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ABSTRACT

The use of multiple acoustic models has reported great 

improvements when facing speaker independent difficult tasks.
In this paper, we are applying this strategy to a flexible, large
vocabulary, speaker-independent, isolated-word hypothesis
generation system in a telephone environment with
vocabularies up to 10000 words. The new problem addressed
here is how to efficiently integrate the multiple model scheme
in the system, as due to its bottom-up approach (phonetic string
generation followed by a lexical access process), multiple
possibilities arise (apart from the alternatives in the training
stage), and its not clear what combination would achieve the
best results. In the paper, full details on every alternative are
shown, along with results showing actual improvements in the
system.

1. INTRODUCTION

When facing the design and implementation of real-word
public information services using the telephone network and
working in real time, important aspects arise, as opposed to the
conditions found in laboratory environments. At ICSLP’96 [1]
and ICSLP’98 [2] we presented a large-vocabulary, speaker-
independent, isolated word preselection system in a telephone
environment with different improvements in order to take into
account low computational demands and reasonable recognition
rates. Techniques for handling non-speech sounds or for using
variable-length preselection lists have shown its usefulness in
this context.

Other common sources of recognition errors in speaker-
independent real-world applications are pronunciation
variations between different speakers (even between different
utterances pronounced by the same speaker). The use of
multiple acoustic modes per phonetic unit can help to reduce
these variations and hence to increase the overall system
performance.

Specifically, the approach of using gender specific model sets
has been widely used and great improvements have been
reported. In this paper, we apply this strategy to the
preselection module of the ASR system mentioned above. The
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novelty here resides in the fact that due to the highly modular
architecture of the system, incorporating multiple acoustic
models can be done in different ways for each sub-module. We
will describe these different approaches in both training and
recognition stages, showing remarkable improvements.

2. SYSTEM OVERVIEW

The general system architecture is based on the hypothesis-
verification paradigm, so that the output of a rough analysis
module, with low computational demands, is fed to a detailed
matching module. In this paper, we focus on the hypothesis
generation stage, which has been designed according to a
bottom-up approach [1] and consists of three main modules, as
shown in Figure 1:

Figure 1: Hypothesis Module Architecture.

Acoustic Processing (AP): The input speech signal is
preprocessed obtaining a vector of parameters composed of 8
MFCCs, 8 delta-MFCCs, log-energy and its first derivate. They
are quantized for discrete HMMs (DHMMs) or soft quantized
if semi-continuous (SCHMMs) are used, with 2 codebooks and
256 centroids each.

Phonetic String Build-Up (PSBU): the resulting indexes are
passed to the phonetic string build-up module with generates a
string of alphabet units using a frame-synchronous one-pass
algorithm. Each set of gender-dependent models (or single
models) consists of 23 allophone-like context-independent
HMMs. In order to reduce the effect of endpointing
inaccuracies 2 additional silence units are also introduced.

Lexical Access (LA): The phonetic string is matched against
the whole dictionary, using a dynamic programming algorithm



and alignment costs for substitution, insertion and deletion
errors [4].

3. DATABASES AND DICTIONARIES

In our experiments, we have used part of the VESTEL database
[5], a speaker-independent speech corpus collected over
commercial telephone lines, composed of digits, numbers,
commands, city names, etc.

The training set consists of 5820 utterances pronounced by
3011 different speakers (46.74 % of training data belongs to
male speakers and 53.26 % to female ones). The test set is
composed by 1434 utterances from 1351 speakers. In both sets,
no noticeable non-speech sounds are presented.

Experiments have been performed using three dictionaries,
which have been built with 2000, 5000 and 10000 words,
extracted from the application domain, if available, or added
from the ONOMASTICA project results. In all of them,
graphemes had never been seen in the training data
(vocabulary-independent task).

4. TRAINING MULTIPLE-HMM
ACOUSTIC MODELING

For training multiple-HMM acoustic models, a partitioning of
the training data is required; each part groups utterances with
similar acoustic characteristics. Here, this division has been
performed based on gender-dependency due to the clear
acoustic differences between utterances pronounced by male
and female speakers.

We have developed two different methods for training gender-
dependent models (in both cases, the models were trained
using the Viterbi algorithm):

• Independent training: In this case, we have trained each
set of models, using only the part of the database assigned
to them. The main disadvantage of this method is the a
priori assignment of the training data to a particular set.
This situation is not very suitable if the acoustic
characteristics of the utterance fit better into the other set.
In addition, if the training data is not balanced enough
between both sets, a poor modeling may result for the one
containing less examples.

• Joint training: This approach tries to overcome the
problems mentioned before. In this case, all the material
for both sets of models is used, and a weighting function
controls the influence of each utterance in the modeling of
each set [3]. The weights for both sets are calculated as
follows:

where, PA and PB are the likelihoods for the utterance
with the set of models A and B, respectively, α is an
adjustment factor, and ωA and ωA are the weights to be
applied to the reestimation formulae in the training stage.

The adjustment factor α allows to assign more training
data to a particular set. For example, for α = 1.25, the
training of models belonging to set B will be emphasized.

5. INCORPORATING MULTIPLE-HMMs
IN THE RECOGNITION STAGE

5.1. Multiple-HMMs in the PSBU module

In the PSBU module, two approaches are tested:

• “Combined-sets”: In this first approach, phonetic strings
are composed by concatenating models coming from any set.
No modification is required on the one-pass algorithm in the
PSBU implementation; the only difference is that the number
of acoustic models is duplicated.

• "Single-set": In this case, strings are forced to be
generated by only one set of models (the one that produces the
best score). In the experiments performed, we observed that
only 11% of the words uttered by male speakers produce better
scores when comparing to the opposite set models (female
speakers). In the same way, 5.5% of the test data belonging to
female’s group fitted better to male models. This fact
corroborates that gender-dependent models make an adequate
discrimination between both sets. In fact, in many cases,
phonetic strings generated by using the opposite models were
composed of a non-sense concatenation of allophones.

Regarding to the increase of computational load, both methods
duplicate the number of numeric operations when compared to
the single-modeling approach.

5.2. Multiple-HMMs in the LA module

In the LA module, two strategies are also used:

• Shared-costs: In this approach, all the allophones have the
same behaviour in the lexical access stage even if they
have been generated from different sets of models, so that
both sets share the same confusion matrix. This is an
optimal approach when the data for training substitution,
deletion and insertion costs is limited.

• Set-dependent-costs: In this second strategy, costs are
gender-dependent as in the acoustic modeling, so it is
necessary to train one squared confusion matrix (for
"single-set" PSBU strategy) per set or a single rectangular
confusion matrix (for "combined-sets").

The implementation of these techniques is not very expensive
due to the low computational load of the LA sub-module itself.
In summary, by combining these different strategies for PSBU
and LA modules, we have four different alternatives for
introducing Multiple-HMM modeling in the recognition stage,
as is shown in Figure 2. Note that the combination of “single-
set” PSBU with a “set-dependent-costs” LA strategy has not
been implemented in this work, as the use of rectangular
confusion matrices complicates remarkably the LA module,
and, no significant improvement was expected taking into
account preliminary experimentation.
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Figure 2: Strategies for incorporating Multiple-HMMs in the recognition stage.

6. EXPERIMENTAL RESULTS

The performance of the preselection module has been measured
in terms of the inclusion rate, i.e. the percentage of words
calculated over whole dictionary that are necessary to be
included in a preselection list in order to achieve a certain
recognition rate. For example, for a 10000 words task, a 10 %
in the figures would mean we used a preselection list of 1000
words. In the case of the 2000 words dictionary, we estimated a
preselection list 4% of dictionary size would be reasonable. For
the 5000 and 10000 words dictionaries, a preselection list 10%
of dictionary size is a good choice for achieving an adequate
overall performance.

6.1. Independent-training vs. joint-training

The aim of this set of experiments was to determine the best
procedure for training multiple acoustic models. In this case,
we trained discrete models (DHMM). Combination 2 (see
Figure 2) was the strategy used in the recognition stage.

Figure 3 shows the results obtained with single-DHMM and
multiple-DHMM trained according to the two possibilities
mentioned in Section 4: independent-training and joint-training
with three different values for the adjustment factor.

The introduction of multiple-DHMMs improved considerably
the system performance for almost all the alternatives.
Regarding to the comparison between independent and joint
training, the last technique does not increase significantly the
recognition rate (even, recognition rate decreases when using α
= 1.25).

Figure 3: Comparison of error rates for different training
strategies: single-DHMM, independent-training multiple-
DHMM and joint-training multiple-DHMM (2000 words dict).

There are two possible explanations for this phenomenon: on
one hand, the automatic classification performed by the joint-
training procedure is very similar to the one obtained by simply
dividing the training data into male and female speakers. In
fact, only 2 % of male utterances fits better to female models,
and conversely, only 4 % of female utterances is better
recognized using the opposite modeling. On the other hand, the
training data is reasonably well-balanced, so for values of α
different from 1.0, no improvement is achieved. Therefore, we
adopt the independent strategy for training multiple-HMMs in
the remaining of experiments.
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6.2. Alternatives for PSBU and LA modules

Figure 4 shows the performance of the preselection module
when the different combinations of PSBU and LA strategies
listed in Figure 2 are applied. From the results, we can extract
two conclusions:

• The use of combined sets in PSBU does not produce better
results due to the increase of insertion errors (see
experiment labeled as “Combination 1” vs. “Combination
2”).

• Using one confusion matrix (“shared costs”) performs
slightly better than using two confusion matrices. The
reason is the lack of data when training two matrices of
costs (see experiment labeled as “Combination 2” vs.
“Combination 3”).

However, all these alternatives outperform the single-HMMs
system. In summary, the “single-set” technique in PSBU
module and “shared-costs” technique in LA module is the
combination that achieves better results.

Figure 4: Comparison of error rates for different alternatives of
introducing multiple-DHMM in the recognition stage of the
preselection module (2000 words dictionary).

6.3. Single-SCHMM vs. Multiple-SCHMM
acoustic modeling

Although the previous experiments have been carried out using
DHMM modeling, a better acoustic modeling is needed in
order to achieve reasonable results in a real-world system. So,
we decided to use multiple SCHMM modeling. We
experimented with the choice that achieves the least error-rate
for multiple-DHMM, i.e. independent-training, “single-set” in
PSBU and “shared-costs” in LA module.

The comparison between single-SCHMM and multiple-
SCHMM is shown in Figure 5. We carried out three set of
experiments using 2000, 5000 and 1000 words dictionaries. As
it can be observed, multiple-SCHMM performs significantly
better than single-SCHMM. In fact, a relative error reduction
around 25% is achieved with a dictionary of 10000 words.

Figure 5: Comparison of error rates for different dictionary
sizes. Single-SCHMM vs. Multiple-SCHMM (independent-
training + combination 2)

7. CONCLUSIONS

The use of multiple acoustic models per phonetic unit allows
increasing acoustic modeling robustness in difficult tasks.

Different combinations of the techniques explained above have
been tested and the best results were obtained using
independent-training, "single-set" technique in PSBU module,
and only one confusion matrix in LA. Applying this strategy to
multiple-SCHMM modeling and a dictionary of 10000 words,
we have achieved a relative error reduction around 25%
(compared to the single-SCHMM system).
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