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Abstract—In this paper, we propose three divide-and-conquer
approaches for BIC-based speaker segmentation. The approaches
detect speaker changes by recursively partitioning a large analy-
sis window into two sub-windows and recursively verifying the
merging of two adjacent audio segments using∆BIC, a widely-
adopted distance measure of two audio segments. We compare
our approaches to three popular distance-based approaches,
namely, Chen and Gopalakrishnan’s window-growing-based ap-
proach, Siegler et al.’s fixed-size sliding window approach, and
Delacourt and Wellekens’s DISTBIC approach, by performing
computational cost analysis and conducting speaker change de-
tection experiments on two broadcast news data sets. The results
show that the proposed approaches are more efficient and achieve
higher segmentation accuracy than the compared distance-based
approaches. In addition, we apply the segmentation approaches
discussed in this paper to the speaker diarization task. The
experiment results show that a more effective segmentation
approach leads to better diarization accuracy.

Index Terms—speaker segmentation, speaker change detection,
Bayesian Information Criterion, divide-and-conquer, speaker di-
arization

I. I NTRODUCTION

The goal of speaker (audio) segmentation is to detect
speaker (acoustic) change boundaries in an audio stream. In the
last decade, researchers in the speech processing community
have expended a great deal of effort on this problem because
of its application to many speech and audio processing tasks,
such as audio classification [1], [2], automatic transcription of
audio recordings [3], [4], speaker tracking [5], [6], and speaker
diarization [7], [8].

Existing audio segmentation approaches generally fall into
two categories, namely, distance-based segmentation [9], [10],
[11], [12], [13] and model-decoding-based segmentation [4],
[11]. In distance-based segmentation, a distance measure of
two audio segments is defined first, and then an acoustic
change detection strategy is designed based on the distance
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measure. In contrast to model-decoding-based segmentation,
which detects acoustic changes in a supervised manner,
distance-based segmentation has the advantage that acoustic
changes can be detected in an unsupervised manner, i.e.,a
priori knowledge about the content of the input audio stream
is unnecessary. In this paper, we focus on distance-based
segmentation.

When low-level acoustic features like mel-scale frequency
cepstral coefficients (MFCCs) are used in distance-based seg-
mentation, the distance measure is usually derived from a
statistical modeling framework. More precisely, it is assumed
that the feature vectors in each of the two audio segments
arise from some probability distribution (e.g., the multivariate
Gaussian distribution); then, the distance between the two
segments is represented by the dissimilarity between the two
distributions. Several distance measures have been proposed,
e.g., the Kullback-Leibler distance (KL or KL2) [10], the
Generalized Likelihood Ratio (GLR) [9], [14],∆BIC [11],
[15], [16], [13], [17], [18], the Bhattacharyya distance [12],
and the XBIC [19]. In addition, some high-level features have
been used for audio segmentation; e.g., the spectrum flux and
zero-crossing rate (ZCR) [20], [21], and the smoothed zero-
crossing rate (SZCR) [22].

Window-growing-based segmentation (WinGrow) [11],
[15], [23], [17], fixed-size sliding window segmentation (FixS-
lid) [10], [12], [24], [25], [26], and DISTBIC [9] are three
popular distance-based segmentation approaches.

1) The WinGrow approach was first proposed by Chen
and Gopalakrishnan [11]. For the distance measure of
two audio segments, they used the Bayesian Information
Criterion (BIC) [27], [28] to evaluate the following two
hypotheses: 1) the union of the feature vectors of the
two segments forms a Gaussian cluster in the feature
space, and 2) the feature vectors of each segment form
a distinct Gaussian cluster. Then, the difference between
the two evaluation scores,∆BIC, is used as the distance
measure. In the acoustic change detection procedure, a
small analysis window is put at the beginning of the
audio stream initially. If no change point is detected in
that analysis window, the search range is increased. The
decent segmentation accuracy of this approach is widely
recognized; however, as the window size grows, it incurs
a heavy computational cost due to numerous∆BIC
computations, especially when the audio stream contains
many long homogenous segments. To reduce the com-
putational cost, Tritschler and Gopinath [29] proposed
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some heuristics that ignore the distance computations at
locations where acoustic changes are unlikely to occur.
Zhou and Hansen [17] used Hotelling’sT 2-Statistic,
which has the advantage of low computational cost, as
the distance measure in the WinGrow detection process,
and only used∆BIC to verify the acoustic change
candidates. In addition, [15] and [13] proposed more
efficient implementations for the∆BIC computation
that do not affect the segmentation accuracy.

2) In FixSlid, a certain distance measure is used to evaluate
the dissimilarity between two adjacent windows that
slide along the audio stream to produce a distance
curve; then, some heuristic thresholds are used to judge
whether the locations of peaks are acoustic changes.
To detect the change boundary associated with a short
homogeneous segment, the size of the analysis window
is usually set at a small value (e.g., two seconds).
This is a dilemma because a small analysis window
does not contain sufficient feature vectors to obtain a
reliable distance statistic. For this approach, the KL2,
GLR, and∆BIC derived from the uni-Gaussian model
are popular distance measures because they have the
advantage of low computational cost; however, their
effectiveness may be limited due to the limited gener-
alization ability of uni-Gaussian. In [25], the authors
proposed a bilateral scoring approach for calculating
the distance between two segments based on adapted
Gaussian mixture models (GMMs). Because of the good
generalization ability of GMMs, this approach has been
shown to be more effective than WindGrow and XBIC,
which are developed on the basis of the uni-Gaussian
model; however, it suffers from a higher computational
cost due to the requirement for the adaptation of GMMs
and calculation of mixture likelihoods in the distance
measure.

3) Under the DISTBIC approach, the input audio stream
is first segmented by FixSlid; then, the acoustic change
candidates are verified sequentially by segment merging
using∆BIC. In practical use of this approach, FixSlid
is usually applied to over-segment the audio stream to
ensure a low miss detection rate at the cost of a high
false alarm rate; then, the segment merging process is
applied to reduce false alarms while maintaining the
low miss detection rate. This approach is highly effi-
cient. Moreover, it has been reported that this approach
achieves decent segmentation accuracy [9]. The sequen-
tial segment merging process can be replaced by the
hierarchical agglomerative clustering (HAC), which has
been widely used in many speaker diarization systems
[7], [8], [30]. However, it is not as efficient as DISTBIC
because of the essential computational cost of HAC.

Although WinGrow is more efficient than the adapted-
GMMs approach while maintaining high segmentation accu-
racy, the computational cost is still quite considerable when
applying it to a large-scale task, e.g., the indexing of a database
containing thousands of audio recordings. Therefore, more
efficient segmentation approaches are desirable. In this paper,

we propose three divide-and-conquer approaches for distance-
based speaker segmentation. The first approach (DACDec1)
detects speaker changes by recursively partitioning a large
analysis window into two sub-windows at the position with
the largest positive∆BIC value obtained by Chen’s one-
change-point detection algorithm [11], rather than by applying
a size-growing analysis window. All the divided points are
output as change points. The second approach (DACDec2),
which is a variant of DACDec1, recursively partitions a large
analysis window into two sub-windows at the position with the
largest∆BIC value, no matter whether it is larger than zero
or not. It then recursively verifies whether the divided points
with negative∆BIC values calculated in the division stage
are speaker changes based on the new∆BIC measurements
of their left and right neighbor segments. The third approach
(DACDec3) is a recursive variant of DISTBIC. It recursively
partitions an audio stream at the locations of speaker change
candidates obtained by FixSlid, and then recursively verifies
those candidates based on the∆BIC measurements of their
left and right neighbor segments. To compare the performance
of WinGrow, FixSlid, DISTBIC, the HAC-based approach and
the proposed approaches, we conducted speaker change detec-
tion experiments on two broadcast news data sets, namely the
MATBN corpus [31] and the broadcast news data in the 2003
NIST rich transcription evaluation data (RT03) [32]. For the
efficiency comparison, we analyzed their computational costs
and reported their respective run times in the experiments. The
experiment results show that DACDec1 and DACDec2’s re-
cursive (top-down) multiple-change-point detection strategies
are more effective and efficient than WinGrow’s bottom-up
multiple-change-point detection strategy. The results also show
that, by providing a more effective and efficient segment merg-
ing process, DACDec3 outperforms DISTBIC and the HAC-
based approach. Moreover, it achieves similar segmentation
accuracy as WinGrow at a much lower computational cost. We
applied the segmentation approaches discussed in this paper to
the speaker diarization task, where the segmentation result is
input to a HAC speaker clustering module. The experiment
results on RT03 show that a more effective segmentation
approach leads to better diarization accuracy.

The remainder of this paper is organized as follows. To
help explain our proposed approaches, we review the∆BIC
distance measure and the WinGrow approach in Section II.
We then present the proposed divide-and-conquer approaches
for speaker segmentation in Section III. In Section IV, we
analyze the computational costs of the baseline approaches and
the proposed approaches. Section V details the experiments on
speaker segmentation, Section VI details the application of the
segmentation approaches to the speaker diarization task, and
Section VII contains some concluding remarks.

II. W INDOW-GROWING-BASED SEGMENTATION

We review the ∆BIC distance measure of two audio
segments in Section II-A and window-growing-based segmen-
tation (WinGrow) in Section II-B.
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A. ∆BIC as the distance measure of two audio segments

1) Model selection and BIC:Given a data setZ =
{z1, z2, · · · , zn} ⊂ Rd and a set of candidate modelsM =
{M1,M2, · · · ,Mk}, the purpose of model selection is to
choose the model that best fits the distribution ofZ from
M. When using the Bayesian Information Criterion (BIC) for
model selection, the BIC value ofMi for Z is

BIC(Mi,Z) = log p(Z | Θ̂i)− 1
2
λ#(Mi) log n, (1)

whereλ = 1, Θ̂i is the maximum likelihood estimate of the
parameter set ofMi, and#(Mi) is the number of parameters
of Mi. The model with the largest BIC value will be selected.

2) ∆BIC as the distance measure:Given two audio seg-
ments represented by feature vectors,X = {x1,x2, · · · ,xnx}
⊂ Rd and Y = {y1,y2, · · · ,yny

} ⊂ Rd, we evaluate the
following two hypotheses [11]:

H0 : x1,x2, · · · ,xnx
,y1,y2, · · · ,yny

∼ N (µ,Σ),
H1 :x1,x2, · · · ,xnx ∼ N (µX ,ΣX );

y1,y2, · · · ,yny
∼ N (µY ,ΣY). (2)

H0 posits thatX andY are derived from the same multivariate
Gaussian, whileH1 posits that they are derived from two
distinct multivariate Gaussians.

Let Z = X ⋃Y andn = nx + ny. Then, the∆BIC value
can be computed as the difference between the BIC values of
H1 andH0 as follows:

∆BIC{X ,Y} = BIC(H1,Z)−BIC(H0,Z)

= log p(X | µ̂X , Σ̂X ) + log p(Y | µ̂Y , Σ̂Y)

− log p(Z | µ̂, Σ̂)− 1
2
λ(d +

1
2
d(d + 1)) log n

=
n

2
log |Σ̂| − nx

2
log |Σ̂X | − ny

2
log |Σ̂Y |

−1
2
λ(d +

1
2
d(d + 1)) log n, (3)

where µ̂, µ̂X , and µ̂Y are, respectively, the sample mean
vectors ofZ, X , andY; Σ̂, Σ̂X , and Σ̂Y are, respectively,
the sample covariance matrices ofZ, X , and Y; and d is
the dimension of the feature vector [13]. The larger the value
of ∆BIC, the less similar the two segments will be; thus,
the larger the distance between the two segments will be.
When λ = 0, the ∆BIC distance between two segments is
equivalent to the GLR distance [11], [33].

B. Window-growing-based segmentation

1) One-change-point detection:Let the feature vectors of
the input audio stream beZ = {z1, z2, · · · , zn}. In Chen and
Gopalakrishnan’s one-change-point detection algorithm [11]
(denoted as OCD-Chen in this paper), it is assumed that there
is at most one change point inZ. Then, the∆BIC{Xi,Yi}(i)
value for imin < i ≤ n− imin is computed as

∆BIC{Xi,Yi}(i) =
n

2
log |Σ̂| − i

2
log |Σ̂Xi | −

n− i

2
log |Σ̂Yi |

−1
2
λ(d +

1
2
d(d + 1)) log n, (4)
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Fig. 1. Diagram of the multiple-change-point detection in window-growing-
based segmentation (WinGrow). The audio stream contains three segments,
namely Seg1, Seg2, and Seg3;P andQ denote the change points.

whereΣ̂, Σ̂Xi , andΣ̂Yi are, respectively, the sample covari-
ance matrices ofZ, Xi={z1, z2, · · · , zi}, and Yi={zi+1,
zi+2, · · · , zn}. If maximin<i≤n−imin∆BIC{Xi,Yi}(i) > 0,
the time index corresponding to the maximum value is output
as the change point; otherwise, there is no change point in
Z. It is not necessary to compute the∆BIC value for time
indices within the ranges 1 toimin and n − imin + 1 to n
because in these cases the number of samples inXi or Yi

is insufficient to give a reliable estimate of the parameters.
Empirically, it is appropriate to setimin at a value within the
range 30 to 50 for practical applications. According to the
BIC theory, the penalty factorλ in Eq. (4) is 1; however, in
practical segmentation tasks, it is usually adjusted to allow a
tradeoff between error types.

2) Multiple-change-point detection:OCD-Chen outputs at
most one change point, even though there are multiple change
points in the analysis window. To detect multiple change points
in an audio stream, as shown in Fig. 1, OCD-Chen can be
applied sequentially to a sliding, size-growing analysis window
whose initial size isNini samples. The window repeatedly
grows by Ng samples until a change point is detected or
its size exceeds a pre-defined upper boundNmax. Here, the
upper bound ensures the search efficiency [15], [13]. If a
change point is detected during the window growing step, the
detection process restarts at that change point with an analysis
window of Nini samples. When the size of the window grows
to Nmax, it is repeatedly shifted byNs samples until a change
point is detected or the analysis window reaches the end of
the audio stream. In this way, the change points in the audio
stream can be detected sequentially.

III. D IVIDE -AND-CONQUER-BASED SEGMENTATION

In this section, we present three implementations of the
divide-and-conquer paradigm for detecting multiple change
points in an analysis window. Note that the proposed ap-
proaches are based on the same assumption as that of
WinGrow, i.e., the feature vectors of audio segments from
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Algorithm 1 CP←DACDec1(W )

Require: W : the analysis window
Ensure: CP : the set of change points detected inW

Begin
1) detect whether there is a change point inW by OCD-Chen;
2) //Check termination

if (there is no change point inW or the size ofW is smaller than
Nmin)

CP ← φ; //empty set
goto End; //return

3) //Divide
let t̂ be the change point detected in 1);
divide W into two sub-windows,W1 andW2, at t̂;

4) //Solve sub-instances
CPW1 ← DACDec1(W1); CPW2 ← DACDec1(W2);

5) //Combine
CP ← t̂ ∪ CPW1 ∪ CPW2 ;

End

different speakers are derived from different Gaussian distrib-
utions.

A. The DACDec1 approach

We use the example in Fig. 2 to explain the concept of
divide-and-conquer-based segmentation. It is assumed that the
audio stream in Fig. 2 (a) consists of three homogeneous
segments derived from different speakers. Initially, OCD-Chen
is applied in an analysis window that covers the entire audio
stream. After the change pointC2 has been detected with
the ∆BIC curve in Fig. 2 (b), the audio stream is divided
into two analysis windows. Then, OCD-Chen is recursively
applied in these two windows to search for the remaining
change points so thatC1 can be detected. This approach,
called DACDec1, allows us to detect the change points by a
divide-and-conquer (DAC) strategy. As described in Algorithm
1, DACDec1 terminates (returns) if no change point is detected
by OCD-Chen in the analysis window or the size of the
analysis window is smaller than a pre-defined value, denoted
asNmin samples. In theDivide stage, the analysis window is
partitioned into two sub-windows at the change point detected
by OCD-Chen. Then, the sub-windows are input to DACDec1
in the Solve sub-instancesstage. Finally, theCombinestage
outputs all the change points detected in step 1) and step 4)
(i.e., theSolve sub-instancesstage).

1) Discussion: In general, when the data samples are de-
rived from more than one Gaussian distribution, two Gaussians
(the H1 hypothesis) fit the distribution of the data better than
one Gaussian (theH0 hypothesis) if the samples belonging to
the same Guassian are used together to estimate the parame-
ters. For example, Fig. 3 schematically illustrates a case where
the three audio segments are derived from three different
speakers and their feature vectors distribute as three Gaussian
clusters. This case explains why the∆BIC values atC1 and
C2 in Fig. 2 (b) are positive. From the above perspective, if the
homogeneous segments in the analysis window of DACDec1
are always derived from different speakers during the recursive
process, we can be confident that, at each change point, the
H1 hypothesis will fit the data better than theH0 hypothesis;
thus, the∆BIC value will be positive.

However, if two or more segments in the analysis win-
dow are derived from the same speaker, the performance of
DACDec1 may decline dramatically. For example, in Fig. 4
(a), the first and third segments are derived from the same
speaker (Speaker1), while the second segment is derived from
another speaker (Speaker2). When applying OCD-Chen to the
audio stream in Fig. 4 (a) with the sameλ value of BIC used
in the example in Fig. 2, we obtain the∆BIC curve in Fig.
4 (b). The curve still has two peaks at the change pointsC1

and C2 because theH1 hypothesis models the distribution
of the data samples better at change points than it does at
non-change points. We use Figs. 4 (c) and (d) to explain
this perspective. Fig. 4 (c) diagrammatically illustrates the two
hypotheses atC2, where all the data samples of Speaker2 (the
circles) are used with those of Speaker1 (the stars) to estimate
one Gaussian inH1. In contrast, at the non-change pointR in
Fig. 4 (b), as shown in Fig. 4 (d), the data samples of Speaker2
are divided into two parts, each of which is combined with the
data samples of Speaker1 (one with the stars and the other with
the diamonds) to estimate a distinct Gaussian inH1. Clearly,
theH1 hypothesis in Fig. 4 (c) fits the data better than that in
Fig. 4 (d).

In this example, we have peaks atC1 and C2. However,
their ∆BIC values are negative, and no change point will be
output by OCD-Chen because, as illustrated in Fig. 4 (c),H1

over-fits the data samples of Speaker1 and obtains a smaller
BIC value than that ofH0. We may adjust the value ofλ
so that, atC2, the ∆BIC value will be positive (i.e., the
hypothesis test favorsH1). However, this may result in false
alarms when the recursive process continues to detect change
points in a homogeneous segment. In other words, it is difficult
to determine a reliableλ value for an audio stream like the
example in Fig. 4 (a). Moreover, it is infeasible to adjust
the value ofλ for each specific audio stream in practical
applications.

B. The DACDec2 approach

To overcome the performance limitation caused by un-
reliable ∆BIC measurements of the over-fitting cases in
DACDec1, we developed an alternative implementation of
the divide-and-conquer paradigm, called DACDec2. In this
approach (Algorithm 2), the∆BIC value is not used to check
the termination in theCheck terminationstage because it may
be unreliable, as illustrated in Figs. 2 and 4. The recursive
process terminates (returns) when the size of the analysis
window is smaller thanNmin samples. In theDivide stage,
the analysis window is partitioned into two sub-windows at
the time indext̂ that has the largest∆BIC value located by
OCD-Chen. Then, the sub-windows are input to DACDec2
in the Solve sub-instancesstage. In theCombinestage,t̂ is
labeled as a change point if the∆BIC value att̂ calculated
in the Divide stage is positive; otherwise, it needs to be
verified using its two neighboring segmentsX andY. In the
verification process,̂t is only labeled as a change point if
∆BIC{X ,Y}(t̂) > 0.

Fig. 5 illustrates a recursive tree that simulates the recursive
process of DACDec2 on the audio stream in Fig. 4 (a). We
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(a) (b)

Fig. 2. (a) An audio stream comprised of three speech segments, each derived from a distinct speaker.C1 andC2 are the change points. (b) The∆BIC
curve obtained by applying OCD-Chen to the audio stream in (a).

Algorithm 2 CP←DACDec2(W )

Require: W : the analysis window
Ensure: CP : the set of change points detected inW

Begin
1) //Check termination

if (the size ofW is smaller thanNmin)
CP ← φ; //empty set
goto End; //return

2) //Divide
apply OCD-Chen toW and let t̂ be the time index with the largest
∆BIC value;
divide W into two sub-windows,W1 andW2, at t̂;

3) //Solve sub-instances
CPW1 ← DACDec2(W1); CPW2 ← DACDec2(W2);

4) //Combine
if (∆BIC{W1,W2}(t̂) calculated in 2) is positive)

CP ← t̂ ∪ CPW1 ∪ CPW2 ;
else

letX be the segment on the left oft̂ in W1 andY be the segment
on the right oft̂ in W2;

if (∆BIC{X ,Y}(t̂) > 0) //t̂ is a change point
CP ← t̂ ∪ CPW1 ∪ CPW2 ;

else //̂t is not a change point
mergeX andY ;
CP ← CPW1 ∪ CPW2 ;

End

assume that there are no miss and false alarm errors in the
detection process. In the figure, each tree node corresponds
to a divide-point (i.e., t̂) in the analysis window; the number
inside the node indicates the order of the division, while the
number below the node indicates the order in which the divide-
point is verified in theCombinestage. In Fig. 4 (b), Node 1
(C2) has a negative∆BIC value in theDivide stage; however,
it will be labeled as a change point by the verification process
with segments{c, d, e, f} and{g, h, i} in the Combinestage.
Node 2 (C1) has a positive∆BIC value in theDivide stage;
thus, it is labeled as a change point and verification is not
necessary. Segments{a} and {b} will be used for verifying
Node 3; segments{c, d} and{e, f} will be used for verifying
Node 4, and so on.

0
H

1
H

Fig. 3. An illustration that data samples distribute as three Gaussian clusters.
For this case, generally, two Gaussians (H1) fit the distribution of the data
better than one Gaussian (H0) if the samples belonging to the same Gaussian
cluster are used together to estimate the parameters.

1) Advantages of DACDec1 and DACDec2:We use Fig.
6 to explain the potential advantages of using DACDec1 and
DACDec2 for speaker change detection. In the figure, there
are two change points,C1 andC2. For WinGrow, if there is a
false alarm error atF nearC1, the detection process restarts
at F , but the false alarm error may lead to miss errors in
the subsequent detection process. For example, if the three
segments are derived from different speakers, like the case in
Fig. 2 (a), it is very likely thatC2 will be detected andC1

will be missed because the analysis window does not contain
sufficient data from Seg1. On the other hand, if Seg1 and Seg3
are spoken by the same speaker and Seg2 is from another
source,C1 may be missed for the same reason mentioned
above. If C1 is missed, we may suffer from the unreliable
∆BIC measurement issue as the example in Fig. 4 when
OCD-Chen continues to detectC2; thus, C2 may also be
missed.

In DACDec1, theDivide stage partitions the audio stream
into two sub-streams at the point with the largest positive
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(a) (b)

0
H

1
H

Speaker2

Speaker1

Speaker1

(c)

0
H

1
H

Speaker2

Speaker1

Speaker1

(d)

Fig. 4. (a) An audio stream comprised of three speech segments; the first and third segments are derived from the same speaker (Speaker1), while the
second is derived from another speaker (Speaker2). (b) The∆BIC curve obtained by applying OCD-Chen to the audio stream in (a). (c) The diagram of
the hypothesis test at the change pointC2 in (b). (d) The diagram of the hypothesis test at the non-change pointR in (b).

Fig. 5. A recursive tree that simulates the recursive process of DACDec2
on the audio stream in Fig. 4 (a).

∆BIC value. As shown in Figs. 4 (c) and (d), change points
usually have larger∆BIC values than non-change points;
thus, false alarm errors may only occur after the true change
points have been detected, and they will not lead to miss errors
in the subsequent detection process. For example, in Fig. 6,
the false alarm errors in Seg1 only occur afterC1 has been
detected, and so on.

In DACDec2, false alarm errors may not cause a true
change point with a positive∆BIC value calculated in the
Divide stage to be missed; however, the false alarm points’
neighboring true change points with negative∆BIC values
calculated in theDivide stage may be missed. For instance,
for the example in Fig. 4, DACDec2 first divides the audio
stream atC2 and generates the recursive tree shown in Fig.
5. C2 needs to be verified in theCombinestage because its
∆BIC value calculated in theDivide stage is negative, as
shown in Fig. 4 (b). However, if there is a false alarm point
nearC2, it may be missed. We explain this phenomenon as
follows. In Fig. 5, the boundary between segments{e} and{f}
(i.e., Node 6) is verified beforeC2. If it is detected as a change
point, {f} and {g, h, i} are used to verifyC2. However, the
number of data samples in segment{f} may be insufficient to
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ini
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Fig. 6. An example of the WinGrow detection process. The audio stream
contains two change pointsC1 andC2, and the detection process generates
a false alarm error atF .

obtain a reliable∆BIC measurement, thusC2 may be missed.
On the other hand, if DACDec2 first divides the audio stream
at C1 and outputs a false alarm point atF nearC1, like the
case in Fig. 6,C1 may be missed for the same reason. Even
so, missingC1 may not cause DACDec2 to missC2 because,
in the Divide stage,C2 will be determined whether it is a
change point using complete, pure Seg2 and Seg3; therefore,
it is very likely that the∆BIC value will be positive. In
contrast, WinGrow may not be able to use complete, pure
Seg2 and Seg3 for speaker change detection ifC1 is missed.

2) Sequential segmentation by DACDec1 and DACDec2:
For a long audio stream, such as a one-hour broadcast news
program, the segmentation task becomes computationally in-
tractable when DACDec1 or DACDec2 are used to detect
change points. Moreover, if the initial analysis window con-
tains too many segments, it may be difficult for OCD-Chen to
find an appropriateλ value to obtain robust∆BIC measure-
ments for the various hypothesis tests in the recursive process.
Therefore, in practical applications, we apply DACDec1 and
DACDec2 in a large analysis window of fixed-size (e.g., 20
seconds) that moves from the beginning to the end of the
audio stream to detect the speaker changes sequentially. The
proposed sequential segmentation algorithms, SeqDACDec1
and SeqDACDec2, are shown in Fig. 7. In SeqDACDec1 (or
SeqDACDec2), if a change point is detected in the fixed-size
analysis window by DACDec1 (or DACDec2), the window
is moved to the change point with the largest time index.
Otherwise, it is moved forward byηL samples, whereL
denotes the window size, andη > 0. Note that a smallη will
allow a missed change point to be checked again by DACDec1
(or DACDec2) in the subsequent fixed-size analysis window.
Like WinGrow, SeqDACDec1 and SeqDACDec2 are suitable
for on-line applications.

C. The DACDec3 approach

The third implementation (DACDec3) of the divide-and-
conquer paradigm is detailed in Algorithm 3. In DACDec3,

Audio stream

Lh

Seg1 Seg2 Seg3 Seg4

DACDec1 or

DACDec2

Analysis

window

Fig. 7. Diagram of the detection process of SeqDACDec1 and SeqDACDec2.
If a change point is detected in the fixed-size analysis window by DACDec1
or DACDec2, the window is moved to the change point with the largest time
index. Otherwise, it is moved forward byηL samples, whereL denotes the
window size, andη > 0.

we use FixSlid instead of OCD-Chen to detect the divide-
points of an input audio stream. As shown in Fig. 8 (a), given
the distance curve obtained by FixSlid using the GLR [9]
distance measure, the time indext associated with the peak
that has the largest GLR value within the interval [t−pRange,
t+ pRange] is considered a divide-point. In this example, all
the peaks exceptS are divide-points. LetDPset be the set of
divide-points obtained by FixSlid. As described in Algorithm
3, DACDec3 returns if a divide-point is not found inDPset.
In the Divide stage, the analysis window is partitioned at the
time index of the divide-point with the largest GLR value.
Then, in theCombinestage, each divide-point is evaluated to
determine whether it is a change point based on the∆BIC
measurement of its two neighboring segmentsX andY.

The major difference between DACDec2 and DACDec3
is as follows. DACDec2 detects change points by OCD-
Chen in theDivide stage. Then, only the divide-points with
negative ∆BIC values calculated in theDivide stage are
verified by segment merging based on the∆BIC values of
their neighboring segments in theCombinestage. In contrast,
DACDec3 detects change points by verifying all the input
divide-points indicated by FixSlid using segment merging. For
example, if we apply FixSlid to the audio stream in Fig.
5 and obtain the distance curve in Fig. 8 (a), the recursive
tree for DACDec3 will be the same as that in Fig. 5. In this
case, DACDec2 finds the change pointC1 using OCD-Chen
in the Divide stage, while DACDec3 finds it in theCombine
stage using segment merging; however, both DACDec2 and
DACDec3 find the change pointC2 in the Combinestage.

There is a close link between DISTBIC [9] and DACDec3.
In DISTBIC, a distance curve is first generated by FixSlid, and
then the “significant” local maximums on the distance curve
are evaluated to determine whether they are change points
by a sequential, left-to-right (in time order) segment merging
process. As shown in Fig. 9, a local maximum is significant
if |d(max) − d(min

r
)| > ασ and |d(max) − d(min

l
)| > ασ,

whereσ is the standard deviation of the distance values on
the distance curve,α is a positive real number, andmin

r
and min

l
are, respectively, the locations associated with the

right minimum and left minimum around the local maximum.
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Algorithm 3 CP←DACDec3(W , DPset, GLRset)

Require: W : the analysis window
DPset = {DP1, . . . , DPN}: the divide-points inW obtained by FixSlid using the GLR distance measure
GLRset = {GLR1, . . . , GLRN}: GLRi denotes the GLR value atDPi for i = 1, 2, · · · , N

Ensure: CP : the set of change points detected inW
Begin

1) //Check termination
if (DPset is empty)

CP ← φ; //empty set
goto End; //return

2) //Divide
search inDPset and letDPk be the divide-point whose GLR value is the largest inGLRset;
let t̂ be the time index ofDPk; divide W into two sub-windows,W1 andW2, at t̂;
divide DPset into two sub-sets,DPset1 = {DP1, . . . , DPk−1} andDPset2 = {DPk+1, . . . , DPN};
divide GLRset into two sub-sets,GLRset1 = {GLR1, . . . , GLRk−1} andGLRset2 = {GLRk+1, . . . , GLRN};

3) //Solve sub-instances
CPW1 ← DACDec3(W1, DPset1, GLRset1); CPW2 ← DACDec3(W2, DPset2, GLRset2);

4) //Combine
let X be the segment on the left of̂t in W1 andY be the segment on the right oft̂ in W2;
if (∆BIC{X ,Y}(t̂) > 0) //t̂ is a change point

CP ← t̂ ∪ CPW1 ∪ CPW2 ;
else //̂t is not a change point

mergeX andY ;
CP ← CPW1 ∪ CPW2 ;

End

If DISTBIC takes the divide-points of DACDec3 as change
point candidates to be verified (we denote this approach as
DISTBIC pR), it is identical to applying DACDec3 in that
the recursive division is performed in a right-to-left manner,
whereas the recursive segment merging is performed in a left-
to-right manner. As shown in Fig. 8 (b), Node 8 is verified
by segments{a} and {b} first, then Node 7 is verified by
segments{a, b} and{c}, and so on.

DACDec3 should be more effective than DISTBICpR
because it evaluates the divide-points with smaller GLR values
to determine whether they are change points before those with
larger GLR values. In contrast, in DISTBICpR, the divide-
points are simply verified sequentially without considering
the GLR information. The advantage of DACDec3 can be
seen by comparing the recursive tree of DACDec3 in Fig.
5 to that of DISTBIC pR in Fig. 8 (b). In DACDec3,C1

may be verified with segments{a, b} and {c, d, e, f},
which are complete homogeneous segments of Speaker1 and
Speaker2, respectively; whereas, in DISTBICpR,C1 can only
be verified with segments{a, b} and{c} or segments{b} and
{c}, where only a small portion of Speaker2’s data is used.

In addition to the recursive (sequential) segment merging
process of DACDec3 (DISTBICpR), one can use the hier-
archical agglomerative clustering (HAC) to merge the seg-
ments obtained with DACDec3’s divide-points [7], [8], [30].
We denote this segmentation approach as FixSlidHACpR.
Compared to DACDec3 (or DISTBICpR), which performs
segment merging locally, FixSlidHACpR performs segment
clustering globally. When performing HAC, each segment is
considered as a cluster initially; then, in each merging step, the
two clusters with the smallest distance are merged into a new
cluster. The globality feature of FixSlidHACpR is particularly
beneficial to the speaker diarization task because the segment
merging process groups the segments into clusters such that
each cluster contains segments of the same speaker. However,
this feature might not be as beneficial to the speaker segmen-

tation task because the goal is to merge adjacent segments
into longer segments. For example, in Fig. 5, the goal of the
segment merging process in the speaker segmentation task is
to merge segments{a} and{b} into one larger segment and to
merge segments{g}, {h} and{i} into another larger segment,
rather than to merge these five segments into one cluster.
In FixSlidHAC pR, if segment{h} is incorrectly merged
with a segment of a different speaker, say{d}, the error
will propagate in the following clustering process. DACDec3
might not suffer the same fate because its locality constraint
enforces that segment{h} is first checked with its neighboring
segment,{g} or {i}. Therefore, we think DACDec3’s segment
merging process meets the goal of speaker segmentation better
than that of FixSlidHACpR. Moreover, it is clear that the
computational cost of FixSlidHACpR is much larger than
that of DACDec3 due to the essential computational cost of
the HAC-based global clustering process.

Like DACDec1 and DACDec2, DACDec3 can also be
applied sequentially in a fixed-size analysis window for on-
line applications.

IV. COMPUTATIONAL COST ANALYSIS

WinGrow, DACDec1, and DACDec2 detect acoustic
changes by applying the OCD-Chen process to the analysis
window. From Eq. (4), it is clear that the computational cost
of ∆BIC is mainly from the cost of calculating covariance
matrices, which is proportional to the number of data samples.
Let the time cost of calculating∆BIC with m samples be
mτ , whereτ represents the time unit; then,m2τ denotes the
time cost of applying OCD-Chen to an analysis window ofm
samples1.

1As mentioned in Section II-B1, the∆BIC value is not computed for
samples at the beginning and the end of the analysis window. However, to
simplify the analysis, we assume that the∆BIC value is computed for each
sample of the window.
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Fig. 8. (a) The distance curve obtained by FixSlid using the GLR distance
measure, where the time indext associated with the peak that has the largest
GLR value within the interval [t − pRange, t + pRange] is considered a
divide-point in DACDec3. On this curve, all the peaks, exceptS, are divide-
points. (b) The recursive tree representation of DISTBICpR based on the
divide-points in (a) for the audio stream in Fig. 5.

To simplify the analysis, we assume that each homogeneous
segment in the input audio stream (i.e., the initial analysis
window for DACDec1, DACDec2, and DACDec3) containsm
samples. Moreover, we assume the detection process is perfect,
i.e., miss and false alarm errors never occur.

1) For DACDec1: Let T1(k) denote the time cost of
applying DACDec1 to an audio stream ofk change points
(i.e., k + 1 homogeneous segments). When the audio stream
is divided at thei-th change point, as shown in Fig. 10, we
obtain the following recursive expression ofT1(k):

T1(k) = T1(i− 1) + T1(k − i) + (k + 1)2m2τ, (5)

where (k + 1)2m2τ is the time cost of finding the divide-
point by OCD-Chen;T1(i − 1) and T1(k − i) are the time

Fig. 9. A significant local maximum on the distance curve.

Fig. 10. An audio stream comprised ofk + 1 homogeneous segments, each
containingm samples. The stream is divided at thei-th change point.

costs of applying DACDec1 in the left sub-stream and the
right sub-stream, respectively. We haveT1(0) = m2τ , since it
represents the time cost of applying OCD-Chen to am-sample
homogeneous segment.

We assume that the division occurs at each change point
with equal probability; therefore, the average time cost of
DACDec1 is

T1(k) =
1
k

k∑

i=1

(T1(i− 1) + T1(k − i)) + (k + 1)2m2τ. (6)

After the algebraic manipulation detailed in Appendix A,
we obtain

T1(k) ≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ

= O(k2m2τ). (7)

2) For DACDec2: Compared to DACDec1, DACDec2 in-
curs an additional time cost in theCombinestage as it has
to determine whether the divide-point with a negative∆BIC
value calculated in theDivide stage is a change point. The cost
is 2mτ because each of the divide-point’s two neighboring
segments containsm samples. To simplify the analysis, we
assume that each divide-point must be verified, even though
its ∆BIC value calculated in theDivide stage is positive.
Hence, the average time cost of DACDec2 is

T2(k) =
1
k

k∑

i=1

(T2(i− 1)+T2(k− i))+ (k +1)2m2τ +2mτ.

(8)
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Unlike DACDec1, DACDec2 recursively partitions each ho-
mogeneous segment ofm samples until the analysis window is
smaller than the pre-defined minimum valueNmin. Therefore,
T2(0) is equivalent to the time cost of applying DACDec2 to
an m-sample stream in which each sample can be a divide-
point. The cost of finding a divide-point in anm-sample stream
in the Divide stage ism2τ . In the Combinestage, the cost
of verifying the divide-point is at mostmτ because the two
segments used for verification are sub-segments of them-
sample segment. Therefore, the upper bound ofT2(0) is

T ′(m) =
1
m

m∑

i=1

(T ′(i− 1) + T ′(m− i)) + m2τ + mτ, (9)

whereT ′(0) = 0. After the algebraic manipulation detailed in
Appendix B, we obtain

T2(0) ≤ T ′(m) ≈ (3m + 4− 4 ln(m + 1))(m + 1)τ. (10)

Then, we can solve the recursive equation in Eq. (8) with
T2(0) in Eq. (10). After the algebraic manipulation detailed in
Appendix C, we obtain

T2(k) ≤ (3k + 5− 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1)− 4 ln(m + 1))(k + 1)mτ

+(4− 4 ln(m + 1))(k + 1)τ
= O(k2m2τ). (11)

3) For FixSlid, DACDec3, and DISTBICpR: Suppose
FixSlid uses GLR (∆BIC) as the distance measure and the
analysis window consists ofω samples. Then, the time cost
of FixSlid is

T3(k) = (2ωτ)(k + 1)m
= O(kmτ). (12)

DACDec3 and DISTBICpR incur a higher time cost than
FixSlid when verifying divide-points in the segment merging
process. Suppose the audio stream is equally divided into
(k+1)m

β sub-segments ofβ samples, whereβ > 0. Since
we assume that the segmentation derived by DACDec3 and
DISTBIC pR is perfect, each of the change points is also a
divide-point and the time cost of segment merging verification
is less than2mτ for each divide-point. Therefore, the time cost
of DACDec3 and DISTBICpR is less than

T4(k) = (2ωτ)(k + 1)m + (
(k + 1)m

β
− 1)2mτ

= O(km2τ). (13)

4) For WinGrow: We analyze the case where the maximum
window sizeNmax is large enough to ensure that the search
process always restarts at a true change point2. In this case, the

2Without this assumption, the time cost analysis for WinGrow might be
intractable. However, this assumption is appropriate for many kinds of real-
world data. For example, in our experiments on the broadcast news data
described in Sec. V, it is appropriate to setNmax at 20 seconds, which
is longer than most of the homogeneous segments in the data set.

analysis windowW initialized with a small number ofNini

samples grows repeatedly byNg samples until it contains more
thanm samples, so that there is at least one change point in
W . SupposeW needs to grow toγm samples to detect the
change point, whereγ > 0; then, the time cost of sequentially
detectingk change points will be

T ′1(k) = k[N2
ini +

(γm−Nini)/Ng∑

i=1

(Nini + iNg)2]τ. (14)

After thek-th change point has been detected, the detection
process continues to search in the last homogeneous segment;
the time cost is

Cs = [N2
ini +

(m−Nini)/Ng∑

i=1

(Nini + iNg)2]τ. (15)

In practical applications, bothNini andNg are set at small
values. To simplify the analysis, we assumeNini≈Ng. Then,
the time cost of WinGrow is

T5(k) = T ′1(k) + Cs

≈ k[
(γm−Ng)/Ng∑

i=1

(iNg)2]τ + [
(m−Ng)/Ng∑

i=1

(iNg)2]τ

= (
γ3m3

3Ng
− γ2m2

2
+

γmNg

6
)kτ

+(
m3

3Ng
− m2

2
+

mNg

6
)τ

= O(km3τ). (16)

5) Discussion: From Eqs. (7), (11), (12), (13), and (16),
it is obvious that FixSlid, DACDec3, and DISTBICpR are
more efficient than DACDec1, DACDec2, and WinGrow.

DACDec1 and DACDec2 are more efficient than WinGrow
when the input audio stream is composed of long homoge-
neous segments. For example, if the frame rate is 100 frames
per second (i.e., there are 100 feature vectors for a one-second
audio stream), it is appropriate to set the value ofNini andNg

at 100. Moreover, the value ofγ can be set at 1.5 generally.
Then, for a 30-second audio stream (which consists of 3000
feature vectors) containing only one change point (i.e.,k = 1
and m = 1500), the speedups of DACDec1 and DACDec2
over WinGrow are 2.55 and 1.78, respectively. When there
is no change point in the 30-second stream, the speedups of
DACDec1 and DACDec2 over Wingrow are 10.51 and 3.51,
respectively. In contrast, when the audio stream is composed of
short homogeneous segments, WinGrow is more efficient than
DACDec1 and DACDec2. For example, for a 30-second stream
containing five change points (i.e.,k = 5 andm = 500), the
speedups of DACDec1 and DACDec2 over WinGrow are 0.42
and 0.37, respectively.

V. EXPERIMENTS ON SPEAKER SEGMENTATION

We conducted experiments on a synthetic data set us-
ing SeqDACDec1 and SeqDACDec2 to verify the unreliable
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∆BIC measurement issue in DACDec1, and on two real-
world broadcast news data sets to evaluate the performances
of the baseline and proposed segmentation approaches.

For feature extraction, we used a 32-ms Hamming window
shifted with a step of 10-ms to extract 24 mel-frequency
cepstral coefficients as the acoustic features [11]. There were
100 24-dimensional feature vectors in a one-second audio
stream.

For the performance evaluation, we used the Receiver
Operating Characteristic (ROC) curve to show the various
miss detection (MD) rates and false alarm (FA) rates yielded
by adjusting the threshold parameters. A true change pointt
was counted as a miss detection if there was no hypothesized
change point within[t−ξ, t+ξ] (a2ξ-second window centered
on t); and a hypothesized change pointt̂ was counted as a false
alarm if there was no true change point within[t̂ − ξ, t̂ + ξ].
The miss detection rate (MDR) and false alarm rate (FAR) are
defined as

MDR=100%× number of MD
number of true change points

,

FAR=100%× number of FA
number of hypothesized change points

.

A. Experiments on the synthetic data

1) Data set description:We used the training data of six
speakers from the 2001 NIST speaker recognition evalua-
tion corpus [34] to create three artificial audio streams of
conversational speech as the synthetic data set. The speech
from speaker#5077 and speaker#5232 was divided into three-
second utterances and interlaced to form an audio stream of
conversational speech of two speakers. In the same way, the
speech from speaker#5326 and speaker#5333 was used to form
the second audio stream; and the speech from speakers#5446
and speaker#5269 was used to form the third audio stream.
There were 231 speaker change points in total in the three
audio streams.

2) Experiment results:Fig. 11 shows the ROC curves
obtained by running SeqDACDec1 and SeqDACDec2 on the
synthetic data with different analysis window sizes.η was set
at 0.25,Nmin in DACDec1 and DACDec2 was set at one
second (i.e., 100 samples), and the penalty factorλ in ∆BIC
was set at 0.7 initially and increased to 1.7 in 0.05 increments.
The ∆BIC distance was evaluated every 0.1 seconds in both
approaches; that is, the resolution for change point detection
was 0.1 seconds. The toleranceξ for counting the number
of miss detection or false alarm was set at 0.5 seconds.
From the figure, we observe that SeqDACDec2 outperforms
SeqDACDec1 for every window size. Moreover, SeqDACDec2
yields similar performances at different window sizes, whereas
the performance of SeqDACDec1 declines significantly when
the window size is increased from 10 seconds to 20 or
30 seconds. In other words, SeqDACDec2 is more robust
to the size of the analysis window than SeqDACDec1. The
experiment results conform to the discussion in Sec. III;
that is, DACDec1 might not work as well as DACDec2 if
the condition that the homogeneous segments in the analysis
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Fig. 11. ROC curves obtained by running SeqDACDec1 and SeqDACDec2
on the synthetic data using 10-second, 20-second, and 30-second analysis
windows.L denotes the size of the analysis window.

window are derived from different acoustic sources is not met.

B. Experiments on broadcast news data

1) Data set description:We evaluated FixSlid, FixSlid-
HAC pR, DISTBIC pR, DISTBIC, WinGrow, and the pro-
posed methods on two broadcast news data sets. The broadcast
news data in the 2003 NIST rich transcription evaluation
data [32], which is comprised of six 30-minute audio streams
recorded from channels ABC, NBC, CNN, PRI, VOA, and
MNB, was used as the evaluation set (denoted as RT03).
Three one-hour broadcast news programs (PTSND-20011203,
PTSND-20011204, and PTSND-20011205) selected from the
MATBN corpus [31] were used as the development set (de-
noted as MATBN3hr). To be consistent with RT03, each file
in MATBN3hr was divided into two 30-minute audio streams
in the experiments. According to the manual transcriptions,
there were 1261 and 444 speaker change points in MATBN3hr
and RT03, respectively. Note that, in the evaluation, we
ignored the hypothesized change points that locate in the non-
speech regions labeled in the transcription when evaluating the
segmentation errors because the detection of acoustic changes
within the non-speech regions was outside the scope of this
study.

Fig. 12 shows the empirical cumulative distributions of the
size of homogeneous segments in the two data sets. As shown
in the figure, the average length of the segments in RT03 is
longer than that in MATBN3hr.

2) Parameter setting and system description:For FixSlid,
we used the GLR distance as the distance measure of two
adjacent windows. In the experiments, the window size was
fixed at two seconds; and the value ofα used to evaluate
the “significant” local maximum, as shown in Fig. 9, was
set at 0.4 initially, and increased to 2 in 0.05 increments
to obtain the ROC curve. For DACDec3, DISTBICpR, and
FixSlidHAC pR, the parameterpRange was tuned with the
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Fig. 12. The empirical cumulative distributions of the size of homogeneous
segments in MATBN3hr and RT03.

development set. For WinGrow, the values ofNg andNs were
set at one second andNmax/4 seconds, respectively; and the
values ofNini and Nmax were tuned with the development
set. For SeqDACDec1 and SeqDACDec2,η was fixed at 0.25;
and L and Nmin in DACDec1 and DACDec2 were tuned
with the development set. For each BIC-based segmentation
approach, variousλ values for∆BIC were applied in order
to obtain the ROC curve. Like the above experiments on the
synthetic data, the resolution for change point detection was
0.1 seconds for all the approaches. However, the tolerance
ξ for counting the number of miss detection or false alarm
was set at one second rather than 0.5 seconds. Basically, we
made this change because of the limited precision of human
reference annotation.

For FixSlidHAC pR, we first applied FixSlid with the
threshold parameterpRange to segment the input audio
stream, then we pruned non-speech regions within the audio
segments and grouped the segments using HAC with multiple
stages, which have been applied in state-of-the-art speaker
diarization systems [8], [7], [35], [30]. As shown in Fig.
13, we applied HAC with∆BIC as the inter-cluster dis-
tance measure (HAC-BIC) for initial clustering; the clustering
process was stopped if the smallest∆BIC value among all
the cluster pairs was larger than zero. Then, we classified the
resultant clusters into four classes, namely, male speech with
studio/wide-bandwidth condition (WM), male speech with
telephone/narrow-bandwidth condition (TM), female speech
with studio condition (WF), and female speech with telephone
condition (TF). After the gender/bandwidth classification, we
applied HAC with the cross log-likelihood ratio derived from
GMMs as the inter-cluster distance measure (HAC-SID) to the
four classes, individually [7]. The cross log-likelihood ratio is
defined as

CLRGMM (πi, πj) =
1
ni

log
p(πi|Mj)
p(πi|B)

+
1
nj

log
p(πj |Mi)
p(πj |B)

,

(17)
where Mi and Mj are, respectively, the GMMs for clus-

HAC-BIC

HAC-SID

Gender/bandwidth classification

Audio segments

Prune non-speech

WM TM

WF TF

Speaker times

clusters

Fig. 13. A multi-stage HAC that consists of BIC clustering (HAC-BIC),
gender/bandwidth classification and SID clustering (HAC-SID).

ters πi and πj , which are MAP-adapted from the universal
background model (UBM [36])B. Here, only Gaussian mean
vectors were adapted, and the relevant factor for controlling
the adaptation rate was experimentally set at 16.CLRGMM

reveals the similarity betweenπi and πj . Therefore, when
applying this measure in HAC, the two clusters with the largest
CLRGMM value are merged; and the clustering process is
terminated when it is smaller than a pre-defined stopping
threshold. We used 15 MFCCs and energy plus their delta
coefficients, which were normalized by feature warping, as
the speech feature for HAC-SID [7]. We used the 1998
DARPA/NIST HUB-4 broadcast news evaluation test data to
train the UBMs forWM andWF, and the NIST 2000 speaker
recognition evaluation corpus forTM and TF; each of the
UBMs contained 128 mixture Gaussians.

3) Experiment results:We first evaluated all the segmen-
tation approaches on MATBN3hr. Fig. 14 (a) shows the ROC
curves obtained by DACDec3 and DISTBICpR with different
pRange values. From the figure, we observe that DACDec3
outperforms DISTBICpR; and the best setting ofpRange for
DACDec3 and DISTBICpR are 0.5 seconds and one second,
respectively. Table I shows the results of FixSlidHACpR,
where for eachpRange case, various settings forλ and the
stopping threshold in HAC-SID were evaluated to obtain the
lowest equal error rate (EER). From the table, we observe that
FixSlidHAC pR achieves the lowest EER withpRange =
1.5 seconds. Both DACDec3 and DISTBICpR achieve a
lower EER compared to FixSlidHACpR; this shows that
DACDec3’s recursive and DISTBICpR’s sequential strategies
for segment merging outperform the hierarchical agglomera-
tive approach.

We also evaluated DACDec3 using the “significant” local
maximums obtained by FixSlid as the divide-points (denoted
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TABLE I
THE EERS OFFIX SLID HAC PR, DACDEC3, AND DISTBIC PR ON

MATBN3HR, WHERE M AND F DENOTE THE MISS DETECTION RATE AND

THE FALSE ALARM RATE, RESPECTIVELY.

Approach pRange (in second) EER (in %)
FixSlidHAC pR 1 M:26.05, F:24.60

1.5 M:21.09, F:22.22
2 M:24.35, F:25.10

DACDec3 0.5 M:17.61, F:17.46
DISTBIC pR 1 M:19.19, F:18.44

as DACDec3SP). We ran DACDec3SP and DISTBIC with
α = 0.4 and α = 0.85. From Fig. 14 (b), it is clear that
DACDec3 SP and DISTBIC substantially outperform FixS-
lid, while DACDec3 SP outperforms DISTBIC. Moreover,
DACDec3 with pRange = 0.5 seconds (the line marked
with diamonds) slightly outperforms DACDec3SP. In our
experience,pRange is easier to tune thanα. Therefore, we
did not analyze DACDec3SP and DISTBIC further in the
remaining experiments for speaker change detection.

When conducting the experiments, we found that it was
appropriate to setNini at three seconds andNmax at 20 sec-
onds for WinGrow. For both SeqDACDec1 and SeqDACDec2,
it was appropriate to setNmin at two seconds and the
window sizeL at 20 seconds. Fig. 15 (a) shows the ROC
curves obtained by SeqDACDec1 with analysis windows of
different size. Unlike the results for the synthetic data in
Fig. 11, the results with 10-second and 20-second analy-
sis windows are similar. This is because, in the broadcast
news data, if a 10-second or 20-second analysis window
contains multiple homogeneous segments, the segments are
usually derived from different speakers. For SeqDACDec2,
the results for 10-second, 20-second, and 30-second analysis
windows are similar, as shown in Fig. 15 (b). The ROC
curves obtained by the different approaches are shown in Fig.
15 (c). We observe that the proposed approaches, namely,
SeqDACDec1, SeqDACDec2, and DACDec3, outperform the
other approaches, while SeqDACDec2 performs the best. Table
II shows the speeds of all the approaches in terms of “times
real-time” (real-time factor,xRT 3) in the EER case. All the
programs were implemented with MATLAB, except that the
MAP training of GMMs and calculation of mixture likelihood
in FixSlidHAC pR was implemented with C language via
MATLAB’s API. The programs were run on a machine with
a 3.2GHz Intel Xeon CPU. From the table, we observe
that SeqDACDec1, SeqDACDec2, and DACDec3 are more
efficient than WinGrow. DACDec3 in particular runs much
faster than WinGrow. Moreover, FixSlidHACpR is much
slower than the other approaches.

Next, we conducted experiments on RT03 with the pa-
rameters tuned with MATBN3hr. Fig. 16 shows the ROC
curves for all approaches. Again, we observe that the pro-
posed approaches, namely, SeqDACDec1, SeqDACDec2, and
DACDec3, outperform the other approaches. Table III shows
the real-time factor of all the approaches in the EER case.
Comparing Table III to Table II, it is clear that every approach

3xRT=Ts/Td, whereTs is the system run-time andTd denotes the time
duration of the test data set.

achieves a higher speedup over WinGrow on RT03 than
on MATBN3hr. This is because the homogeneous segments
in RT03 are longer than those in MATBN3hr on average,
as shown in Fig. 12, and these approaches achieve higher
speedup over WinGrow for an audio stream comprised of
longer homogeneous segments, as mentioned in Sec. IV (cf.
Eqs. (7), (11), (12), (13), and (16)).

VI. A PPLICATION TO SPEAKER DIARIZATION

Speaker diarization, also known as the “who spoke when”
task, aims to group together speech segments produced by the
same speaker within an audio stream [8]. It has been studied
in various data domains, e.g., conversational telephone speech
[16], broadcast news data [7], [35], and meeting data [37].

Speaker diarization systems usually consist of two core
components, namely speaker segmentation, which chops the
audio stream into homogeneous segments, and speaker clus-
tering, which groups the homogeneous segments into speaker
clusters. Currently, leading speaker diarization systems usually
apply hierarchical agglomerative clustering (HAC) to perform
speaker clustering after segmentation [7], [35], [30]. Here, we
would like to evaluate the performance of the segmentation
approaches discussed above in terms of speaker diarization
error by integrating them with the multi-stage HAC in Fig. 13.
The diarization system that combines SeqDACDec1 and the
multi-stage HAC is denoted as SeqDACDec1HAC. Similarly,
the diarization systems based on the segmentation meth-
ods SeqDACDec2, DACDec3, WinGrow, DISTBICpR, and
FixSlid are denoted as SeqDACDec2HAC, DACDec3 HAC,
WinGrow HAC, DISTBIC pR HAC, and FixSlid HAC, re-
spectively.

In the implementation, following the speech activity detec-
tion (SAD) method in [7], the GMMs for speech, noisy speech,
speech over music, pure music, and silence/noise were trained
beforehand, and the non-speech regions in the audio segments
were pruned by using Viterbi decoding.

A. Experiments on speaker diarization

1) Data set description and performance evaluation:We
used RT03 described in Section V-B1 in the speaker diarization
experiments. The audio recordings from channels ABC, NBC,
and CNN were used as the development set (RT03Dev);
while the recordings from PRI, VOA, and MNB were used
as the evaluation set (RT03Eval).

For the performance evaluation, we used the diarization
evaluation tool (md-eval-v21.pl) released by NIST [38] to
evaluate the diarization error rate (DER), which takes into
account three kinds of error, namely missed speech (MiS),
false alarm speech (FaS), and speaker error (SpE). Readers
can refer to [7] for a detailed description of these error types.

2) Parameter setting and system description:We used
RT03 Dev to tune the parameters for each system, and then
evaluated the diarization performance on RT03Eval. These
parameters includeλ in the∆BIC-based inter-cluster distance
measure in HAC-BIC, the stopping threshold in HAC-SID,
λ in BIC-based segmentation in SeqDACDec1HAC, Seq-
DACDec2 HAC, DACDec3 HAC, DISTBIC pR HAC and
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Fig. 14. ROC curves for MATBN3hr obtained by (a) DACDec3 and DISTBICpR with differentpRange values, and (b) FixSlid, DACDec3SP, DISTBIC
and DACDec3.

TABLE II
THE REAL-TIME FACTOR (xRT ) OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ONMATBN3HR IN THE EER CASE AND THE ASSOCIATED

EERS, WHERE M AND F DENOTE THE MISS DETECTION RATE AND THE FALSE ALARM RATE, RESPECTIVELY.

Approach WinGrow SeqDACDec1 SeqDACDec2 DACDec3 DISTBIC pR FixSlid FixSlidHAC pR
xRT 0.38 0.1 0.19 0.023 0.026 0.02 1.81

Speedup over 1 3.8 2 16.52 14.61 19 0.21
WinGrow

EER (in %) M:18.08, M:17.84, M:16.42, M:17.61, M:19.19, M:29.42, M:21.09,
F:18.65 F:17.21 F:15.92 F:17.46 F:18.44 F:29.82 F:22.22

TABLE III
THE REAL-TIME FACTOR (xRT ) OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ONRT03 IN THE EER CASE AND THE ASSOCIATEDEERS.

Approach WinGrow SeqDACDec1 SeqDACDec2 DACDec3 DISTBIC pR FixSlid FixSlidHAC pR
xRT 0.53 0.11 0.22 0.022 0.025 0.019 1.87

Speedup over 1 4.82 2.41 24.09 21.2 27.89 0.28
WinGrow

EER (in %) M:17.79, M:17.34, M:16.44, M:18.47, M:22.3, M:34.68, M:23.19,
F:16.59 F:18.32 F:15.95 F:17.24 F:21.08 F:33.12 F:24.88

WinGrow HAC, and α in FixSlid segmentation in FixS-
lid HAC. For each system, the remaining parameters in the
segmentation stage were the same as those yielding the seg-
mentation results in Figs. 15 (c) (for MATBN3hr) and 16 (for
RT03).

3) Post processing by Viterbi re-segmentation:As reported
in [35], one can use Viterbi re-segmentation after speaker
clustering to improve the diarization accuracy; thus, we used
this technique as a post processing step and evaluated how it
effects on each diarization system. For the re-segmentation,
the speech in each cluster was used to train a MAP-adapted
GMM from a gender- and channel-independent UBM first,
which represents one state in the applied ergodic HMM. Then,
Viterbi decoding was applied to perform the re-segmentation
(diarization). The GMM training and re-segmentation were
done iteratively.

4) Experiment results:Tables IV and V show the DERs
of the diarization systems without and with the Vitrebi re-
segmentation based post processing step, respectively. From
these two tables, two observations can be drawn. First, a

more accurate speaker change detection algorithm leads to
better diarization accuracy. For example, FixSlidHAC obtains
a higher DER than the other systems. As shown in Fig. 16, its
segmentation method, FixSlid, achieves a higher segmentation
error. Second, Vitrebi re-segmentation consistently improves
the diarization accuracy of all the systems. The improvement
is more significant on FixSlidHAC, which achieves a higher
DER originally; however, its DER is still higher than those
of the other systems that are based on more accurate speaker
segmentation methods.

VII. C ONCLUSION

We have proposed three BIC-based speaker segmenta-
tion approaches that employ divide-and-conquer strategies for
speaker change detection. In contrast to the well-known and
highly accurate window-growing-based approach (WinGrow),
which searches for change points in a bottom-up manner by
using a sequentially growing analysis window, the proposed
DACDec1 and DACDec2 approaches search for change points
in a top-down manner. The proposed DACDec3 approach is
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Fig. 15. The ROC curves for MATBN3hr obtained by (a) SeqDACDec1 withNmin = 2 seconds and analysis windows of different size (L); (b) SeqDACDec2
with Nmin = 2 seconds and analysis windows of different size (L); and (c) SeqDACDec1 withNmin = 2 seconds andL = 20 seconds, SeqDACDec2
with Nmin = 2 seconds andL = 20 seconds, DACDec3 withpRange = 0.5 seconds, WinGrow withNmin = 3 seconds andNmax = 20 seconds,
DISTBIC pR with pRange = 1 second, and FixSlid with a 2-second sliding window.

TABLE IV
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. V ITERBI RE-SEGMENTATION IS NOT APPLIED.

Approach RT03 Dev RT03 Eval
MiS FaS SpE DER MiS FaS SpE DER

SeqDACDec1HAC 0.6 0.4 7.9 8.86 0 4 9.3 13.34
SeqDACDec2HAC 0.6 0.4 7.7 8.7 0 4 9.4 13.39

DACDec3 HAC 0.6 0.4 7.5 8.46 0 4 9.7 13.69
WinGrow HAC 0.6 0.4 8.3 9.29 0 4 10.1 14.12

DISTBIC pR HAC 0.6 0.4 8.2 9.19 0 4 9.9 13.94
FixSlid HAC 0.6 0.4 10.5 11.52 0 4 13.3 17.57

a recursive variant of another popular approach, DISTBIC.
We compared our approaches to these well-known approaches
analytically by performing computational cost analysis. The
results of experiments conducted on broadcast news data
demonstrate that the proposed approaches are more efficient
and achieve higher segmentation accuracy than the existing
approaches discussed in this paper. In addition, we applied the

segmentation approaches to the speaker diarization task. The
experiment results show that a more accurate segmentation
approach leads to better diarization accuracy.
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TABLE V
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. V ITERBI RE-SEGMENTATION IS APPLIED AS A POST PROCESSING STEP.

Approach RT03 Dev RT03 Eval
MiS FaS SpE DER MiS FaS SpE DER

SeqDACDec1HAC 0.6 0.4 7.4 8.37 0 4 9.2 13.15
SeqDACDec2HAC 0.6 0.4 7.4 8.35 0 4 9.2 13.16

DACDec3 HAC 0.6 0.4 7 7.96 0 4 9.7 13.67
WinGrow HAC 0.6 0.4 7.7 8.65 0 4 9.8 13.79

DISTBIC pR HAC 0.6 0.4 7.5 8.51 0 4 9.1 13.06
FixSlid HAC 0.6 0.4 8.2 9.22 0 4 10.9 14.91
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Fig. 16. The ROC curves for RT03.

APPENDIX

A. ComputeT1(k)
T1(k) is expressed as

T1(k) =
1
k

k∑

i=1

(T1(i− 1) + T1(k − i)) + (k + 1)2m2τ

=
2
k

k∑

i=1

T1(i− 1) + (k + 1)2m2τ, (18)

whereT1(0) = m2τ . To solve this recursive equation, we can
apply the technique used for analyzing the time cost of the
Quicksort algorithm [39]. First, we multiply both sides of Eq.
(18) by k as follows:

kT1(k) = 2
k∑

i=1

T1(i− 1) + k(k + 1)2m2τ. (19)

Replacingk in Eq. (19) withk − 1, we obtain

(k − 1)T1(k − 1) = 2
k−1∑

i=1

T1(i− 1) + (k − 1)k2m2τ. (20)

Subtracting Eq. (20) from Eq. (19), we obtain

kT1(k)−(k−1)T1(k−1) = 2T1(k−1)+(3k2+k)m2τ. (21)

Rearranging the terms in Eq. (21) yields

T1(k)
k + 1

=
T1(k − 1)

k
+

(3k + 1)m2τ

(k + 1)
. (22)

Let ak = T1(k)/(k + 1), then Eq. (22) can be rewritten as

ak = ak−1 + (3− 2
k + 1

)m2τ, (23)

where a0 = m2τ . Recursively substituting theaks′ in Eq.
(23), we obtain

ak = a0 + (3k − (
2
2

+
2
3

+ · · ·+ 2
k + 1

))m2τ

= (3k + 3− 2
k+1∑

i=1

1
i
)m2τ. (24)

Because
∑k+1

i=1
1
i≈ln(k + 1) [39], we have

ak ≈ (3k + 3− 2 ln(k + 1))m2τ. (25)

Sinceak = T1(k)/(k + 1), T1(k) can be expressed as

T1(k) = ak(k + 1)
≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ. (26)

B. ComputeT ′(m)

T ′(m) is expressed as

T ′(m) =
1
m

m∑

i=1

(T ′(i− 1) + T ′(m− i)) + m2τ + mτ, (27)

whereT ′(0) = 0. Similar to the manipulation of Eq. (18) in
Appendix A, by settingam = T ′(m)/(m+1), we havea0 = 0
and

am = am−1 +
(3m− 1)τ

m + 1

= am−1 + (3− 4
m + 1

)τ

= a0 + (3m− (
4
2

+
4
3

+ · · ·+ 4
m + 1

))τ

≈ (3m + 4− 4 ln(m + 1))τ. (28)

Sinceam = T ′(m)/(m + 1), we have

T ′(m)=am(m + 1)
≈(3m + 4− 4 ln(m + 1))(m + 1)τ. (29)
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C. ComputeT2(k)
T2(k) is expressed as

T2(k) =
1
k

k∑

i=1

(T2(i− 1)+T2(k− i))+ (k +1)2m2τ +2mτ,

(30)
where T2(0) ≤ (3m + 4 − 4 ln(m + 1))(m + 1)τ . Similar
to the manipulation of Eq. (18) in Appendix A, by setting
ak = T2(k)/(k + 1), we have

ak = ak−1 +
(3k2 + k)m2τ + 2mτ

k(k + 1)
,

= ak−1 + (3− 2
k + 1

)m2τ + 2(
1
k
− 1

k + 1
)mτ,

≈ a0 + (3k + 2− 2 ln(k + 1))m2τ

+2(ln k − ln(k + 1) + 1)mτ. (31)

Substitutinga0 = T2(0) into Eq. (31), we obtain

ak ≤ (3k + 5− 2 ln(k + 1))m2τ + (9 + 2 ln k − 2 ln(k + 1)
−4 ln(m + 1))mτ + (4− 4 ln(m + 1))τ. (32)

Sinceak = T2(k)/(k + 1), we have

T2(k) ≤ (3k + 5− 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1)− 4 ln(m + 1))(k + 1)mτ

+(4− 4 ln(m + 1))(k + 1)τ. (33)
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