 in 0.05 incremenggegmentation errors because the detection of acoustic changes
The ABIC distance was evaluated every 0.1 seconds in baotlithin the non-speech regions was outside the scope of this
approaches; that is, the resolution for change point detectistudy.
was 0.1 seconds. The tolerangefor counting the number  Fig. 12 shows the empirical cumulative distributions of the
of miss detection or false alarm was set at 0.5 second#&e of homogeneous segments in the two data sets. As shown
From the figure, we observe that SeqDACDec2 outperforrits the figure, the average length of the segments in RT03 is
SeqDACDecl for every window size. Moreover, SeqgDACDed®@nger than that in MATBN3hr.
yields similar performances at different window sizes, whereas2) Parameter setting and system descriptidfor FixSlid,
the performance of SeqDACDecl declines significantly wheme used the GLR distance as the distance measure of two
the window size is increased from 10 seconds to 20 adjacent windows. In the experiments, the window size was
30 seconds. In other words, SeqDACDec2 is more robusted at two seconds; and the value ofused to evaluate
to the size of the analysis window than SeqDACDecl. Ttike “significant” local maximum, as shown in Fig. 9, was
experiment results conform to the discussion in Sec. lidet at 0.4 initially, and increased to 2 in 0.05 increments
that is, DACDecl might not work as well as DACDec?2 ifto obtain the ROC curve. For DACDec3, DISTBIgR, and
the condition that the homogeneous segments in the analysisSlidHAC_pR, the parametepRange was tuned with the
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segments in MATBN3hr and RT03.
Speaker times

; Fig. 13. A multi-stage HAC that consists of BIC clustering (HAC-BIC),
development set. For WinGrow, the valuesl‘ﬁj and N, were gender/bandwidth classification and SID clustering (HAC-SID).

set at one second any,,,,.../4 seconds, respectively; and the
values of N;,; and N,,,, were tuned with the development

set. For SeqDACDecl and SeqDACDeg2yas fixed at 0.25;
and L and N, in DACDecl and DACDec2 were tunedters 7; and r;, which are MAP-adapted from the universal

with the development set. For each BIC-based segmentattmackground model (UBM [36]B. Here, only Gaussian mean
approach, various values forABIC were applied in order vectors were adapted, and the relevant factor for controlling
to obtain the ROC curve. Like the above experiments on thige adaptation rate was experimentally set atA6.Rgasas
synthetic data, the resolution for change point detection wasveals the similarity between; and 7;. Therefore, when
0.1 seconds for all the approaches. However, the tolerargggplying this measure in HAC, the two clusters with the largest
¢ for counting the number of miss detection or false alar®@LRq 5, value are merged; and the clustering process is
was set at one second rather than 0.5 seconds. Basically,terninated when it is smaller than a pre-defined stopping
made this change because of the limited precision of humimeshold. We used 15 MFCCs and energy plus their delta
reference annotation. coefficients, which were normalized by feature warping, as
For FixSlidHAC pR, we first applied FixSlid with the the speech feature for HAC-SID [7]. We used the 1998
threshold parametepRange to segment the input audio DARPA/NIST HUB-4 broadcast news evaluation test data to
stream, then we pruned non-speech regions within the auttiain the UBMs forWM andWF, and the NIST 2000 speaker
segments and grouped the segments using HAC with multiprognition evaluation corpus fofM and TF; each of the
stages, which have been applied in state-of-the-art speak@Ms contained 128 mixture Gaussians.
diarization systems [8], [7], [35], [30]. As shown in Fig. 3) Experiment results\We first evaluated all the segmen-
13, we applied HAC withABIC' as the inter-cluster dis- tation approaches on MATBN3hr. Fig. 14 (a) shows the ROC
tance measure (HAC-BIC) for initial clustering; the clusteringyrves obtained by DACDec3 and DISTBIER with different
process was stopped if the smallesB/C value among all ,Range values. From the figure, we observe that DACDec3
the cluster pairs was larger than zero. Then, we classified mperforms DISTBICPR; and the best setting pRRange for
resultant clusters into four classes, namely, male speech WifACDec3 and DISTBICpR are 0.5 seconds and one second,
studio/wide-bandwidth condition\YM), male speech with respectively. Table | shows the results of FixSlidHAR,
telephone/narrow-bandwidth conditio\i), female speech where for eachpRange case, various settings for and the
with studio condition \VF), and female speech with telephon&topping threshold in HAC-SID were evaluated to obtain the
condition (TF). After the gender/bandwidth classification, weowest equal error rate (EER). From the table, we observe that
applied HAC with the cross log-likelihood ratio derived fronFixSlidHAC_pR achieves the lowest EER withRange =
GMMs as the inter-cluster distance measure (HAC-SID) to thes seconds. Both DACDec3 and DISTBIGR achieve a
four classes, individually [7]. The cross log-likelihood ratio isower EER compared to FixSlidHA®R; this shows that
defined as DACDec3's recursive and DISTBI®R'’s sequential strategies
1 p(mi| M) 1 p(mj| M;) for segment merging outperform the hierarchical agglomera-
CLRGMwm (i, 7)) = ;ilog p(m|B) + n og Wa tive approach. . o
17) We also evaluated DACDec3 using the “significant” local

where M, and M; are, respectively, the GMMs for clus-maximums obtained by FixSlid as the divide-points (denoted
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TABLE | . . .
THE EERS oF FIxSLIDHAC_PR, DACDEC3, AND DISTBIC_PRon  achieves a higher speedup over WinGrow on RTO3 than

MATBN3HR, WHEREM AND F DENOTE THE MISS DETECTION RATE AND  On MATBN3hr. This is because the homogeneous segments

THE FALSE ALARM RATE, RESPECTIVELY in RTO3 are longer than those in MATBN3hr on average,
Approach pRange (in second)| EER (in %) as shown in Fig. 12, and these approaches achieve higher
FixSIidHAC_pR 1 M:26.05, F:24.60 d WinG f dio st ised of
15 M2T.00 F22.22 speedup over WinGrow for an audio stream comprised o
2 M:24.35, F:25.10 longer homogeneous segments, as mentioned in SecacflV (
DACDec3 05 M:17.61, F:17.46 Egs. (7), (11), (12), (13), and (16)).
DISTBIC_pR 1 M:19.19, F:18.44

VI. APPLICATION TO SPEAKER DIARIZATION

Speaker diarization, also known as the “who spoke when”
as DACDec3SP). We ran DACDec35P and DISTBIC with task, aims to group together speech segments produced by the
a = 04 anda = 0.85. From Fig. 14 (b), it is clear that same speaker within an audio stream [8]. It has been studied
DACDec3 SP and DISTBIC substantially outperform FixSin various data domains, e.g., conversational telephone speech
lid, while DACDec3 SP outperforms DISTBIC. Moreover,[16], broadcast news data [7], [35], and meeting data [37].
DACDec3 with pRange = 0.5 seconds (the line marked Speaker diarization systems usually consist of two core
with diamonds) slightly outperforms DACDec8P. In our components, namely speaker segmentation, which chops the
experiencepRange is easier to tune than. Therefore, we audio stream into homogeneous segments, and speaker clus-
did not analyze DACDec35P and DISTBIC further in the tering, which groups the homogeneous segments into speaker
remaining experiments for speaker change detection. clusters. Currently, leading speaker diarization systems usually

When conducting the experiments, we found that it wasgpply hierarchical agglomerative clustering (HAC) to perform
appropriate to selV;,; at three seconds anll,,,,, at 20 sec- speaker clustering after segmentation [7], [35], [30]. Here, we
onds for WinGrow. For both SeqDACDec1 and SeqDACDec@ould like to evaluate the performance of the segmentation
it was appropriate to sefV,,;, at two seconds and theapproaches discussed above in terms of speaker diarization
window size L at 20 seconds. Fig. 15 (a) shows the RO@rror by integrating them with the multi-stage HAC in Fig. 13.
curves obtained by SeqDACDecl with analysis windows gthe diarization system that combines SeqDACDec1 and the
different size. Unlike the results for the synthetic data imulti-stage HAC is denoted as SeqDACDeHRC. Similarly,

Fig. 11, the results with 10-second and 20-second anatjfe diarization systems based on the segmentation meth-
sis windows are similar. This is because, in the broadcasls SeqDACDec2, DACDec3, WinGrow, DISTBI@GR, and
news data, if a 10-second or 20-second analysis wind@®wSlid are denoted as SeqDACDe¢PAC, DACDec3 HAC,
contains multiple homogeneous segments, the segments \&ieGrow_HAC, DISTBIC pR HAC, and FixSlid HAC, re-
usually derived from different speakers. For SeqDACDecgpectively.

the results for 10-second, 20-second, and 30-second analysi the implementation, following the speech activity detec-
windows are similar, as shown in Fig. 15 (b). The RO@on (SAD) method in [7], the GMMs for speech, noisy speech,
curves obtained by the different approaches are shown in Fégeech over music, pure music, and silence/noise were trained
15 (c). We observe that the proposed approaches, nampbforehand, and the non-speech regions in the audio segments
SeqDACDec1, SeqDACDec2, and DACDec3, outperform theere pruned by using Viterbi decoding.

other approaches, while SeqgDACDec?2 performs the best. Table
Il shows the speeds of all the approaches in terms of “tim/e_-\s
real-time” (real-time factorgzRT®) in the EER case. All the

programs were implemented with MATLAB, except that the 1) Data set description and performance evaluatione
MAP training of GMMs and calculation of mixture likelihood used RTO3 described in Section V-B1 in the speaker diarization

in FixSlidHAC_pR was implemented with C language vi€XPeriments. The audio recordings from channels ABC, NBC,

MATLAB's API. The programs were run on a machine wit?"d CNN were used as the development set (RD&S);

a 3.2GHz Intel Xeon CPU. From the table, we obseryihile the recordings from PRI, VOA, and MNB were used
that SeqDACDecl, SeqDACDec2, and DACDec3 are mof$ the evaluation set (RTOBval). o
efficient than WinGrow. DACDec3 in particular runs much For the performance evaluation, we used the diarization

faster than WinGrow. Moreover, FixSlidHA@R is much evaluation tool (md-eval-v21.pl) released by NIST [38] to
slower than the other approaches. evaluate the diarization error rate (DER), which takes into

Next, we conducted experiments on RTO3 with the pg\_ccount three kinds of error, namely missed speech (MiS),
rameters tuned with MATBN3hr. Fig. 16 shows the ROcaISe alarm speech (FaS), and speaker error (SpE). Readers
curves for all approaches. Again, we observe that the p&gn refer to [7] for a_detalled description of t_he_se error types.
posed approaches, namely, SeqDACDecl, SeqDACDec2, ana) Parameter setting and system descriptioWe used
DACDec3, outperform the other approaches. Table Il shof& 03-Dev to tune the parameters for each system, and then

the real-time factor of all the approaches in the EER ca&@luated the diarization performance on RTB@l. These
Comparing Table Il to Table II, it is clear that every approacHarameters includg in the A BIC-based inter-cluster distance

measure in HAC-BIC, the stopping threshold in HAC-SID,
3z RT=T,/T,, whereT; is the system run-time arifi; denotes the time A in BIC-based segmentation in SeqDACDEERC, Seq-
duration of the test data set. DACDec2 HAC, DACDec3 HAC, DISTBIC_pR HAC and

Experiments on speaker diarization
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Fig. 14. ROC curves for MATBN3hr obtained by (a) DACDec3 and DISTHRIR with differentp Range values, and (b) FixSlid, DACDec3P, DISTBIC
and DACDec3.

TABLE I
THE REAL-TIME FACTOR (x RT") OF DIFFERENT SEGMENTATION APPROACHES EVALUATED OMATBN3HR IN THE EERCASE AND THE ASSOCIATED
EERs, WHEREM AND F DENOTE THE MISS DETECTION RATE AND THE FALSE ALARM RATE RESPECTIVELY.

Approach WinGrow | SeqDACDecl| SeqDACDec2| DACDec3 | DISTBIC_pR FixSlid FixSlidHAC_pR
zRT 0.38 0.1 0.19 0.023 0.026 0.02 1.81
Speedup over| 1 3.8 2 16.52 14.61 19 0.21
WinGrow
EER (in %) | M:18.08, M:17.84, M:16.42, M:17.61, M:19.19, M:29.42, M:21.09,
F:18.65 F:17.21 F:15.92 F:17.46 F:18.44 F:29.82 F:22.22
TABLE Il
THE REAL-TIME FACTOR (x RT') OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ONRTO3IN THE EER CASE AND THE ASSOCIATEDEERS.
Approach WinGrow | SeqDACDecl| SeqDACDec2| DACDec3 | DISTBIC_pR FixSlid FixSlidHAC_pR
zRT 0.53 0.11 0.22 0.022 0.025 0.019 1.87
Speedup over 1 4.82 2.41 24.09 21.2 27.89 0.28
WinGrow
EER (in %) | M:17.79, M:17.34, M:16.44, M:18.47, M:22.3, M:34.68, M:23.19,
F:16.59 F:18.32 F:15.95 F:17.24 F:21.08 F:33.12 F:24.88

WinGrow_HAC, and « in FixSlid segmentation in FixS- more accurate speaker change detection algorithm leads to
lid_HAC. For each system, the remaining parameters in tbetter diarization accuracy. For example, FixSHEAC obtains
segmentation stage were the same as those yielding the segigher DER than the other systems. As shown in Fig. 16, its
mentation results in Figs. 15 (c) (for MATBN3hr) and 16 (fosegmentation method, FixSlid, achieves a higher segmentation
RTO03). error. Second, Vitrebi re-segmentation consistently improves
3) Post processing by Viterbi re-segmentatioks reported the diarization accuracy of all the systems. The improvement
in [35], one can use Viterbi re-segmentation after speakiérmore significant on FixSIlictHAC, which achieves a higher
clustering to improve the diarization accuracy; thus, we us&ER originally; however, its DER is still higher than those
this technique as a post processing step and evaluated hof fthe other systems that are based on more accurate speaker
effects on each diarization system. For the re-segmentatisggmentation methods.
the speech in each cluster was used to train a MAP-adapted
GMM from a gender- and channel-independent UBM first, VII. CONCLUSION

which represents one state in the applled ergOdiC HMM. Then,We have proposed three BIC-based Speaker Segmenta-
Viterbi decoding was applied to perform the re-segmentatigiyn approaches that employ divide-and-conquer strategies for
(diarization). The GMM training and re-segmentation wergpeaker change detection. In contrast to the well-known and
done iteratively. highly accurate window-growing-based approach (WinGrow),
4) Experiment results:Tables IV and V show the DERs which searches for change points in a bottom-up manner by
of the diarization systems without and with the Vitrebi reusing a sequentially growing analysis window, the proposed
segmentation based post processing step, respectively. FIRACDecl and DACDec2 approaches search for change points
these two tables, two observations can be drawn. Firstimaa top-down manner. The proposed DACDec3 approach is
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Fig. 15. The ROC curves for MATBN3hr obtained by (a) SeqgDACDecl With;,, = 2 seconds and analysis windows of different sizg (b) SeqDACDec2

with N,,:n = 2 seconds and analysis windows of different siZg; (and (c) SeqDACDecl withV,,,;, = 2 seconds and. = 20 seconds, SeqDACDec?2
with N,,;» = 2 seconds and. = 20 seconds, DACDec3 withRange = 0.5 seconds, WinGrow witlV,,,;,, = 3 seconds andV,,q = 20 seconds,

DISTBIC_pR with pRange = 1 second, and FixSlid with a 2-second sliding window.

TABLE IV
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS VITERBI RE-SEGMENTATION IS NOT APPLIED
Approach RTO03 Dev RTO3 Eval
MiS FaS SpE| DER | MiS FaS SpE] DER
SeqDACDeclHAC | 0.6 0.4 79| 8.86 0 4 9.3 | 13.34
SegDACDec2HAC | 0.6 0.4 7.7 8.7 0 4 9.4 | 13.39
DACDec3 HAC 0.6 0.4 75| 8.46 0 4 9.7 | 13.69
WinGrow_HAC 0.6 0.4 8.3 | 9.29 0 4 10.1 | 14.12
DISTBIC_pR_HAC 0.6 0.4 8.2 | 9.19 0 4 9.9 | 13.94
FixSlid_HAC 0.6 0.4 10.5| 11.52 0 4 13.3 | 17.57

a recursive variant of another popular approach, DISTBIGegmentation approaches to the speaker diarization task. The
We compared our approaches to these well-known approachgperiment results show that a more accurate segmentation
analytically by performing computational cost analysis. Thapproach leads to better diarization accuracy.

results of experiments conducted on broadcast news data

demonstrate that the proposed approaches are more efficient

and achieve higher segmentation accuracy than the existing

approaches discussed in this paper. In addition, we applied the
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TABLE V
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS VITERBI RE-SEGMENTATION IS APPLIED AS A POST PROCESSING STEP

Approach RT03 Dev RTO3 Eval
MiIS FaS SpE| DER | MiS FaS SpE|] DER
SeqDACDeclHAC | 0.6 0.4 7.4 8.37 0 4 9.2 | 13.15
SeqDACDec2HAC | 0.6 0.4 74| 8.35 0 4 9.2 | 13.16
DACDec3 HAC 0.6 0.4 7 7.96 0 4 9.7 | 13.67
WinGrow_HAC 0.6 0.4 7.7 | 8.65 0 4 9.8 | 13.79
DISTBIC_pR_HAC 0.6 0.4 75| 851 0 4 9.1 | 13.06
FixSlid_HAC 0.6 0.4 8.2 | 9.22 0 4 109 | 14.91

45

Let a, = T1(k)/(k + 1), then Eq. (22) can be rewritten as

L 2
40 ar = p—1 + (3 — m)mQT’ (23)
-l where ay = m27. Recursively substituting the,s’ in Eq.
© (23), we obtain
S sof
£ 2 2 2 )
2.l -5~ SeqDACDecl, L=20 sec ar = ao + (3k — (5 + 3 +o m))m T
© -~ SeqDACDec2, L=20 sec
§ —~%— DACDec3, pRange=0.5 sec k+1 1
ol ¢ WinGrow, N__ =20 sec — (3k +3-29 Z f)mQT. (24)
-~ DISTBIC_pR, pRange=1 sec ; )
& Fixslid, a=0.4, 0.45,...,2 i=1

ol S W Because) " L~In(k + 1) [39], we have

0 15 20 : w0 £3 w0 ap ~ (3k + 3 — 2In(k + 1))m?r. (25)

25
Miss Detection Rate (%)

Fig. 16. The ROC curves for RTO3. Sinceay, = T1(k)/(k + 1), T1(k) can be expressed as

Ty (k) =ar(k+1)

APPENDIX ~(3(k+1)?=2(k+1)In(k + 1))m*r.  (26)

A. ComputeT; (k)
T, (k) is expressed as

k

Ti(k) = 3 ST~ 1)+ Ty — i) + (k + 1)Pm?r B. Computel” (m)

i=1 T'(m) is expressed as
k
2 , 5 5 m
=5 2 Tl =D+ (kP 18)  77(m) = %Z(T'(i—l)—FT/(m—i))+m27'+m7', (27)
=l =1

whereT; (0) = m?7. To solve this recursive equation, we can

apply the technique used for analyzing the time cost of tig'ere”(0) = 0. Similar to tr)e manipulation of Eq. (18) in
Quicksort algorithm [39]. First, we multiply both sides of Equc‘j)e”d'X A, by settingi,, = T"(m)/(m+1), we havesg = 0

(18) by £ as follows: an
a _ L Bm -7
KTy (k) =2 Ti(i — 1)+ k(k+1)>m’r. (19) @m = Gm—1 T =07
19 +(3-—)
= Qm— el
Replacingk in Eq. (19) withk — 1, we obtain ! m+1
4 4 4
= =ap+Bm—(5+5++——2))7
(k=DTy(k—1)=2> Ti(i—1)+ (k — Dk*m*r. (20) 2 3 m+1
i=1 ~Bm+4—4ln(m+1))r. (28)

Subtracting Eq. (20) from Eq. (19), we obtain
KTy (k) — (k—1)Ty (k—1) = 2Ty (k—1)+(3k*+k)m?1. (21)
Rearranging the terms in Eq. (21) yields
Ti(k) Ti(k—1)  (Bk+1)m?r
E+1 k (k+1)

Sincea,, = T'(m)/(m + 1), we have

T'(m)=am(m+1)
~@Bm+4—4ln(m+1))(m+ 1)T. (29)

(22)
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C. Computels (k)

(12]

Ty (k) is expressed as

k
Ty(k) = % S (Toli— 1)+ Talk — 1)) + Ok + 1)m?7 + 2mr,

(23]

i=1

(30) 14

where T5(0) < (3m 4+ 4 — 41In(m + 1))(m + 1)7. Similar
to the manipulation of Eqg. (18) in Appendix A, by settinqlS]
ar = To(k)/(k+ 1), we have

(3k2 + k)m27r + 2mt

ak = ag—1 +

k(k+1) ’ [16]
2 11
= _ e — 27_7
ar—1+ (3 k+1)m7+ <k k+1)m7’,

~ag+ (3k+2—2In(k + 1))m?r [17]

+2(Ink — In(k + 1) + 1)mr. (32)

(18]

Substitutingag = 7>(0) into Eq. (31), we obtain

ag

Sinceay, = Tz(k)/(k + 1), we have

< (Bk+5—2In(k+1)m*r + (9 +2Ink — 2In(k + 1)

(19]

—4In(m+1))m7 + (4 — 4In(m + 1))7. (32)

(20]

To(k) < (3k+5—2In(k + 1)) (k + 1)m?*r

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

(11]

+(9+2Ink —2In(k+1) —4ln(m + 1)) (k + 1)mr [21
+(4 —4In(m+1))(k+ 1)7. (33) -
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