

2.2 Codification of the parameters

We have considered different ways present the
parameters to the neural network, i.e., the way they are
coded, as we have different kind of parameters.

1) Binary coding: this is the standard coding for
true/false parameters.

2) One-of-n. We use n neurons and only one of them is
active, the one that corresponds to the class or
category. This method has a potential problem: the
vectors can be very similar. A solution is to use
equilateral coding, where there is one neuron less
than the number of classes. All vectors are
equidistant and the distance is the maximum
possible. This type of coding is useful if you have a
big number of classes.

In ordinal values there is a relationship of order between
the different values. For example, the position of a unit
inside a higher-order unit. For these values we have
considered three codifications:

3) Porcentual transformation: divide the current value
by the maximum value to obtain a percentage. We
have a floating-point value as input.

4) Thermometer: divide all the possible values in
different classes (intervals). We activate all the
neurons until we get to the current class and leave
the remaining neurons inactive.

5) Z-Score mapping: apply a normalization to the
floating-point value that takes into account the
average and the standard deviation of the variable. It
is a good codification for very variable parameters.

2.3 Network evaluation

To evaluate and compare the networks we have
considered different metrics for the error (difference
between the prediction from the network and the
optimum value). The most important metric is the MSE,
or the RMS, which is equal to sqrt(MSE). They are both
more reliable than the average absolute error.

To make our comparisons it is better to use an
adimensional metric, because it will be independent of
the way we code the duration, for example the following
one:

∑
=

2
Re

it

RMS
errorRMSlative

where ti are the optimum values.

This metric has a problem: it has an offset. In the same
line, it is better to use the following metric, which does
not include the offset, and is independent of the average
value of the magnitude compared:

∑ −
=

2)(
)2(Re

tt

RMS
errorRMSlative

i

2.4 Parameters to be used

This is the most important item and will be the vehicle
for our experiments. The number of experiments made
is too high, so we will only mention the most significant
ones and just comment some of the “unsuccessful” ones.

In preliminary tests we found out that it is too difficult
to decide which parameters are relevant and the best
way to code them using a very big network with many
parameters, because the differences in performance are
too small and not always coherent. So, we have used a
base experiment using only the phoneme identity and
the stress, which are the most relevant ones without
doubt. Then, we have added the different parameters
one by one to see their effect and the significance of
each of them. We have considered the introduction of
contextual information in some of them, i.e., windowing
information.

We have made the experiments in four directions:
- First, we used a fixed number of neurons (3) to test

each possible parameter.
- As increasing the number of parameters demands

more neurons to the network, we increased the
number of neurons until we obtained an overtrain
symptom.

- We tested different codifications for non-binary
parameters.

- We included all the parameters to get the final
network.

2.4.1 Phoneme identity
This is the most obvious one. We have considered a set
of 33 phonemes for Spanish and used a one-of-n coding.

Contextual phonemes: we have considered to use the
phonemes that are to the right and to the left of the
current one. As the number of phonemes is too high (we
need 99 inputs for the three phonemes) the results
obtained are low, showing that there are not enough
examples in the database to train all the possible
contexts. The solution is to make clusters of similar
phonemes: we divide our set of phonemes in 13 classes
and classify the left and right context phonemes in these
classes. This way we reduce the inputs to 59
(33+13+13). The results improve with this approach. So
we will use it in our reference system. Experiments
using a two phonemes context showed a decrease for the
test set, so we discarded this option.

2.4.2 The stress
The effect of this parameter is always important. The
coding is binary: the phoneme can have stress or not.
We have obtained better results using a window of five
stress values to include contextual information. See
Table 3.

2.4.3 Binary parameters
We show below another binary parameters that have
been considered in our experiments. As the coding is
fixed, we have worked in their effect for different
numbers of neurons. All of them have shown an
improvement over the reference experiment (see Table
1). That is what we expected, as all of them affect the
duration.
- Stress in the syllable. This is the best one.
- Syllable beginning with vocal.
- Diphthong.
- Phoneme in a function word.
The last two apply only to special cases, so they do not
show a significant improvement in the overall system,
but they improve the prediction in their specific cases.

2.4.4 Type of phrase
We have considered at first eight types of phrases. Our
first experiment was to use a one-of-n codification (8
inputs), but the results were even worse than the
reference experiment. A through examination of the
database showed that the distribution of phrases was not
uniform, some types had significantly less examples
than the others.

The solution was to reduce the number of types to 4
giving a more uniform distribution. Using again a one-
of-n codification, the results were really good (see Table
1).

2.4.5 Position in the phrase
We have considered different alternatives for position
parameters: position of the phoneme in the syllable,
word and phrase; the syllable in the word and phrase;
and the word in the phrase. In our first approach we
made the following steps for the codification:
- Normalize the value of position by the total in the

higher-order unit – we obtain a floating point value
between 0 and 1.

- This value is coded using 4 classes. The intervals
that define these classes are computed automatically
looking for uniform distributions.

- The 4 classes use a thermometer-type coding with 3
neurons (always the number of classes minus 1).

The first results using just three neurons showed a very
little improvement. Our decision was to increase the
number of neurons and use a different number of classes
for each parameter, that will be close to its average
value. The results are shown in Table 1.

The main conclusion is that we can not use all the
parameters at the same time, because they provide
similar information to the network. Another conclusion
is that the deviation of the parameter “position of
phoneme in phrase” is too high to be modeled with
enough generalization.

Although the results do not show significant differences
between them, we consider the best option to use:
phoneme in the syllable, syllable in the word and word
in the phrase, as they are more homogeneous when used
together, their range of values is smaller and they need
less neurons and classes to reach an optimum.

2.4.6 Number of units in the phrase
In a similar way than for positions, we have considered
the number of phonemes in the syllable, word and
phrase; syllables in the word and phrase; and words in
the phrase. We followed these steps for their
codification:

- Normalize the value of position by the maximum
value – we obtain a floating point value between 0
and 1.

- Apply Z-score (using average and standard
deviation) as it is the usual recommendation in the
neural network literature [2]: we can restrict at our
will the operating range of the parameter, which is
too variable.

The conclusions are similar. All parameters referred to
phrase provide worse results, what is due to the broad
range of values. We have made experiments using the
thermometer-type codification instead of the floating
point but all were worse.

The summary of most relevant results is shown in Table
1. We have been able to find the right codification for
all the parameters, as there is a improvement for all of
them.

Experiment Neu-
rons

Rel RMS
– Train

Rel RMS
– Test

Reference experiment 3 0.77454 0.82536
3 0.76773 0.824201- Ref. + Stress in syllable
4 0.76427 0.82316
3 0.77078 0.825232- Ref. + Diphthong
5 0.75583 0.82300
3 0.76859 0.824543- Ref. + Syllable beginning with

vocal 5 0.75679 0.82267
4- Ref. + Function word 3 0.76816 0.82500
5- Ref. + Type of phrase (8 types) 3 0.76830 0.82577

3 0.76981 0.82481Ref. + Type of phrase (4 types)
7 0.74368 0.81982

6- Ref. + Pos. of P in S (3 4 0.76628 0.82442
Ref. + Pos. of P in W (5 cl.) 6 0.74796 0.81750
Ref. + Pos. of P in PHR (5 cl.) 6 0.74902 0.81959
7- Ref. + Pos. of S in W (4 cl.) 3 0.76498 0.81971
Ref. + Pos. of S in PHR (6 cl.) 3 0.76038 0.82126
8-Ref. + Pos. of W in PHR (3 cl.) 4 0.75764 0.82037
9- Ref. + Number of P in S 5 0.75433 0.82085
Ref. + Number of P in W 6 0.74908 0.81762
Ref. + Number of P in PHR 5 0.75445 0.82342
10- Ref. + Number of S in W 5 0.75555 0.82207
Ref. + Number of S in PHR 5 0.75381 0.82344
11- Ref. + Number of W in P 3 0.76895 0.82597

Table 1. Summary of results with 50% of the database
for training and 50% for testing (P=phoneme,
S=syllable, W=word, PHR=phrase).

2.4.7 Modeling of the duration
At this stage, we decided to dedicate 75% of the
database for training and 25% for testing. To model the
duration the first decision is if it should be normalized.
We found that it is better to normalize it by the duration
of the phrase; this way the system is less affected by
changes in speed in the database recordings. After that,
we can use:

- The duration itself.
- The logarithm of duration (bad results).
- Find the average duration for each phoneme and

model the standard deviation.
- The logarithm of the standard deviation.
The results are shown in Table 2. Although the
differences are not significant, the best behavior in
general corresponds to the last option, which we will use
from now on. It is the first experiment that showed an
improvement using two layers.

Experiment Neu-
rons

Rel RMS
– Train

Rel RMS
– Test

Ref. (Duration not normalized) 5 0.78128 0.81588
Duration normalized 8 0.75740 0.79793
Ref., standard deviation 8 0.75629 0.79236

8 0.75693 0.79504Ref., logarithm of strd. deviation
12-6 0.74956 0.79334

Table 2. Different ways to code the duration.

2.5 Putting everything together

In Table 3 we can see the summary of results using the
parameters together. Numbers refer to items in Table 1.
First experiments are windowing experiments that show
an improvement and have been used too.

Experiment Neu-
rons

Rel RMS
– Train

Rel RMS
– Test

Reference 12-6 0.74956 0.79334
12- Ref + window of 5 phonemes 8 0.72431 0.78068
Ref + window of 7 phonemes 8 0.70785 0.78316
13- Ref + window of 5 in stress 8 0.74605 0.78582
12+1+4 8 0.72209 0.77378
12+1+4+6+7+8 8 0.71798 0.77936
12+1+4+6+7+8+9+10+11 8 0.70669 0.77674
12+1+4+6+7+8+9+10+11+5 8 0.70523 0.77916
12+1+4+6+7+8+9+10+11+5+2+3 8 0.70750 0.78048
12+1+4+6+7+8+9+10+11+5+14 8 0.70265 0.76428

Table 3. Putting everything together.

The main conclusion is that after a certain point of
saturation, the results only improve significantly for the
training set. The last experiment includes a new
parameter (14): beginning of phrase (till first stress) and
ending of phrase (from last stress).

In our best experiment the average absolute error is 229
samples, equivalent to 14.3 ms, which is really close to
the maximum accuracy of the segmentation of our
database (10 ms steps).

2.6 Comparison to rule-based system

Our previous rule-based system had a relative RMS
equal to 0.90547, which is clearly worse than our best
result.

We have observed that the results provided by the net
are very accurate in the trend (means that the training is
correct), but sometimes cannot reach the peak values,
which strongly affects to the average results.

3. WORKING ENVIRONMENT
We will not give a detailed description, but we have
developed a complete environment in Matlab oriented
to:

- Prepare the inputs to the NN. In the first stage, using
just the labeling of the phrase, we decide the
absolute values for all parameters considered. Then,
the system prepares the values of the inputs
according to the design specified in a Matlab model.

- This design is easy to prepare, as we have black
boxes for all the codifications mentioned in this
paper. You just have to select each parameter and its
corresponding codification using a box.

- Train the neural network.
- Evaluate the results. We generate detailed reports

and charts with the comparison between the
durations obtained and the target values.

4. CONCLUSIONS
Compared to our previous rule-based system:
- We have a system that can be easily adapted to

specific contexts and/or new databases. We are
going to apply the same system to a system with a
restricted prosody. We expect a major improvement
in it, as the database will be more homogeneous.

- The results are definitely better.

It is difficult to find the optimum topology of the
network. It is better to begin with a low number of
neurons and increase it step by step. The same applies to
the inclusion of parameters: it is better to decide their
best coding in small networks. We have found a good
compromise between network topology and parameters
considered, with good results that are stable.

5. REFERENCES
[1] De Tournemire, S., “Identification and automatic

generation of prosodic contours for a text-to-speech
synthesis system in French”, Eurospeech 97.

[2] Masters, T., “Practical neural networks recipes in
C++”, Academic Press Inc.

[3] Möbius, B., J.P.H. van Santen, “Modeling segmental
duration in German text-to-speech synthesis”,
ICSLP 96.

[4] Morlec, Y., G. Bailly, V. Aubergé, “Synthesising
attitudes with global rhythmic and intonation
contours”, Eurospeech 97.

[5] Vallejo, J.A., "Improvement of the fundamental
frequency in text-to-speech conversion". Doctoral
Thesis, ETSIT, Madrid, UPM, 1998.

[6] van Santen, J.P.H., “Prosodic modeling in text-to-
speech synthesis”, Eurospeech 97.

[7] van Santen, J.P.H., “Assignment of segmental
duration in text-to-speech synthesis”, Computer
Speech and Language (1994)8, pp. 95-128.

