
Speech Communication 48 (2006) 863–887

www.elsevier.com/locate/specom
An advanced platform to speed up the design of
multilingual dialog applications for multiple modalities q

Luis Fernando D’Haro a, Ricardo de Córdoba a,*, Javier Ferreiros a,
Stefan W. Hamerich b, Volker Schless b, Basilis Kladis c, Volker Schubert b,

Otilia Kocsis c, Stefan Igel d, José M. Pardo a

a Grupo de Tecnologı́a del Habla, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
b Harman/Becker Automotive Systems, Ulm, Germany
c Knowledge S.A. (LogicDIS group), Patras, Greece

d Forschungsinstitut für anwendungsorientierte, Wissensverarbeitung (FAW), Ulm, Germany

Received 16 February 2005; received in revised form 30 September 2005; accepted 2 November 2005
Abstract

In this paper, we present a complete platform for the semiautomatic and simultaneous generation of human–machine
dialog applications in two different and separate modalities (Voice and Web) and several languages to provide services ori-
ented to obtaining or modifying the information from a database (data-centered). Given that one of the main objectives of
the platform is to unify the application design process regardless of its modality or language and then to complete it with
the specific details of each one, the design process begins with a general description of the application, the data model, the
database access functions, and a generic finite state diagram consisting of the application flow. With this information, the
actions to be carried out in each state of the dialog are defined. Then, the specific characteristics of each modality and lan-
guage (grammars, prompts, presentation aspects, user levels, etc.) are specified in later assistants. Finally, the scripts that
execute the application in the real-time system are automatically generated.

We describe each assistant in detail, emphasizing the methodologies followed to ease the design process, especially in its
critical aspects. We also describe different strategies and characteristics that we have applied to provide portability, robust-
ness, adaptability and high performance to the platform. We also address important issues in dialog applications such as
mixed initiative and over-answering, confirmation handling or providing long lists of information to the user. Finally, the
results obtained in a subjective evaluation with different designers and in the creation of two full applications that confirm
the usability, flexibility and standardization of the platform, and provide new research directions.
� 2005 Elsevier B.V. All rights reserved.
0167-6393/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2005.11.001

q This work was partly supported by the European Commission’s Information Society Technologies Programme under contract no. IST-
2001-32343. The authors are solely responsible for the contents of this publication.

* Corresponding author. Tel.: +34 91 3367366x4209; fax: +34 91 3367323.
E-mail addresses: lfdharo@die.upm.es (L.F. D’Haro), cordoba@die.upm.es (R. de Córdoba), jfl@die.upm.es (J. Ferreiros),

shamerich@harmanbecker.com (S.W. Hamerich), vschless@harmanbecker.com (V. Schless), bkladis@knowledge-speech.gr (B. Kladis),
vschubert@harmanbecker.com (V. Schubert), okocsis@knowledge-speech.gr (O. Kocsis), sigel@faw.uni-ulm.de (S. Igel), pardo@
die.upm.es (J.M. Pardo).

mailto:lfdharo@die.upm.es
mailto:cordoba@die.upm.es
mailto:jfl@die.upm.es
mailto:shamerich@harmanbecker.com
mailto:vschless@harmanbecker.com
mailto:bkladis@knowledge-speech.gr
mailto:vschubert@harmanbecker.com
mailto:okocsis@knowledge-speech.gr
mailto:sigel@faw.uni-ulm.de
mailto:pardo@ die.upm.es
mailto:pardo@ die.upm.es


864 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
Keywords: Automatic dialog systems generation; Dialog management tools; Multiple modalities; Multilinguality; XML; VoiceXML
1. Introduction

1.1. Motivation

The growing interest from companies in using
new information technologies as means to getting
closer to the final users has led to the quick growth
and improvement of automatic dialog systems.
They are now able to provide services such as reser-
vations (San Segundo et al., 2001; Lamel et al.,
2000; Levin et al., 2000), customer care (Strik
et al., 1997) or information retrieval (Zue et al.,
2000; Seneff and Polifroni, 2000), 24 h a day 7 days
a week. Besides, given the different characteristics
and requisites of the final users, the service is
expected to be available in several languages (Tur-
unen et al., 2004; Meng et al., 2002; Uebler, 2001)
and to provide quick assistance in real time using
different modalities such as: voice, gestures, touch
screens, Web pages, interactive maps, etc. (Almeida
et al., 2002; Wahlster et al., 2001; Gustafson et al.,
2000; Oviatt et al., 2000). Obviously, to build this
kind of systems, a complete platform is necessary
to design, debug, execute and maintain these ser-
vices and, at the same time, they have to provide
the maximum number of features to the designer
and final user, a high level of portability, standard-
ization and scalability to minimize design time and
costs. With these objectives in mind, and based on
the results and experience obtained in previous pro-
jects (Córdoba et al., 2001; Lehtinen et al., 2000;
Ehrlich et al., 1997), we undertook the European
Project GEMINI (Generic Environment for Multi-
lingual Interactive Natural Interfaces) developed
from 2002 to 2004 (Gemini Project Homepage,
2004). The result is a complete platform that con-
sists of a set of tools and assistants that guide the
designer from the first steps of the design until the
execution of the service. Such platform, its assis-
tants, the strategies to simplify the design process,
and the solutions to the problems of handling multi-
ple modalities and multilinguality in a unified design
environment is what we describe here.

1.2. Alternative approaches

Nowadays, several companies and academic
institutions work in the development of such tools
or platforms. To begin with, we have studied several
approaches to find out their characteristics, positive
aspects and limitations, so that we could contribute
new ideas to the field.

The following tools developed in an academic
environment are significant: CSLU’s RAD toolkit
from Oregon University (McTear, 1999; Cole,
1999), which allows the development of multimodal
system initiative dialogs (voice and images), using a
representation based on state graphs (McTear,
1998), that are built using a toolbar with objects
that represent the different functions, such as flow
diagrams and actions in the dialog. It also provides
an interface to execute Tcl/Tk scripts that increases
the possibilities of interaction, data retrieval, analy-
sis, grammar development, etc., in the modules and
application development. GULAN (Gustafson
et al., 1998) is a platform used to build a yellow-
pages system using voice and interactive maps in
Web that searches for several services in Stockholm.
Dialog flow is defined using a tree representation
whose nodes model the structure, focus and the
actions that are going to be executed inside each
dialog state. SpeechBuilder (Glass and Weinstein,
2001), developed at the Spoken Language Systems
Group from MIT, lets the designer use modules that
conform the Galaxy architecture (Polifroni and
Seneff, 2000) as a real-time platform, which commu-
nicates with the application using the HTTP proto-
col and parameter passing using a CGI script. To
make the design, there is a Web interface to define,
using an action definition language based on exam-
ples, the relevant semantic concepts and actions that
are allowed in the application.

Although all these tools are easy to use thanks to
their visual interface and their real-time platform,
their main problem is that in order to use or increase
their features the designer has to know several
programming languages, and they offer a low stan-
dardization as they are tied to a specific execution
platform. Besides, they have serious limitations
when trying to implement dialog strategies that take
into account the user level or when simultaneously
building the application in several languages.

Regarding commercial platforms (e.g., Nuance,
IBM WebSphere, Microsoft Speech Application
SDK, Audium Builder, UNISYS, etc.), in general
they provide several high-level tools to build multi-
modal and multilingual dialog applications (focused
mainly in voice access systems) using widespread



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 865
standards such as VoiceXML and SALT (Wang,
2002), and a support technology that accelerates
the development of any service. In addition, there
are several Web portals, e.g., the ones from BeVocal
Café, Tellme Studio, VoiceGenie, etc., that help in
script development, provide out-house hosting ser-
vice, and offer a real-time platform for companies
that do not have the technology required. However,
a large drawback is that the runtime platform
depends on the underlying technology (speech rec-
ognizer, text to speech systems, dialog managers,
etc.) so the behavior may vary between platforms
and it is difficult to integrate proprietary modules.
They also present difficulties in integrating new
modalities or transferring the service between oper-
ating systems.

We should also mention the growing interest in
systems that use markup languages based on XML
to define input/output data exchanged between their
different modules (Flippo et al., 2003; Katsurada
et al., 2002; Wang, 2000). Examples of this kind of
languages are VoiceXML, and, more recently,
SALT, that have helped a lot in the definition of dia-
logs, while they offer flexibility and portability to
provide complete voice services quickly (Komatani
et al., 2003; Bennett et al., 2002). Considering this
and several factors such as the possibility of includ-
ing new modalities and improvements, the indepen-
dence of the service execution platform, and the ease
of debugging of tag based languages, we decided to
create our own language (called GDialogXML) as
a format for internal communication between the
platform assistants and to use the standard Voice-
XML and/or xHTML as output scripts for the
runtime system.

Regarding systems that offer strategies to acceler-
ate dialog design we should mention (Denecke,
2002) where a complete three-layer architecture for
rapid prototyping of dialog applications is pre-
sented. In the first layer, language and domain-inde-
pendent algorithms are provided to describe the
dialog objectives, discourse history and the semantic
representation of the speech recognizer output. In
the second layer, the interaction mechanism
between user and system is described (e.g., variables
used by the recognizer, database access variables
and methods, dialog states, etc.) Finally, the third
layer contains the dialog controller that uses the
information from the other two layers and interacts
with the final user. This system is similar to our pro-
posal in some aspects, as the handling of concepts to
facilitate multilingual interaction, the use of special
variables related to the system and dialog status,
and the use of automatic templates for each dialog
state. Nevertheless, as the author admits, the tem-
plates fail when not all the states of the dialog can
be covered. In our system, we have tried to avoid
this by using more flexible and general templates,
although less automatic.

In (Polifroni et al., 2003) a rapid development
environment for speech dialogs from online reso-
urces is described. The development process first
extracts knowledge from various Web applications
and composes a dynamic database from it. The
design automation is mainly based on the contents
of such database. This is one of the differences with
our approach: our platform uses the database struc-
ture, not its contents, to extract knowledge for the
design process. Because of this, the design is more
domain-independent, as it is more feasible to find
data structures that are similar between several ser-
vices and, therefore, can be applied in several appli-
cations. Besides, there are databases whose content
cannot be easily used for research purposes for secu-
rity reasons as in banking databases. Another
important difference is that the speech dialog appli-
cations generated by our platform will be imple-
mented in VoiceXML, which allows the generated
dialogs to be executed with any VoiceXML
interpreter.

More recently, in (Pargellis et al., 2004) a com-
plete platform to build voice applications is
described. The dialog structure can be modified
using a set of templates adapted to the final user
of the system, as well as several resources and
service features. As in our proposal, the platform
automates the generation of the final script in Voice-
XML, the grammars and prompts, and the applica-
tion flow; nevertheless, their proposal differs in that
the automation efforts, in a similar way as in (Polif-
roni et al., 2003), because it is more focused on the
dynamic contents of the database than on its struc-
ture, so it could be more domain dependent.

In relation to multimodal systems, we should
especially mention the work in (Johnston et al.,
2002), where a multimodal architecture for a dialog
system based on finite states is described. This archi-
tecture allows a synchronous multimodal input/out-
put of data using speech and/or gestures/images
with a pen on a PDA. The authors emphasize the
methods followed to guarantee the multimodal
interaction, and the features provided for each
modality and for the design of new applications.
Even though we do not provide this kind of



866 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
interaction in our system right now, our future work
is oriented towards the creation of a similar mecha-
nism using a standard language as X + V, the use
and generation of multimodal grammars and the
adaptation of our platform to a more distributed
architecture that guarantees the synchronization of
the different modalities.

Regarding tools that can be used to debug and
evaluate the application off-line, we should mention
the SUEDE platform (Klemmer et al., 2000), devel-
oped in the Group for User Interface Research from
Berkeley University, that offers a graphical interface
to capture and analyze training data using the Wiz-
ard of Oz (WOZ) technique. The objective is to pro-
vide the designer with a way of testing the prompts
and system behavior by studying the system mis-
takes arising from problems in real time or bad rec-
ognition of user input. In our case, we have tried to
minimize some of these design problems using auto-
matic and configurable templates for the treatment
of common recognition errors.

Finally, we have found out that our platform fol-
lows a very similar approach to the Agenda system
(now called RavenClaw) from CMU (Rudnicky and
Xu, 1999; Bohus and Rudnicky, 2003), in that the
designer can create a service using a hierarchical
representation of the task and its subcomponents,
facilitating maintenance and scalability, and that
each state is described using a set of forms with
information regarding its restrictions and optional
slots.

1.3. Relevant definitions

Throughout this paper we are going to use some
terms that do not necessarily have the same meaning
as the ones used in common literature or that do not
present a general accepted definition. To clarify
them and avoid confusions we want to define them
here from the perspective of our platform.

Designer and user: The term designer refers to the
person that uses the platform to build the service,
and user refers to the final client of the developed
service.

Multiple modalities: The common usage of the
term multimodality in dialog applications refers to
the ability to support the communication with the
user through several channels to obtain and provide
him/her information (Nigay and Coutaz, 1993). The
most widely used modalities are voice, gestures,
mouse, images or writing, which can be combined
simultaneously or otherwise during the dialog.
However, instead of multimodality, we have
focused on providing multiple modalities from the
designer point of view, referring to the platform’s
ability to generate the service for two modalities in
a unified and simultaneous way: Web and voice.
Right now, these modalities work apart from each
other instead of being combined (synchronized) in
the real-time system.

Mixed initiative and over-answering: It is well
known that the concept of mixed initiative includes
over-answering, as mixed initiative is a generic
term used to refer to a flexible interaction between
the user and the system to get together to reach a
common final solution (Allen et al., 1999). How-
ever, we preferred to differentiate them to maintain
the consistence with the specifications and imple-
mentation of the VoiceXML standard (McGlashan
et al., 2004). In this sense we will use the term
mixed initiative to indicate the system’s ability to
ask simultaneously for two or more compulsory
data from the user, and, if the user’s answer is
incomplete—or the recognizer fails—new subdia-
logs are started to obtain the missing data. With
over-answering, we indicate the user’s ability to
provide additional data—not compulsory at that
state—to the system.

Dialog, state and action: From the terminology
established by the W3C for an event-driven model
of dialog interaction (W3C, 1999), we can find the
following definitions:

• Dialog: a model of interactive behavior underly-
ing the interpretation of the markup language.
The model consists of states, variables, events,
event handlers, inputs and outputs

• State: the basic interactional unit defined in the
markup language . . . A state can specify vari-
ables, event handlers, outputs and inputs.

In spite of the differences in these definitions,
throughout the paper we will use both terms with
very little difference, as they will refer, from the per-
spective of a finite state machine, to each interaction
with the user—or a set of them—needed to fulfill a
service task. Nevertheless, the term dialog will be
more associated to the interaction with the user,
whereas state will mostly refer to a set of interac-
tions and other additional actions, such as a data-
base access.

On the other hand, the term action refers to each
procedure needed to complete a state or a dialog,
for example: calls to other dialogs, arithmetic or



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 867
string operations, programming constructs, variable
assignments, etc.

Slot: This term refers to each piece of compulsory
information that the system has to ask the user in
order to offer the service.

1.4. Paper organization

The paper is organized as follows. In Section 2
we present the overall architecture of the platform,
its internal communication format based on XML
and a brief description of its scope and limitations.
In Sections 3–5, a full description of each platform
module is presented, emphasizing the techniques
and strategies used to ease the dialog design of
applications. The separation of the sections corre-
sponds to the three levels in the architecture. In
Section 6 we present the approaches followed to
provide portability and standardization to the plat-
form, and some aspects of the implementation and
the runtime system. In Section 7 we show the results
of a subjective evaluation of the platform made by
several designers. After that, we present some future
plans in Section 8 and finish with the conclusions in
Section 9.
Runtime-System

Dialogs
Layer

Dialog Model

Speech
Generator

Web Generator

VoiceXML Grammars xHTML

Linker

Modality &
Language
Extension
Assistant

ModalityExtension
RetrievalAssistant

for Speech

LMT VB

Framework
Layer

Application
Description
Assistant

DataModeling
Assistant

DataConnector
Modeling
Assistant

Retrieval
Layer

StateFlow
Modeling
Assistant

UserModeling
Assistant

Retrieval
Modeling
Assistant

O
da

D
la

Fig. 1. Platform a
2. Platform structure

Fig. 1 shows the complete platform architecture,
also called Application Generation Platform
(AGP). All these modules are independent of each
other; nevertheless, they were integrated into a com-
mon graphical interface (GUI) to guide the designer
in the design step by step and, at the same time, let
him go back and forth. The platform is divided into
three main layers. The reason for this division is to
separate clearly the aspects that are service specific
(general characteristics of the application, database
structure, database access), those corresponding to
the high level dialog flow of the application (modality
and language independence), and the specific details
imposed by each modality and language. In this way,
the designer is able to create several versions of the
same service (for different modalities and languages)
in a single step at the intermediate level.

In more detail, the assistants of the first layer are
used to specify the overall aspects of the service
(e.g., modalities and languages to be implemented,
general default values for each modality, libraries,
etc.); then, the database structure, not its contents,
is described (classes, attributes, relations, etc.); and
verall aspects related to the application, 
tabase structure and access functions

ialog flow definition in a modality and 
nguage independent way

Dialog completion with all aspects that are 
language and modality dependent

Automatic Script generation for each 
modality (VoiceXML and xHTML)

Additional assistants 

rchitecture.



868 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
finally, the database access functions, needed for the
real-time system, are defined (not their implemen-
tation).

In the second layer, the general flow of the appli-
cation is modeled, including all the actions that
form it (transitions and calls between dialogs,
input/output information, calls to subdialogs, pro-
cedures, etc.) It is important to mention that in this
layer no modality/language specific details are
defined, such as prompts/grammars, recognition
errors, design of the Web page, etc., as all these will
be defined in the next layer. To be able to be modal-
ity and language independent, in this layer all the
input/output data provided by/to the user are man-
aged as concepts.

Finally, the third layer contains the assistants
that complete the general flow specifying for each
dialog the details that are modality and language
dependent. Here, the prompts and grammars for
each language, the appearance and contents of the
Web pages, the error treatment for speech recogni-
tion mistakes or Internet access, the presentation
of information on screen or using speech, etc., is
defined. Furthermore, in this layer the final scripts
of the service are generated, unifying all the infor-
mation from the previous assistants.

As we describe in Section 2.2, all the assistants
communicate between themselves using a common
GDialogXML syntax. More details of the architec-
ture can be found in (Hamerich et al., 2004a,b). In
Sections 3–5, each layer and assistant of the platform
are described. To clarify the design process and the
interaction with the assistants, we will show some
steps of an example dialog where a bank transfer
between accounts is carried out, asking the user for
the number of the source account, the destination
account and the amount of money to be transferred.

2.1. Scope and limitations

The main objective of the platform is to allow the
construction of dialog applications for multiple
modalities and languages at the same time. The gen-
erated applications can be used to access services
based on database queries/modification (e.g., bank-
ing, train reservations, share prices in real time, etc.)
through a telephone or a Web browser. Considering
the limitations imposed by the standards used in the
scripts generated by the platform (see Section 6), it
is limited in the current version to the execution of
each modality on its own. In any case, we consider
that the platform is well prepared for true multimo-
dality. The only missing things right now are new
code elements for synchronization in our XML syn-
tax and a new code generator (e.g., for X + V).

For the speech modality, the platform generates
a script using the VoiceXML 2.0 standard, so the
main limitation is the impossibility of creating user
initiative dialogs, but it allows a certain degree of
mixed initiative. Regarding the Web modality, the
platform generates pages made up with Web forms
(including radio buttons, textboxes, combo boxes,
etc.), and coded using the xHTML language, so they
are accessible from a conventional Web browser.
Besides, the platform allows the coding of multime-
dia contents (e.g., videos, recordings, images, etc.)
as part of user output. Finally, because the output
is coded in xHTML, an expert designer might use
it as a base to add other more complex audiovisual
resources, such as animations, interactive maps,
etc., using specialized Web design tools.

In (Allen et al., 1999) four levels of mixing initia-
tive are identified: unsolicited reporting, subdialog
initiation, fixed subtask initiative, and negotiated
mixed initiative. Unsolicited reporting allows an
agent to inform others about critical information
needed out of turn. Subdialog initiation allows the
system to initiate a subdialog in certain situations,
e.g., to ask for a clarification. In a fixed subtask ini-
tiative, the system keeps the initiative for a task,
and it executes the task interacting with the user
when necessary. In the negotiated mixed-initiative
level, there is no fixed assignment of responsibilities
or initiative, so agents can negotiate who takes the
initiative and proceeds with the interaction based
on it. On the other hand, (McTear, 2002) states that
finite-state models are always fixed system-initiative,
while frame-based systems may permit some degree
of mixed initiative, but that they may also be fixed
user-initiative. Finally, (Allen et al., 2001) survey five
levels of systems in increasing complexity of software
architecture: finite-state, frame-based, sets of con-
texts, plan based, and agent based models. Consider-
ing this perspective, our platform covers the first two
levels of task complexity in Allen’s classification, and
supports, as a frame-based system, the lower levels of
mixed-initiative interaction: unsolicited reporting
and a few cases of subdialog initiation for the man-
agement of lists of objects (see Section 5.2.1).

2.2. GDialogXML

In order to ease communication inside the plat-
form we have developed a new object oriented



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 869
abstract language based on XML tags named Gem-
ini Dialog XML or GDialogXML. Its main feature
is its flexibility, which allows the modeling of all
application data, the database access functions,
the definition of all variables and actions needed
in each dialog state, system prompts, grammars,
user models, Web graphical interface, etc. Then, this
information is used to carry out the conversion to
the languages used for the final presentation of the
service according to the modality (VoiceXML
and/or xHTML).

Besides, the syntax allows the addition of new
modalities, and the update to new versions of the
script languages generated by the platform with
little effort.

As (Schubert and Hamerich, 2005; Hamerich
et al., 2003; Wang et al., 2003) describe in more
detail, the GDialogXML syntax provides the means
needed to model the following aspects: general con-
cepts, data modeling, and dialogue modeling in a
dependent and independent modality and language
way. As general concepts, we can mention: variable
and constant definition, variable assignments, file
paths, arithmetic, boolean or string operations, con-
trol structures for loops and jumps, variable types
(lists, objects, references to objects, atomic data),
etc. For data modeling, we can specify the classes
with attributes, which can have simple data types
such as string, integer, boolean or complex types
as embedded or referenced objects or lists, support-
ing inheritance from base classes, etc. Regarding
dialog modeling, all dialog models consist of dialog
modules that call each other. As the length of this
paper does not allow us to include the complete
specification of the syntax, the reader can find it in
(Gemini Project Homepage, 2004). In any case, to
clarify the input/output representation used in the
assistants, we will include some fragments of the
generated code in some assistants, giving suitable
explanations of it.

3. Framework layer

This layer has three assistants that allow the
overall specification of the service, the description
of the database structure and the database access
functions.

3.1. Application description assistant (ADA)

In this assistant, several overall aspects of the
application, such as the number of modalities and
languages, the location of some services such as the
database access, database connection settings (total
number of connection errors, timeouts), etc. are
specified; for the speech modality, the timeout values
for some events such as no input, default confidence
levels for speech recognition, maximum number of
repetitions/errors before transferring to the opera-
tor, etc.; for the Web modality, possible errors
(e.g., page not found, non-authorized, timeouts,
etc.). More information regarding the error handling
capabilities of the AGP can be found in (Wang et al.,
2003). Besides, the default overall strategy for
dialogs is defined: system-driven or mixed initiative.

Finally, the designer specifies the libraries, which
will be used to speed up the design process. Several
types of libraries can be selected containing the def-
inition of: data models, database access functions,
list of prompts and grammars for each language,
and dialogs from the general model of the applica-
tion (see Section 4.2). The platform provides some
generic libraries, such as prompts and grammars
for confirmations, generic data models, etc., but its
main potential is the possibility of saving most of
the work done in the platform as libraries, including
complete dialogs, so that after the creation of a few
applications, the designer will have a complete set of
libraries adapted to his liking and that can be reused
in future applications. The platform allows the load-
ing of libraries and provides the functionality to edit
their code to adapt them to a new application.

3.2. Data model assistant (DMA)

This assistant defines the data structure (or data
model) of the service specifying the classes, including
inheritance, attributes and types that make up the
database. It uses as input the location of libraries
and files specified in the ADA. It is possible to define
a class with attributes inherited from other classes.
The attributes can be of several types: (a) atomic
(e.g., strings, boolean, float, integer, date, time,
etc.), (b) full embedded objects or pointers to exist-
ing classes, or (c) lists of atomic attributes or com-
plex objects. A graphical view of a class and its
attributes can be seen in Fig. 2 where, for the bank
transfer example, the Transaction class has been
defined, which is made up of two object type attri-
butes from the class Account: the first one, DebitAc-
count, to specify the source account and the second
one, CreditAccount, to specify the destination
account. On the other hand, the class Account has
several atomic type attributes (balance and account



Fig. 2. Graphical details of a class and its attributes, and code fragment generated for the Transaction class.

870 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
number in the example) and other complex ones
(account holder and last transactions list). We can
also see the code generated for the Transaction class,
together with a reference to its base class (Transac-
tion inherits everything from the base class), called
TransactionDescription (number 1) and the attri-
butes that will be inherited (number 2). In number
3, the DebitAccount attribute is an object reference
(ObjRefr) to the class Account, and the same applies
to the CreditAccount attribute.

The design of the data model is accelerated in the
assistant by the following features:

1. Re-utilization of libraries with models previously
created, which can be copied totally or partially,
or a new class can be created by mixing several
original classes.

2. Automatic creation of a class when it is refer-
enced as an attribute inside another one.

3. Definition of classes inheriting the attributes of a
base class.

Finally, one advantage of this way of defining the
data model is that it is not necessary to have the
information contained in the database. This could
be important if the real database cannot be accessed
for security reasons (e.g., a bank database with con-
fidential information regarding the clients). This
was one reason to base the automation efforts on
the structure of the database, not on its contents.

3.3. Data connector modeling assistant (DCMA)

This assistant allows the definition of the struc-
ture of the database access functions that are called
from the runtime system. These functions are spec-
ified as interface definitions including their input
and output parameters. This allows the use of data-
base functions by dialog designers, without needing
to know much about database programming at all.
It uses the libraries specified in the ADA and the
data model defined in the DMA.

As the runtime platform itself must be indepen-
dent from backend systems and databases used in
an application scenario, we leave the concrete imple-
mentation (in any suitable programming language:
SQL, ORACLE, Informix, etc.) of the access func-
tions to database or backend experts, meaning they
will provide the functionality for the database func-
tions, which have been created by the dialog experts.
As the resulting model is independent from any
implementation detail, it is not affected by changes
in the system backend as long as the interface
remains stable.

The main acceleration strategy in this assistant is
the possibility of relating the input/output variables
to attributes and classes from the data model, which
were defined in the previous assistant. All this infor-
mation is kept in the output model, which is going
to be used automatically in future stages of the
design process (see Section 4.2.2 item 2). In Fig. 3,
the code generated by the assistant for the banking
example is shown. In this case, the tag xArgument-
Vars (number 1) contains the information regarding
the input parameters (the debit account number, the
destination account and the amount to be trans-
ferred) and the tag xReturnValueVars (number 2)
contains the return arguments (in this case, a bool-
ean variable that indicates if the transfer is success-
ful or not).



Fig. 3. GDialogXML code generated by the DCMA for the bank transfer.

L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 871
4. Retrievals layer

In this layer, the service flow is defined at a high
level, i.e., in a language and modality independent
way, so all it is done using concepts.

4.1. State flow modeling assistant (SFMA)

This assistant is very important because it drasti-
cally accelerates the design process, especially in the
next assistant. As input, it uses the general strategy
for the service that is specified in the ADA, and
the data model specified in the DMA. Then, the
designer has to specify the states that make up the
dialog flow, the data (slots) that have to be filled
by the user in each state and the transitions between
the current state and the following one(s). Addition-
ally, it is possible to specify which slots are optional
(for over-answering) and which ones can be asked
for by using mixed initiative. Here, only the flow
structure is defined, not the conditions that deter-
mine the transitions between states, internal actions,
nor other more detailed aspects because these are
defined in the next assistant in a rule-based manner.

Fig. 4 shows the code generated by the SFMA
for the example dialog; it includes information
regarding the slots (field xInputFieldVars), dialog
transitions (field xCalls), and generic information
of the application, such as the name of the initial
dialog. The figure also shows the definition of the
state where the bank transfer data are collected. In
this example, only the account names in that state
have been selected, and the collection of the amount
to be transferred has been left for the next state,
called GetTransactionAmount. Besides, both slots
are collected using mixed initiative (the tag ‘‘xIs-
MixedInititative’’ is set to true).

As a speed up strategy, the slots can be defi-
ned by making reference to atomic attributes of
the classes defined in the data model, which is the
most usual case, or as independent items. These
references to the data model ease the work in the
following assistant where action proposals for that
specific dialog are automatically presented (see Sec-
tion 4.2.2). Moreover, if a transition to an undefined
state is specified, that state is created automatically.

4.2. Retrieval modeling assistant (RMA)

In this assistant, a detailed definition of each dia-
log in the application is made; so, it uses all the
information from the previous assistants, generating
the detailed definition of all the actions (e.g., loops,
if-conditions, math or string operations, transitions
between states, information regarding mixed initia-
tive and over-answering, calls to dialogs to pro-
vide/obtain information to/from the user, etc.) to
be done in each state defined in the SFMA, or in
new states that can be defined later.

4.2.1. Capabilities and dialog types

Given the large amount of actions that can be
carried out in each state, a large programming effort
was necessary here, looking for its automation and



Fig. 4. GDialogXML code generated by the SFMA.

872 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
flexibility. Starting with the main window, it allows
several editing and visualization capabilities such as
a tree-structured flow diagram where each leaf and
branch represents the states and possible transitions
defined in the previous assistant. A color-coding
convention shows whether a dialog has been edited
or not, the dialog type, etc. In addition, it is possible
to access information regarding actions and vari-
ables already defined for each leaf (dialog) in the
flow. All the automatically generated dialogs
(DGets and DSays), libraries and database access
functions already defined can also be used and edi-
ted. Other available capabilities are the safe crea-
tion/deletion of dialogs, variables and constants,
and the visualization of information from previous
assistants.

The platform provides four basic dialogs types
that cover the usual possibilities in programming:
based on a loop, based on a sequence of actions
(or subdialogs), a switch construct based on infor-
mation input by the user or a switch construct based
on the value of a variable. Besides, empty dialogs,
with no action inside, can be created (used to specify
the call to a dialog that will be defined completely
afterwards) so that a top-down design of dialogs
can be made; in this case, the dialog type is selected
whenever the designer tries to edit the empty dialog.
Another possibility is dialog cloning, useful when
the dialog to be defined is very similar to an existing
one.

The tool also provides the possibility of manually
creating dialogs to obtain information from the user
(called DGet), and dialogs to provide information
to the user (called DSay), which will be described
further in the next section.

4.2.2. Strategies to accelerate the design

The following useful strategies have been added
to this assistant to accelerate dialog design (D’Haro
et al., 2004):

(1) Automatic dialogs: When the RMA is started,
it analyses the information from the Data Model



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 873
looking for all attributes defined as atomic types to
generate dialogs to obtain information from the
user (DGet) and dialogs to provide information to
the user (DSay). These dialogs include a tag used
by the Modality Extension Assistants (see Sections
5.2 and 5.3) to find out whether the prompt/output
concept to be presented to the user (for DSay), the
grammar/input concept used by the recognizer/
Web generator and the confirmation strategies (for
DGet) have to be specified.

If the attributes are complex or include object
inheritance, the assistant is not able to generate
automatic dialogs for them. However, the assistant
provides configurable DSay dialogs using a tem-
plate (see Fig. 5) that shows the class and its attri-
butes, expanding the complex attributes (with
inheritance and objects) and selecting any attribute
that will form part of the prompt. Other DSay
dialog templates are also available: generic DSay
to provide concepts, configurable DSay to present
variables from a dialog, DSay to present lists of
objects, specific DSay to provide the value returned
by the database access functions, and predefined
DSay such as: Welcome, Goodbye, Transfer to
operator, etc. Besides the DGet and DSay dialogs,
Fig. 5. Auxiliary screen of the RMA and po
dialogs from loaded libraries and database access
functions can be used.

Fig. 5 shows all the dialogs mentioned above, with
an example of the configurable template for the
Transaction class called ‘DSay for Transaction’
where several attributes have been selected and will
be provided to the user in the real-time system. The
flexibility of this template lets the designer select
attributes from the different child classes of the Trans-
action class (e.g., AccountNumber), complex attri-
butes coming from inherited classes and contained
in another class (e.g., LastName from class Account-
Holder included in class CreditAccount). When dia-
log definition is over, it is added to the list of dialogs
in the DSay tab, so that it can be used later on.

(2) Automatic generation of action proposals in

each state: Every time a dialog defined in the SFMA
(see Section 4.1) is edited, a popup window called
‘‘SFM proposals’’ is shown (see Fig. 6) in which
the assistant includes all the actions that are consid-
ered relevant (and with many chances to be used)
for that state. To decide which actions are relevant,
all the information already defined in previous assis-
tants, especially the SFMA, is analyzed using the
following strategies for each of the four sections:
pup window for dialog configuration.



Fig. 6. Example with automatic dialogs and database access
function proposals.

874 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
• Slots asked in the current state, the transitions
and the corresponding slots in those destination
states. Direct information from the SFMA is
used for that.

• State specific DGets: to select them, the system
looks for the slots defined in the SFMA; if they
are related to the Data Model, the system selects
the corresponding dialogs automatically; if not, a
more relaxed criterion is used, which is to look
for a match in the name or attribute type.

• Database access functions: to filter the possible
functions already defined in the DCMA, the sys-
tem first considers functions with the same num-
ber and type of input parameters as the defined
slots for the current dialog. The next criterion is
as follows: if the parameter includes a reference
to the data model (see Section 3.2), there should
be a match in class and attribute between slot and
parameter; if not, they should match in type. If
no function passes these filters, a more relaxed fil-
ter is applied (e.g., similarity between names). If
even with the relaxed filter, there is no function
in this window, it would probably mean that
there is no database access function suitable for
that state and it should have been defined before
(see Section 3.3). The assistant offers the possibil-
ity of creating those functions, and then reload
the information in this window.
• State specific DSays: they are selected in a similar
way to DGet dialogs, but we also include DSays
specific to the values returned by the database
functions selected in the previous step.

Fig. 6, shows the banking application example,
where given the currency name the system provides
its specific information (buy and sell price, general
information, etc.), all the designer would need to
do is to select the corresponding DGet in the win-
dow (DGet_ATTR_CurrencyName_IN_CLASS_
Currency), then the database access function
GetCurrencyByName and finally the DSays that
provide the desired attributes from the currency.
To finish the design, he/she would drop the call to
the next state (e.g., AskOtherExchangeRates).

(3) The passing of arguments between actions is

automated: This is a critical aspect of dialog applica-
tions design. Several actions and states have to be
‘connected’ as they use the information from the
preceding dialog.

To automate this connection, the assistant
detects the input/output variables required in each
action and, using a popup window, it offers the most
suitable already defined variable of a compatible
type; if there is more than one variable of a compat-
ible type, the assistant sorts them according to the
name similarity between variable and dialog. If
there is no compatible variable already defined in
the system or the name proposed by the assistant
is not desired, a new local or global variable can
be created in the same window.

Moreover, if the designer makes a mistake or
needs to edit the matching made in the previous
steps, the assistant provides a window where all this
matching can be edited.

4.2.3. Mixed initiative and over-answering

This capability allows the creation of complex
dialogs where the system can ask for several slots
at the same time or the user can answer with
optional information. Even though these two func-
tionalities might be considered as speech modality
dependent or unnecessary for the Web modality,
so they should not be handled at this stage, we pre-
ferred to include them here for two main reasons:
first, because some other modality that can be
included in the future might benefit from their func-
tionality, and, second, we can make it possible that
in a Web page the user does not have to fill in all
required fields at the same time. In this case, the
Web system would detect that a certain slot is miss-



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 875
ing and, instead of generating an error, it would ask
for the missing data in a posterior form, in a similar
way as VoiceXML handles mixed initiative with
several slots.

To provide this functionality, the system offers a
Mixed Initiative Template which the designer can
drag and drop over the dialog that is being edited.
The template shows available slots which can be
selected (by default, the ones specified in the SFMA
for the current dialog). Moreover, the template
gives the possibility of adding optional slots to be
used for over-answering at the same time. With this
information, the system generates the necessary pro-
gramming code (calls and automatic dialogs) in
GDialogXML syntax that controls the mixed initia-
tive handling: ask for several slots at the same time,
handle the situation in which the user answers
partially or only some of the slots are filled
after the recognition, so the system has to ask
Fig. 7. Code generated by the RMA
again for unsolved slots, and handle the keeping
of the optional slots when they are input by the
user.

To admit over-answering, the procedure is very
similar: when the designer drops any DGet (action
to obtain data from the user) he/she is offered to
select additional slots as over-answering from that
specific state and slots from the following states
in the flow (with a limit of two in the hierarchy).
As default, the slots defined as optional in the
SFMA are automatically converted into over-
answering slots here. In the runtime system, the
behavior is that before any DGet the system checks
whether the data to be asked has been already
obtained in a previous state in the flow (as would
be the case with over-answering). To help in this
checking, in the final script all slots are declared
as global variables, so they can be accessed from
any state.
for the bank transfer example.



876 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
4.2.4. RMA output

We can see the output generated by this assistant
in Fig. 7. The first section shows the global variables
of the application, which store the slots defined for
the application which may need to be accessed in all
dialogs (for over-answering, as we will see in Section
5.5.1). The actions executed in the two dialogs that
form the bank transfer (included in the xReaction
tag) are also shown: SFM_TransactionDialog
(number 1) and SFM_GetTransactionAmount
(number 4). In the first one, there is a call to a sub-
dialog (marked as number 2) that fills the source
and destination accounts data using mixed initia-
tive; then, there is a call (marked as number 3) to
the second dialog. In the second dialog there is a call
to a subdialog that collects the amount to be trans-
ferred (number 5), a call to the database access func-
tion (number 6), using as input parameters the three
items already collected, which returns a boolean
variable called TransactionPerformed, and a call
to the next two dialogs specified in the SFMA (num-
bers 7 and 8).

5. Dialogs layer

In this layer, the dialog is completed with all
modality and language dependent aspects. It has
four main assistants that are dedicated to the fol-
lowing tasks:

• To define the user levels and their settings
(UMA, see Section 5.1), to complete the modality
dependent aspects of dialog design (MERA, see
Section 5.2),

• To complete the language dependent aspects and
the input and output concepts for each modality
(MEA, see Section 5.3) and finally,

• To unify all the information and generate the
execution scripts according to the modality (see
Sections 5.4 and 5.5).

Finally, in Section 5.6, we will briefly outline
some additional assistants.

5.1. User modeling assistant (UMA)

This assistant allows the specification of different
user levels and settings for each dialog in the appli-
cation in order to provide a more personalized
attention to the final user. It uses as input the
default confidence and error values defined in the
ADA, and all dialogs defined in the RMA.
To start with, all the values are specified first for
some specific user levels, but they later can be cus-
tomized for each specific dialog state, so that all set-
tings can be user-level dependent and dialog state
dependent. This way, the designer may impose, for
example, a stricter confirmation for some critical
data such as the amount in a banking transaction.
To speed up the process, defaults are used: user-
level settings take the values defined in the ADA
and dialog dependent settings inherit the user-level
settings.

The designer can specify different settings as the
possibility of barge-in for a particular user level,
the maximum number of retries if there is an error
(considering several error types), the maximum
timeouts for several events, etc. Besides, the confi-
dence levels that should be used in recognition for
each user level are specified as they determine the
confirmation type that should be used (see Section
5.2.2): no confirmation (confidence between the
specified value and 1.0), implicit (confidence
between the specified value and the value for ‘no
confirmation’), explicit (between the specified value
and the value for ‘implicit’) and repeat (between 0
and the value for ‘explicit’).

The decision as to the current user level is made
by a runtime component that is called after each
interaction in the script generated by the platform
and that sets the common internal variable that is
used in the final script. This way, the platform is
independent of the user modeling technology that
is used.

5.2. Modality extension retrieval assistant for

speech (MERA)

In this assistant, the modality extension ends up
by adding special subdialogs that complement the
dialogs already defined for the application in the
RMA. This way, the designer can include complex
dialogs to deal with modality specific problems.
We have focused on researching semiautomatic
solutions for two basic problems that are specific
to the speech modality: the presentation of object
lists in several steps (applied to DSay dialogs con-
cerning a list) and confirmation handling, i.e. how
to handle recognition errors in dialogs that obtain
information from the user (applied to DGet dia-
logs). The input is the database model specified in
the DMA and the dialogs defined in the RMA
(especially those marked as DGet and DSay for
lists).



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 877
5.2.1. Presentation of object lists

Object lists are the result of a database query, so
there is usually a lot of information to be provided
to the user. We will consider four different cases as a
function of the number of items in the list. For each
case, a simple form allows the designer to specify the
actions that have to be carried out. After filling the
forms, the actions and new dialogs needed to
provide/obtain information to/from the user are
automatically generated. Furthermore, the assistant
provides the most reasonable default values for all
dialog and slot names after the analysis of the input
files. The four different cases and their actions are as
follows:

1. The list is empty. The system tells the user that
there is no available information and then jumps
back to a state selected by the designer, where the
user is asked again for some selected slots defined
by the designer, looking for a less restrictive
query.

2. The list has one item. The designer defines a con-
figurable DSay that provides complete or partial
info from the item found.

3. More than one item and less than a maximum

allowed. This is a more complex situation, as
the items have to be provided in groups. After
playing the info in each group, the user is asked
if he/she wants to continue, repeat the group,
begin from scratch, exit or select a specific item
to receive more detailed information. Here, we
have used some command names proposed by
the Universal Speech Interface project (Toth
et al., 2002). When the user selects the item he/
she desires, the system provides detailed informa-
tion of the object using a new selection of attri-
butes specified by the designer. Another
situation that we must face is when the system
finishes reading the whole list and the user does
not like any item or has cancelled before the
end of the list. In this case, the system informs
the user and repeats the same process as for case
1. The designer also has the option of informing
the user how many items there are in the list, and
the user may choose how many he/she wants to
listen to.

4. More items than the maximum allowed. As there
are too many items, the search has to be more
restrictive. We can have two different situations.
First, if all slots of the application are already
filled, the user has to change some of them to
make them more restrictive (e.g., he/she wants
last month’s transactions but there are too
many). The designer specifies these slots (they
will be cleared) and the questions will be
repeated, in a similar way as in case 1. In the sec-
ond situation, if there are still some slots to be
asked the system continues with the normal dia-
log flow until the next database query. We have
also considered a simplified case: when the list
only depends on one slot input by the user, e.g.,
when he/she asks for a list of banking transac-
tions. In this case, we present a simplified version
of the previous windows where the designer does
not need to specify the slots to be cleared.
5.2.2. Confirmation handling

The result of speech recognition has to be con-
firmed before making a database query. We confirm
both normal slots, mixed initiative slots and over-
answering slots. We have considered two types of
confirmation in this assistant: Simple and Complete.
Simple is recommended for dialogs that need a very
high confidence, such as Yes/No or passwords ques-
tions; in this case only two levels are allowed: none
and repeat the question (like in a no-match situa-
tion). However, Complete uses several levels of con-
fidence to determine the confirmation type: none,
implicit, explicit or repeat the question.

The MERA uses the same common internal var-
iable mentioned in the UMA assistant to store the
confidence value returned by the last recognition
call. Then, the final script tells the system to
compare this value with the current confidence
limits, stored in four fixed name variables, as
defined in the UMA for each user level and specific
dialog.

The assistant automatically selects the input dia-
logs (DGet) that need confirmation and analyzes
their flow to propose the most suitable confirmation
type (Simple or Complete), but the designer can
change that proposal and the assistant checks
whether the type is feasible. The algorithm that ana-
lyzes the dialog is as follows: first, the system exam-
ines the number and type of slots to be retrieved by
the DGet dialog, and if there is only one slot, its
type is Boolean or string (as used to contain an
alphanumeric password) and the number of actions
in the calling dialog is not too high, the system
selects the simple case; if not, it selects the Complete
case. The assistant also controls whether implicit
confirmation can be allowed. For example, if the
next step in the dialog flow is the database access,
explicit confirmation should be used regardless of



878 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
the confidence level. Moreover, the assistant stores
the name of this dialog and with this information
sets the place where to jump back in case the user
rejects the implicit confirmation in the following
state in the flow (the rejection is detected in this
state).

Finally, the assistant automatically generates the
dialog flow (consisting of calls to internal automat-
ically generated dialogs for each type of confirma-
tion and dialog state) to carry out all the
confirmation and subsequent correction. These
internal dialogs are named in a smart way (using
the USI project) so that the designer can easily iden-
tify them when he/she has to define grammars and
prompts in the next assistant.

5.3. Modality and language extension assistant

(MEA)

Here, the language dependent aspects of an
application (input and output prompts/concepts)
are specified for each modality. For speech modal-
ity, the extensions consist of links to grammar and
prompt concepts, while for Web modality the exten-
sions consist of links to input and output concepts.
In both cases, the extensions are language indepen-
dent. In addition, language dependent information,
specifically wording for both speech prompts and
Web output concepts, is also set here. All this infor-
mation is saved in different files for each language
and modality, whose content and organization is
explained at the end of this section. As input, it uses
all dialogs defined in the RMA and MERA,
together with the specification of the user levels
from the UMA.The assistant detects the input/out-
put dialogs (DGets and DSays) defined in previous
assistants and asks the designer to define prompts
and recognition grammars for them. In addition,
the assistant lets the designer define the help
prompts for high level dialogs that are not classified
as input/output.

For the speech modality, several prompts for
each input dialog have to be defined: the default
one, for the different user levels and for all possible
recognition errors. In all dialogs, the input/output
parameters and the global variables can be used as
part of the prompt. To speed up the process of typ-
ing all these prompts, the assistant offers two possi-
bilities: reuse prompts already available for the
current application or reuse prompts generated in
previous applications and saved as libraries.
Prompts are set using three alternatives: text-to-
speech (TTS) prompts, prerecorded audio files, or
generated by a Natural Language Generation
(NLG) module in the runtime system.

In case of TTS prompts, the SSML markup lan-
guage can be optionally used. The tags that we have
considered for the runtime system are as follows:

1. ‘‘emphasis’’ (to emphasize specific fragments),
with the following values for the ‘‘level’’ attri-
bute: ‘‘strong’’, ‘‘moderate’’, ‘‘none’’, and ‘‘redu-
ced’’,

2. ‘‘break’’ (a break of a specific duration in ms),
with the ‘‘time’’ attribute,

3. ‘‘prosody’’, with ‘‘pitch’’, ‘‘rate’’ and ‘‘volume’’
attributes. To specify them, in the platform we
have used a relative value as a positive or nega-
tive percentage, e.g., ‘‘+10%’’.

In Fig. 8 we can see how this information is input
using the assistant, together with the SSML tags
used and the slots that are used as arguments for
the prompt (e.g., DebitAccountNumber). We can
also see in the bottom part the sections dedicated
to the specification of prerecorded audio files
(Audio Prompt) and the file used by the Natural
Language Generation (NLG) to generate the
prompt in real time. In the Natural Language Gen-
eration (NLG), the prompts can be defined using
the Language Modeling Toolkit (see Section 5.6),
so they will be coded in JSGF format.

Once the prompts for the main language have
been specified, the designer has to specify them for
the additional languages. This process is accelerated
by using the main language prompt as a template to
edit the string parts of a prompt. These prompts can
be specified either at once for one language for all
dialogs, or for each dialog for all additional
languages.

For the Web modality, the procedure is some-
what different because of different concepts for user
interaction. On the one hand, each output concept
corresponds to some xHTML markup code, option-
ally parametrized. On the other hand, each input
concept corresponds to a Web form control like a
text input field, a text area, a select or a choice
box, etc. In addition, a set of attributes can be
defined for each component: text elements for a
label, a hint, an alert or an error message can be
set and the rendering behavior of the control can
be defined.

As output, the assistant generates four different
files for each modality. The first file contains infor-



Fig. 8. Example of the definition of a TTS prompt using SSLM tags.

L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 879
mation regarding every dialog in the application
and references to the input/output concepts used
in each one. In Fig. 9 we can see the code for this
file for the speech modality and for the dialog that
collects the amount to be transferred in the bank
example. We highlight the use of the tag Realisation
because it tells the linker that this code is an exten-
sion of a dialog already defined in the RMA.
Besides, the tag xPresentation holds the information
related to the system prompt concepts (marked as
number 1); the tag xFilling gives the information
related to the behavior of the recognizer, i.e., the
prompts used to inform the user of an unrecognized
utterance (number 3) and no input detected (num-
ber 4), together with the grammar to be used in
the recognition (number 2). As we have already
mentioned, multilinguality is achieved using con-
cepts, so all definitions here for prompts and gram-
mars refer to the concepts (PC suffix for prompts
and GC for grammars). These references are solved
in auxiliary files that we describe below. Finally, we
should mention that for the Web modality the same
tags are used (xFilling and xPresentation) but,
instead of prompts and grammars, input (using
the tag InputControlCall) and output (tag Output-
ControlCall) concept references are used.
The second file, for the speech modality case, is
called ‘grammar concept file’, and it contains the
association between ‘grammar concept’ (GC) and
the filename of the grammar(s) that will be used in
the real-time system, so it is language independent.
As we have different grammars for each language,
to achieve multilinguality the grammars in all lan-
guages have the same name but are in separate direc-
tories; the directory name is the language code, so
the real-time application just concatenates the lan-
guage code with the filename to retrieve the correct
grammar. The third file is the ‘prompt concept file’
and it contains, for each input/output dialog, the
association between ‘prompt concept’ (PC) and the
name of the text concept or the audio file that has
to be used for it (not the prompts for each language).
The fourth file, called ‘text concept file’, holds the
actual prompts (the real texts in SSML format as
we mentioned above) that correspond to the text
concepts defined in the ‘prompt concept file’. There-
fore, this file is language dependent and is repeated
for every language and, again, is kept with the same
name in separate directories. This separation might
seem complicated, but it is the only way to ensure
multilinguality and the flexibility to handle audio
files, prompts, etc., in the same application.



Fig. 9. GDialogXML code generated by the MEA for speech modality.

880 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
For the Web modality, similar files are generated,
but now, instead of the ‘grammar concept file’ and
‘prompt concept file’, the files are the ‘input concept
file’ and ‘output concept file’, again language inde-
pendent, which describe the appearance of each
input or output item (radio button, submit button,
secret text, labels, combo boxes, lists, etc.) and also
include a reference to the text concepts that they
use, which are also specified in a ‘text concept file’
just like the speech modality.

5.4. Dialog model linker (DML)

This module generates one file for each selected
modality where all the information from previous
assistants is automatically linked together: dialogs,
actions, input/output concepts, prompts and gram-
mars, etc.

The final dialog model is a combination of the
files produced by the RMA, the MERA and the
MEA. Both kinds of model are linked together by
filling different sections of GDialogXML dialog
units, see (Hamerich et al., 2003) for further
information.

5.5. Script generators

In this section, the modules that convert the dia-
logs coded in GDialogXML syntax into the execu-
tion scripts needed for each modality (VoiceXML
and xHTML) are described. To carry out the pro-
cess, they solve the problems and limitations of each
standard and manage those issues regarding the
handling of multilinguality, database access, the
preparation of prompts or Web text, and the han-
dling of concepts in the language-independent spec-
ification of the dialog.

One important issue is how the system handles in
real-time a prompt that includes information
returned by a database query. To solve this, the
script generators include one variable in the script
called xLanguageId_global, that codes the language
of the service with an identifier in ISO639-1 format
(language code) followed by an identifier ISO3166
(country code). This variable is set by the language
identification module at the beginning of the session
and is always passed as an argument to all database
access functions specified in the DCMA, where it is
concatenated with the field name that is going to be
retrieved. Obviously, the database (there is a single
database for all languages) should contain the same
information for each language used in the service
using fields with the same base name but different
codes as suffix, e.g., info_text_en_UK for the field
with the information in English, info_text_es_ES
with the information in Spanish, etc. Once the query
is made, the right variables are filled and the infor-
mation is provided to the user in the correct
language.

5.5.1. VoiceXML Generator and connection with
the runtime platform

Using the file created by the linker (DML) in the
previous step for the speech modality, this module



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 881
generates a file in VoiceXML format for each lan-
guage used in the service.

The script generator for VoiceXML has to over-
come the limitations imposed by this language in its
version 2.0. The main limitation is probably that
VoiceXML does not allow returning calls (subrou-
tines), which are needed to solve the problem of pre-
senting lists of objects (see Section 5.2.1), as
ordinary statements (returning calls are only
allowed at certain positions). Therefore, all complex
statements and value expressions have to be ‘flat-
tened’ into simpler operations and into calls to
intermediate dialogs that allow jumps to other states
in dialog flow.

Besides, VoiceXML does not allow input fields to
be global variables; however, we used global vari-
ables for over-answering so that they can be filled
in previous states and do not lose their contents
when jumping to other states. Therefore, a synchro-
nizing strategy had to be implemented to map
global variables to local input fields and vice versa.
To handle over-answering it is also necessary that, if
a slot is optional or is already filled, the recognition
process may be omitted. In VoiceXML all the slots
in a form must be filled, so we introduced additional
intermediate variables and conditional blocks to
find out whether the slots associated to over-answer-
ing are filled or not. Another issue is how to clear
the content of a slot in a form and jump back to pre-
vious dialogs or states, which is another behavior
needed for list handling, as the VoiceXML manager
would automatically repeat the filling process for
that slot and that is not the desired behavior. To
solve this, the VoiceXML generator creates interme-
diate variables so that, when the slot has been
cleared intentionally, the filling process is not
repeated.

GDialogXML supports the idea of connecting
services during runtime, e.g., services providing
access to databases, services generating prompts
on the fly, and so on. The VoiceXML generator
implements these calls as HTTP requests from a
CGI script. This CGI script works as a data bridge
and contacts the actual services. It is needed because
it has to produce VoiceXML code, since this is the
only way to integrate dynamic data (result values)
into the dialog flow. By using the bridge, the services
are freed from the burden of producing VoiceXML
themselves.

To generate prompts on the fly, we decided to use
language-dependent JSGF grammars, in which the
correspondence between prompt and concept is
specified, and the recognizer would return in real-
time the concept specified in the grammar instead
of the prompt.

To increase performance, the VoiceXML genera-
tor uses a reference resolution strategy for result val-
ues of the runtime services. This means that if the
result of a service request is a reference to a complex
named object (e.g., a person), only the reference
(consisting of the identifying attributes) is transmit-
ted. At the time when details of the object are
needed, the complete data structure of attribute
values is transmitted. This is particularly important,
when the result of a service request is a large list
of references to complex data objects, which hap-
pens a lot when navigating through information
bases.

Finally, the VoiceXML generator automatically
creates global variables in the final script, where
the dynamic runtime values returned by the corre-
sponding modules, are kept to handle several
aspects of the runtime system: the user level, the
speaker Id, the confidence value from the last recog-
nition, the current language, etc. The user level
variable, for example, is needed for switching
prompts depending on the user level, which is set
by calling the User-Level-Detector runtime service.

In (Córdoba et al., 2004; Hamerich et al., 2003)
other limitations of VoiceXML are described,
together with some recommendations to improve
the standard.

5.5.2. Web script generator

Using the file created by the linker (DML) in the
previous step for the Web modality, this module
generates a file in xHTML format for each language
used in the service.

Unlike the voice modality, for Web the distinc-
tion between the flow control, the data and the pre-
sentation (buttons, images, frames, etc.) is not too
clear. Nowadays, there are a lot of integrated devel-
opment environments for the presentation part
(Web editors), whereas for the control and data
access they have to be specified using script
languages (perl, php, python,. . .) or usual program-
ming languages (Java, .Net,. . .). In other cases, the
overall flow control is supported by frameworks
(Jakarta Struts,. . .), but in general there is no wide-
spread language, so the task of integrating all of
them is difficult. Therefore, the objective of this
assistant is not to compete with widespread Web
editors but to provide a complementary support to
try to facilitate the separation between the modeling



882 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
of the flow control, the data and the presentation.
To this end, the assistant automatically transforms
the GDialogXML models related to input and out-
put concepts into xHTML files with embedded
xForms elements. This way, the generated files can
be used as templates for Web designers who can
add additional design elements (xHTML tags,
images, styles, etc.), while the dialog flow is pre-
served separately. A runtime interpreter for GDia-
logXML may execute the dialog model ‘‘as is’’ in
the Webserver environment to control the dialog
flow and take care of the database transactions.

Thanks to this separation, the final script is plat-
form independent and easily adaptable to multiple
display devices (browsers, PDA, public terminals,
etc.). Although there are some limitations with
xForms as not all browsers support them, the use
of plugins or rendering programs in the server
provides that support. Besides, it is expected that
the use of xForms becomes a Web standard for
forms design, as part of the xHTML 2.0 specifica-
tion, so its popularity will grow. The use of xHTML
tags could favor the integration of the two modali-
ties, in a future development, so that they can work
at the same time using the standard X + V
(xHTML, 2004).

5.6. Auxiliary assistants

Besides the assistants described above, there are
some other assistants that complement the work
needed for voice modality.

The first one is the vocabulary builder (VB)
which prepares the vocabularies that will be used
by the recognizer. Thus, this component gets input
from the language model resources and produces
the lexicon. The lexicon contains the phonetic tran-
scription of each word and in most cases the pho-
netic alternatives. There are equivalent dictionaries
for each of the different languages allowed in the
platform.

A second assistant is the Language Modeling
Toolkit (LMT) that allows the designer to specify
the language models that will be used in the runtime
system to ‘‘understand’’ the different user answers to
the system questions. The assistant allows the crea-
tion and edition of grammars in JSGF (Hunt, 2000)
both for recognition and for prompt generation
using the Natural Language Generation (NLG)
module.

Finally, in order to be able to edit the different
GDialogXML models as produced by the assistants
of the AGP, a separate component has been devel-
oped. This assistant is called DiaGen and allows
the creation and edition of GDialogXML models
and libraries by providing auto-complete templates
and other editing functionalities.

6. Portability and use of standards

Amongst the main objectives of the platform
were portability, meaning independence of the oper-
ating system and the runtime platform, scalability,
widespread use of standards and feasibility to use
existing or new technologies. The main efforts made
in this direction are mentioned below.

6.1. OpenVXI

To test the VoiceXML script generated by the
platform, an interpreter to execute it in a runtime
platform is needed. We selected OpenVXI 2.0.1
from Scansoft (OpenVXI Web page, 2004) because
it is an open source solution and, thanks to its por-
tability, it does not impose any recognition or text-
to-speech engine nor any specific telephone
platform, so it can be adapted to any runtime plat-
form. Besides, it provides an important part of the
functionality required to execute dialog applica-
tions, namely an XML interface that processes the
VoiceXML script, JavaScript API, WWW functions
API and Register API (Eberman et al., 2002).
Regarding the functions related to input/output
(recognition, text-to-speech and telephone control)
it provides interfaces that can be modified and com-
pleted to adapt them to the needs of any platform.

An additional advantage of this interpreter was
that it allowed us to work with our own technology
in all respects, so the tests could be controlled even
further. In (Córdoba et al., 2004) some proposals of
improvements and adaptations are described, which
we have had to make to the interpreter to adapt it to
our runtime system.

6.2. Programming environment and other

standards

All the graphic components of the platform have
been programmed and generated using Qt from
Trolltech, which is a multi-platform (Linux,
Windows, Mac, X11) integrated development envi-
ronment, compatible with C++, with which the
designer can write code that can be executed in
different operating systems and development envi-



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 883
ronments, e.g., for Visual Studio, Visual.Net, Bor-
land, just by recompiling. Moreover, Qt provides
several methods and tools to translate all texts in
the graphical interface to adapt them to another
language.

We have also used the UTF-8 format (8-bit Uni-
code Transformation Format), which is a variable-
length character coding for the Unicode standard
in multiple languages. Besides, it is the default cod-
ing in XML and it is used by all Internet protocols.
This format is crucial in the definition of prompts/
grammars for the multilingual service.

The platform also uses some ideas extracted from
the USI project (Universal Speech Interface) (Toth
et al., 2002) that are applied in the generation of
names in automatic dialogs, as they are derived
from the attributes in the database, so that they
are easily recognizable. Furthermore, we also use
keywords for some universal commands available
in the runtime system.

Finally, as we mentioned in Section 5.3, to gener-
ate the prompts used by the text-to-speech system in
the voice modality we have adapted the platform
and the runtime system so that they could process
the SSML format (Speech Synthesis Markup
Language) (Burnett et al., 2002).

7. Evaluation and test applications

7.1. Subjective evaluation of the platform

To rate the acceptance and friendliness of the plat-
form for the rapid and efficient generation of multi-
lingual/multimodal dialog applications, we carried
out a subjective evaluation with 41 subjects (24 nov-
ice in dialog applications design, 11 intermediate and
Table 1
Subjective evaluation of the platform

Question

The provision of data modeling and connecting to external data sourc
The provision of application state flow modeling
Easy adaptability to other languages
Easy adaptability to other modalities
Ready-made error-handling (nomatch, noinput)
Speed up of development time as compared to writing VoiceXML/+xH
Provision of user modeling
Provision of mixed-initiative dialog handling
Provision of list handling
Provision of over-answering
Provision of easy connection to run-time modules
6 experts) from Greece, Germany and Spain, with
ages ranging from 21 to 49 years and, in general, with
basic knowledge of programming.

A short introductory tutorial was given to the
participants and then they were asked to carry out
predefined tasks of dialog design in each assistant.
These tasks were part of the design of an overall
application, e.g., get the information about a house
loan, do a transaction of a certain amount between
two accounts using mixed initiative, obtain the cur-
rent value of a currency, etc., and covered almost
90% of the functionality of the AGP, obviously
including all the AGP assistants. The participants
had to use all of them in turn: they created the data
model for three complex classes, prepared at least
three database access functions, designed at least
four states in the SFM, completed the states in the
RMA to carry out the mentioned tasks, they created
and reused some libraries, etc. The reason not to
make a complete system from scratch was to reduce
the evaluation time to a limit of 3–4 h, including
time for the tutorials.

Finally, they had to answer a questionnaire that
consisted of two parts: one to evaluate each assis-
tant individually and the other to evaluate the plat-
form as a whole, with scores between 1 and 10
representing very poor and excellent rates respec-
tively. In Table 1, the results are shown.

The overall score was an average of 8.37, with the
maximum scores in the following aspects:

• Speeding up the development time of an
application

• Over-answering and Mixed initiative function-
ality

• Lists handling for speech applications
Average rating

es 8.7
8.6
8.2
7.9
8.1

TML code by hand 9.0
7.8
8.5
8.6
9.0
7.9



884 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
Regarding the results for the specific assistants,
in general, all assistants have average qualifications
between 7 and 8.5, which are very homogeneous.
We should mention some remarks from the evalua-
tors regarding the RMA and the MEA. The RMA
was rated as having a very good overall appearance
and extremely good functionality. However, it had
some difficulties in learning and was perceived as
less intuitive. The most probable reason is that it
is the assistant that provides the biggest functional-
ity for dialog design, as it is the place where detailed
design is made, and the evaluating designers were
given very little time to learn each assistant and
practice them, so in practice evaluators only read
part of the documentation written about the designs
they were asked to do. In the case of the MEA, the
low results are probably the result of the time
required to set the prompts and grammars (text typ-
ing), especially for different language definition
where machine translation and more prompt and
grammar libraries would be desirable.

7.2. Services tested in the runtime system

To evaluate and validate the efficiency of the
platform and its service independence, two main test
applications were set up.

The first one is a banking application called
EGBanking, with several services: general informa-
tion (deposit products, loans, cards, e-banking or
exchange rates), an authentication process where
the user inputs the account number and the PIN,
personal information (personal accounts and cards,
last transactions, balance) and a transaction dialog
to transfer money between accounts or to make
payments (VAT, Social Security, public pension,
TAX Income, credit card and other funds pay-
ments). It has been implemented in four languages:
Greek, German, English, and Spanish. It has been
running since September 2003 and is used as a com-
mercial product by a Greek bank (Egnatia bank
Web page, 2004) for its registered clients with very
good results.

The second application, called CitizenCare, offers
basic voice information retrieval system functional-
ity in the context of public authorities. The caller
can either ask for solutions for dedicated concerns
or for general information about certain depart-
ments such as addresses, phone numbers or opening
hours. Specific information may be retrieved in one
call. This application was developed for German
and English and for both modalities, voice and Web.
8. Future plans

Considering the good results that we have
obtained in the evaluation and test applications,
the growing demand of better and more complex
dialog systems, and to broaden the functionality
of this kind of tool, we are considering the following
improvements to the platform:

• Increase the number of automatically generated
dialogs making a more complex and exhaustive
analysis of database structure. These dialogs
would consist of multiple actions grouped by
the assistant, but with the possibility of being
edited by the designer.

• Increase the number of libraries available with
the platform.

• Provide more flexibility in the confirmation han-
dling for the voice modality by using more
options adapted to a specific data type and pro-
viding more fine-tuning possibilities.

• Implement new strategies to reduce design time,
e.g., in the generation of the structure and access
functions of the Data Model, and in the genera-
tion of grammars and prompts.

• Integration of the current two modalities so that
they can work at the same time through the
X + V standard (xHTML, 2004).

9. Conclusions

Throughout the Gemini project we have studied
different systems and strategies for the design of
human-computer dialog applications and as a result
we have developed an application generation plat-
form which is both powerful and flexible, with a
high degree of automation, allowing the generation
of state of the art speech and Web based applica-
tions. The platform architecture is able to generate
in a semiautomatic way valid dialogs for multiple
languages and two modalities using just a descrip-
tion of the database, a basic state flow of the appli-
cation and a simplified user-friendly interaction
with the designer. In this paper we have shown some
strategies to speed up the design process, as the pos-
sibility to handle mixed initiative and over-answer-
ing dialogs using the same framework. Detailed
procedures to handle list and confirmation handling
have been presented too. Features like user model-
ing, speaker verification, language identification
can be included easily through runtime modules



L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 885
included in the platform. Moreover, the use of stan-
dards like VoiceXML and xHTML keeps the plat-
form open for further development, and allows the
use of other tools and existing technology. Another
important result of the project is the newly designed
abstract dialog description language, called GDia-
logXML. Furthermore, we have carried out a sub-
jective evaluation and developed two test
applications that demonstrate the user and
designer-friendliness and robustness of the plat-
form, as well as the fulfillment of all objectives ini-
tially planned, together with a proposal for
improvements and future plans for the platform.
Acknowledgements

We want to thank the following people for their
contribution in the design and development of this
platform. To Fernando Fernández, Valentı́n
Sama-Rojo, Ignacio Ibarz, and Javier Morante
from the Universidad Politécnica de Madrid
(GTH, Spain) for their contribution in the coding
of this platform and the runtime system. To Yu-
Fang Helena Wang from TEMIC Speech Dialog
Systems (Germany) for evaluating all the Citizen-
Care applications, to Thomas Eppelt, Manfred Pau-
la and Robert Stegmann from FAW (Germany) for
setting up the backend database of the CitizenCare
application, to Nikos Katsaounos and Alex Sara-
fian from Knowledge S.A., and to Georgila Kalliroi,
Todor Ganchev and Nikos Fakotakis from Patras
University (Greece) for their work in several assis-
tants. And we cannot forget Gianna Tsakou and
Anastasios Tsopanoglou for their excellent job as
project coordinators. Finally, we want to thank
the reviewers of this paper for their comments and
appropriate suggestions.
References

Allen, J., Guinn, C., Horvitz, E., 1999. Mixed-initiative interac-
tion. IEEE Intelligent Syst. 14 (5), 14–23.

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L.,
2001. Towards conversational human–computer interaction.
AI Magazine 22 (4), 27–37.

Almeida, L. et al., 2002. Implementing and evaluating a
multimodal and multilingual tourist guide. In: Proc. Internat.
CLASS Workshop on Natural, Intelligent and Effective
Interaction in Multimodal Dialogue Systems, pp. 1–7.

Bennett, C., Llitjós, A.F., Shriver, S., Rudnicky, A., Black, A.W.,
2002. Building VoiceXML-based applications. In: Proc.
Internat. Conf. of Spoken Language Processing (ICSLP),
pp. 2245–2248.
Bohus, D., Rudnicky, A.I., 2003. RavenClaw: dialog manage-
ment using hierarchical task decomposition and an expecta-
tion agenda. In: Proc. 8th European Conf. on Speech
Communication and Technology (Eurospeech), pp. 597–600.

Burnett, D.C., Walker, M.R., Hunt, A., 2002. Speech Synthesis
Markup Language Version 1.0. W3C Working Draft. Avail-
able from: <http://www.w3.org/TR/speech-synthesis>.

Cole, R., 1999. Tools for research and education in speech
science. In: Proc. Internat. Conf. of Phonetic Sciences
(ICPhS), pp. 1277–1280.

Córdoba, R., San-Segundo, R., Montero, J.M., Colás, J.,
Ferreiros, J., Macı́as-Guarasa, J., Pardo, J.M., 2001. An
interactive directory assistance service for Spanish with large-
vocabulary recognition. In: Proc. 7th European Conf.
on Speech Communication and Technology (Eurospeech),
Vol. II, pp. 1279–1282.

Córdoba, R., Fernández, F., Sama, V., D’Haro, L.F., San-
Segundo, R., Montero, J.M., 2004. Implementation of dialog
applications in an open-source VoiceXML platform. In: Proc.
Internat. Conf. of Spoken Language Processing (ICSLP), pp.
I-257–I-260.

Denecke, M., 2002. Rapid prototyping for spoken dialogue
systems. In: Proc. 19th Internat. Conf. on Computational
Linguistic (COLING’02).

D’Haro, L.F., de Córdoba, R., San-Segundo, R., Montero, J.M.,
Macı́as-Guarasa, J., Pardo, J.M., 2004. Strategies to reduce
design time in multimodal/multilingual dialog applications.
In: Proc. Internat. Conf. of Spoken Language Processing
(ICSLP), pp. IV-3057–3060.

Eberman, B., Carter, J., Goddeau, D., 2002. Building VoiceXML
browsers with OpenVXI. In: Proc. 11th Internat. Conf. on
World Wide Web, pp. 713–717.

Egnatia bank Web page, 2004. Available from: <http://egnati-
asite.egnatiabank.gr/EN/default.htm>.

Ehrlich, U., Hanrieder, G., Hitzenberger, L., Heisterkamp, P.,
Mecklenburg, K., Regel-Brietzmann, P., 1997. ACCeSS—
automated call center through speech understanding system.
In: Proc. European Conf. on Speech Communication and
Technology (Eurospeech), pp. 1819–1822.

Flippo, F., Krebs, A., Marsic, I., 2003. A framework for rapid
development and multimodal interfaces. In: Proc. Internat.
Conf. on Multimodal Interfaces, pp. 109–116.

Gemini Project Homepage, 2004. Available from: <http://www-
gth.die.upm.es/projects/gemini/>.

Glass, J., Weinstein, E., 2001. SPEECHBUILDER: facilitating
spoken dialogue system development. In: Proc. European
Conf. on Speech Communication and Technology (Euro-
speech), pp. 1335–1339.

Gustafson, J., Elmberg, P., Carlson, R., Jonsson, A., 1998. An
educational dialogue system with a user controllable dialogue
manager. In: Proc. Internat. Conf. on Spoken Language
Processing (ICSLP), pp. 33–37.

Gustafson, J., Bell, L., Beskow, J., Boye, J., Carlson, R., Edlund,
J., Granström, B., House, D., Wiren, M., 2000. AdApt—a
multimodal conversational dialogue system in an apartment
domain. In: Proc. Internat. Conf. of Spoken Language
Processing (ICSLP), pp. II-134–137.

Hamerich, S.W., Wang, Y.-F., Schubert, V., Schless, V., Igel, S.,
2003. XML-based dialogue descriptions in the Gemini Pro-
ject. In: Proc. Berliner XML-Tage, pp. 404–412.

Hamerich, S.W., Schubert, V., Schless, V., Córdoba, R., Pardo,
J.M., D’Haro, L.F., Kladis, B., Kocsis, O., Igel, S., 2004a.

http://www.w3.org/TR/speech-synthesis
http://egnatiasite.egnatiabank.gr/EN/default.htm
http://egnatiasite.egnatiabank.gr/EN/default.htm
http://www-gth.die.upm.es/projects/gemini/
http://www-gth.die.upm.es/projects/gemini/


886 L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887
Semi-automatic generation of dialogue applications in the
Gemini Project. In: Proc. Workshop for Discourse and
Dialogue (SigDial), pp. 31–34.

Hamerich, S.W., de Córdoba, R., Schless, V., D’Haro, L.F.,
Kladis, B., Schubert, V., Kocsis, O., Igel, S., Pardo, J.M.,
2004b. The Gemini Platform: semi-automatic generation of
dialogue applications. In: Proc. Internat. Conf. of Spoken
Language Processing (ICSLP), pp. IV-2629–2632.

Hunt, A., 2000. JSpeech Grammar Format. W3C Note. Avail-
able from: <http://www.w3.org/TR/jsgf>.

Johnston, M., Bangalore, S., et al., 2002. MATCH: an architec-
ture for multimodal dialogue systems. In: Proc. 40th Annual
Meeting of the ACL, pp. 376–383.

Katsurada, K., Ootani, Y., Nakamura, Y., Kobayashi, S.,
Yamada, H., Nitta, T., 2002. A modality independent MMI
system architecture. In: Proc. Internat. Conf. of Spoken
Language Processing (ICSLP), pp. 2549–2552.

Klemmer, S.R., Sinha, A K., Chen, J., Landay, J.A., Aboobaker,
N., Wang, A., 2000. SUEDE: a Wizard of Oz prototyping
tool for speech user interfaces. In: CHI Letters, ACM
Symposium on User Interface Software and Technology
(UIST), Vol. 2 (2), pp. 1–10.

Komatani, K., Ueno, S., Kawahara, T., Okuno, H.G., 2003. User
modeling in spoken dialogue systems for flexible guidance
generation. In: Proc. European Conf. on Speech Communi-
cation and Technology (Eurospeech), pp. 745–748.

Lamel, L., Rosset, S., Gauvain, J.L., Bennacef, S., Garnier-Rizet,
M., Prouts, B., 2000. The LIMSI ARISE system. Speech
Commun. 31 (4), 339–354.

Lehtinen, G., Safra, S., Gauger, M., Cochard, J.-L., Kaspar, B.,
Hennecke, M.E., Pardo, J.M., Córdoba, R., San-Segundo, R.,
Tsopanoglou, A., Louloudis, D., Mantazas, M., 2000. IDAS:
interactive directory assistance service. In: Proc. COST249
ISCA Workshop on Voice Operated Telecom Services
(VOTS-2000), pp. 51–54.

Levin, E., Narayanan, S. Pieraccini, R., Biatov, K., Bocchieri, E.,
Di Fabbrizio, G., Eckert, W., Lee, S. Pokrovsky, A., Rahim,
M., Ruscitti, P., Walker, M., 2000. The AT&T-DARPA
communicator mixed-initiative spoken dialog system. In:
Proc. Internat. Conf. of Spoken Language Processing
(ICSLP), Vol. 2, pp. 122–125.

McGlashan, S., Burnett, D.C., Carter, J., Danielsen, P., Ferrans,
J., Hunt, A., Lucas, B., Porter, B., Rehor, K., Tryphonas, S.,
2004. Voice Extensible Markup Language (VoiceXML)
Version 2.0. W3C Recommendation. Available from: <www.
w3.org/TR/voicexml20>.

McTear, M., 1998. Modelling spoken dialogues with state
transition diagrams: experiences with the CSLU toolkit. In:
Proc. Internat. Conf. of Spoken Language Processing
(ICSLP), pp. 1223–1226.

McTear, M., 1999. Software to support research and develop-
ment of spoken dialogue systems. In: Proc. European Conf.
on Speech Communication and Technology (Eurospeech),
pp. 339–342.

McTear, M., 2002. Spoken dialogue technology: enabling the
conversational user interface. ACM Comput. Surveys 34 (1),
90–169.

Meng, H.M., Lee, S., Wai, C., 2002. Intelligent speech for
information systems: towards biliteracy and trilingualism.
Interacting with Computers 14 (4), 327–339.

Nigay, L., Coutaz, J., 1993. A design space for multimodal
systems—concurrent processing and data fusion. In: Proc.
INTERCHI—Conf. on Human Factors in Computing Sys-
tems, pp. 172–178.

OpenVXI Web page, 2004. Available from: <http://fife.speech.
cs.cmu.edu/openvxi/>.

Oviatt, S.L. et al., 2000. Designing the user interface for
multimodal speech and gesture applications: state-of-the-art
systems and research directions. J. Human Comput. Interact.
15 (4), 263–322.

Pargellis, A.N., Kuo, H.J., Lee, C., 2004. An automatic dialogue
generation platform for personalized dialogue applications.
Speech Commun. 42, 329–351.

Polifroni, J., Seneff, S., 2000. Galaxy-II as an architecture for
spoken dialogue evaluation. In: Proc. Internat. Conf. on
Language Resources and Evaluation (LREC), pp. 725–730.

Polifroni, J., Chung, G., Seneff, S., 2003. Towards the automatic
generation of mixed-initiative dialogue systems from Web
content. In: Proc. European Conf. on Speech Communication
and Technology (Eurospeech), pp. 193–196.

Rudnicky, A., Xu, W., 1999. An agenda based dialog manage-
ment architecture for spoken language systems. In: IEEE
Automatic Speech Recognition and Understanding Work-
shop, pp. 337–340.

San Segundo, R., Montero, J.M., Colás, J., Gutiérrez, J.M.,
Ramos, J.M., Pardo, J.M., 2001. Methodology for dialogue
design in telephone-based spoken dialogue systems: a Spanish
train information system. In: Proc. European Conf. on Speech
Communication and Technology (Eurospeech), pp. 2165–2168.

Schubert, V., Hamerich, S.W., 2005. The dialog application
metalanguage GDialogXML. In: Proc. European Conf. on
Speech Communication and Technology (Eurospeech), pp.
789–792.

Seneff, S., Polifroni, J., 2000. Dialogue management in the
mercury flight reservation system. In: Proc. ANLP-NAACL
Satellite Workshop, pp. 1–6.

Strik, H., Russel, A., van den Heuvel, H., Cucchiarini, C., Boves,
L., 1997. A spoken dialog system for the Dutch public
transport information service. Int. J. Speech Technol. 2 (2),
121–131.

Toth, A.R., Harris, T.K., et al., 2002. Towards every-citizen’s
speech interfaces: an application generator for speech inter-
faces to databases. In: Proc. Internat. Conf. of Spoken
Language Processing (ICSLP), pp. 1497–1500.

Turunen, M. et al., 2004. AthosMail—a multilingual adaptive
spoken dialogue system for e-mail domain. In: Proc. Work-
shop on Robust and Adaptive Information Processing for
Mobile Speech Interfaces.

Uebler, U., 2001. Multilingual speech recognition in seven
languages. Speech Commun. 35 (1), 53–69.

W3C, 1999. Available from: <http://www.w3.org/TR/voice-
dialog-reqs/>.

Wahlster, W., Reithinger, N., Blocher, A., 2001. SmartKom:
Multimodal communication with a life-like character. In:
Proc. European Conf. on Speech Communication and Tech-
nology (Eurospeech), pp. 1547–1550.

Wang, K., 2000. Implementation of a multimodal dialog system
using extended markup languages. In: Proc. Internat. Conf. of
Spoken Language Processing (ICSLP), Vol. 2, pp. 138–141.

Wang, K., 2002. Salt: a spoken language interface for Web-based
multimodal dialog systems. In: Proc. Internat. Conf. of
Spoken Language Processing (ICSLP), pp. 2241–2244.

Wang, Y.-F.H., Hamerich, S.W., Schless, V., 2003. Multi-modal
and modality specific error handling in the Gemini Project. In:

http://www.w3.org/TR/jsgf
http://www.w3.org/TR/voicexml20
http://www.w3.org/TR/voicexml20
http://fife.speech.cs.cmu.edu/openvxi/
http://fife.speech.cs.cmu.edu/openvxi/
http://www.w3.org/TR/voice-dialog-reqs/
http://www.w3.org/TR/voice-dialog-reqs/


L.F. D’Haro et al. / Speech Communication 48 (2006) 863–887 887
Proc. Workshop on Error Handling in Spoken Dialogue
Systems, pp. 139–144.

xHTML+Voice, 2004. Available from: <http://www.voice-
xml.org/specs/multimodal/x+v/12/spec.html>.
Zue, V., Seneff, S., Glass, J., Polifroni, J., Pao, C., Hazen, T.J.,
Hetherington, L., 2000. JUPITER: a telephone-based con-
versational interface for weather information. IEEE Trans.
Speech Audio Process. 8 (1), 85–96.

http://www.voicexml.org/specs/multimodal/x+v/12/spec.html
http://www.voicexml.org/specs/multimodal/x+v/12/spec.html

	An advanced platform to speed up the design of multilingual dialog applications for multiple modalities
	Introduction
	Motivation
	Alternative approaches
	Relevant definitions
	Paper organization

	Platform structure
	Scope and limitations
	GDialogXML

	Framework layer
	Application description assistant (ADA)
	Data model assistant (DMA)
	Data connector modeling assistant (DCMA)

	Retrievals layer
	State flow modeling assistant (SFMA)
	Retrieval modeling assistant (RMA)
	Capabilities and dialog types
	Strategies to accelerate the design
	Mixed initiative and over-answering
	RMA output


	Dialogs layer
	User modeling assistant (UMA)
	Modality extension retrieval assistant for�speech (MERA)
	Presentation of object lists
	Confirmation handling

	Modality and language extension assistant (MEA)
	Dialog model linker (DML)
	Script generators
	VoiceXML Generator and connection with�the runtime platform
	Web script generator

	Auxiliary assistants

	Portability and use of standards
	OpenVXI
	Programming environment and other�standards

	Evaluation and test applications
	Subjective evaluation of the platform
	Services tested in the runtime system

	Future plans
	Conclusions
	Acknowledgements
	References


