
CONTROLLING A HIFI WITH A CONTINUOUS SPEECH
UNDERSTANDING SYSTEM

J. Ferreiros, J. Colás, J. Macías-Guarasa, A. Ruiz, J. M. Pardo

Grupo de Tecnología del Habla - Departamento de Ingeniería Electrónica
E.T.S.I. Telecomunicación – Universidad Politécnica de Madrid

Ciudad Universitaria s/n, 28040 Madrid Spain

ABSTRACT

In this paper we present a speech understanding system that
accepts continuous speech sentences as input to command a
HIFI set. The string of words obtained from the recogniser is
sent to the understanding system that tries to fill in a set of
frames specifying the triplet (SUBSYSTEM, PARAMETER,
VALUE). The understanding module follows the philosophy
presented in [1]. The triplets are finally translated into infrared
commands by an actuator module to be sent to the HIFI set,
composed by a radio, a three deck CD player and a two tape
cassette recorder/player. All circumstances (understanding
incompleteness, HIFI set status, result of the command
execution) are confirmed back to the user via a text to speech
system with substitutable-concept pattern-based generated
messages. We have introduced a response module because
some of the final users will be blind people, and because we
are studying the possibility of establishing restricted dialogues
with the users in order to complete or correct the commands.
The understanding engine is based on semantic-like tagging,

including “garbage” tag, and context-dependent rules for
meaning extraction. One of the system options allows the
application developer to follow the reasoning process of the
system (as every understanding rule has an associated concept
pattern), spoken by the speech generation module. The
concepts for speech generation are randomly substituted with
alternative expressions having the same meaning to achieve a
certain degree of naturalness in the response speech.

1. THE SPEECH RECOGNISER

The speech recogniser is based on a one-pass algorithm that
searches for the best word sequence with a vocabulary of 163
words. The words are modelled as sequences of SCHMM
allophone units [2,3]. A LSI board that includes a DSP ATT
32C performs the sampling and pre-processing stages. The rest
of the recognition tasks are performed in the PC host. This
configuration is working very close to real time.

Speech
Recogniser

Tagger Tags Refiner Understanding Actuator

Speech Generation
Module

Text to Speech

IR-LED

Alternative
Expresions

SCHMM
+

Word Pair

Tagged
Dictionary

Context
Dependent

Rules

Context
Dependent

Rules
HIFI

Status

Speech Understanding Modules

Figure 1: Module diagram of the whole system



2. THE SPEECH UNDERSTANDING
ARCHITECTURE

The understanding architecture is composed of the following
modules that run in the PC:

2.1. Tagger

This module receives the string of words recognised.
Each word in the recognised string is assigned one or several
semantic-like tags.

We have a set of 78 tags for this application. 18 of
them are related to some specific action and correspond
mainly to the verbs found in the command sentences (switch
on, record...). 14 other tags are related to parameters and
correspond mainly to system parameter nouns (volume,
tone...). Other 14 tags are typically applied to values given to
system parameters (increase value, am/fm...).

A “garbage” tag has been included so that it can be
assigned when, for example, we are processing a function
word that does not add any meaning in the semantic domain
defined for the task. This method is a way of improving the
robustness of the understanding system that has been designed
to understand sentences without having to rely on the accurate
recognition of function words, a hard task for the speech rec-
ogniser. It will be also useful in future developments where
we will admit out-of-vocabulary words (using, for example, a
parallel allophone grammar as model for unknown words or
extending the recognition lexicon with more words than the
ones specifically understood by the system). These words will
also be tagged as “garbage” and will allow the correct under-
standing of sentences like “please, set the volume higher”
where the word “please” may have not been considered in the
design of the understanding system. There are a lot of sen-
tences uttered by the users with unknown words that do not
add extra meaning to the command. These sentences are cor-
rectly treated with this technique that improves, also in this
sense, the robustness of the understanding system.  Of course,
if the unknown words that appear in a sentence are semanti-
cally relevant to the application, tagging them as “garbage”
will not help to understand the sentence.

The set of semantic-like tags to be applied to each
word is specified directly in the lexicon. For example, the
word “right” has two possible tags: “increment” if the word is
used as in the sentence “move the volume knob to the right” or
“position” like in “play the tape on the right”. The word “pro-
gram” can be tagged “programming action” as a verb like in
“program the set clock to one two zero zero”, or can be tagged
“memory parameter” as a substantive like in “put program
three of the radio”. One of the objectives of the following
module will be to disambiguate them and choose one out of
the set of tags a word can have or even change them by a new
more specific one.

2.2. Tags Refiner

This module has the following aims: 1) numbers
processing, 2) disambiguation of those words with several

possible tags and 3) garbage removal. It receives the output of
the tagger (the words with their corresponding sets of tags)
and produces a similar, but more refined output. This output is
the product of choosing or changing the tags or even a change
in the literal expressions of the words. A change in the literal
strings is exactly what happens in the first step of numbers
processing. To ease the recognition system design, numbers
composed of more than one figure are supposed to be uttered
using only the figures between zero and nine. This implies a
simple processing of the sentences to extract the right num-
bers. First, grapheme representations of the numbers are
changed into the corresponding figures. Then, contiguous
figures are grouped to form the corresponding single number.
For example, the sentence piece “...two five...” is rewritten as
“25”. Garbage words may have served as separators to prop-
erly translate sequences of numbers. This is the reason why we
remove garbage words just at the ending step of this tags
refiner stage.

Next, the module applies a set of context dependent
rules to disambiguate these words that have several possible
tags and also to refine the tagging of some words if more
information in the sentence is captured by the rules. These
rules are expressed in terms of some functions that analyse the
context searching for the existence of some specific tags. Both
in this tags refiner stage and in the following understanding
stage, we have two types of context searching functions: those
that search throughout the whole sentence and others that
search in the immediate context of the word of interest: the
previous and following words. This latter type of functions
give the system a proximity criterion to group words and
refine with them the partial meaning of some phrases when
necessary, while those functions that search everywhere give
the system a flexibility in the phrasing order to construct the
sentences.

Some examples of the disambiguation process are:
for the word “right” we have a rule that states that “if there
exists any other word tagged as a tape parameter, then the
word right is the position of this tape else it is a increment
indicator”. For the word “program” we have a rule which
intention is “if the tag of the next significant word is a num-
ber, then the word program is used as the corresponding
substantive else it is a programming action indicator”. Some
other rules simply refine some tags when more information is
observed. For example, if a word like “disk”, tagged “CD
value”, precedes a word tagged “number”, only the number is
preserved and it is tagged as “specific CD value”.

We have found that the order in which the rules are
executed is of major importance to get good performance. As
it will also be discussed for the next module, the understand-
ing stage, we came to the conclusion that specific rules should
be written and executed in the first place, leaving more gen-
eral rules at the end.

Finally, we remove all garbage words. The output of
this stage is a sequence of word-refined tag pairs, most of the
times less in number compared to the input.



2.3. Understanding stage

Context dependent rules are applied to the output of
the tags refining stage to extract the meaning of the sentence.
The output of this stage is one or a set of triplets that specify
the subsystem on which the action will be performed (radio,
cd, cassette), the parameter we want to change (volume, tone,
broadcast station memory number, song number, ...) and the
value the parameter should be set to.

In the design of this first version of the understand-
ing system we made the choice of trying to understand each
sentence using only the strictly needed word-tag pairs deliv-
ered by the tags refining stage. We did not necessarily use all
the pairs present after the tags refining stage to extract the
meaning. For example, as soon as we see a literal whose tag is
related to the volume parameter, we look for the needed extra
information (basically in this case: if the volume should be
elevated or decreased) and if it is found, execute the com-
mand. So, a sentence like “set the volume of the cassette deck
on the left higher” will have the effect of simply elevating the
only volume the HIFI set has. Maybe in this case the user is
listening to the radio while the tape is playing and a message
like “you should first switch the sound source to the tape to be
able to hear it” is convenient for the user to reformulate the
command. Also, both the user and the speech recogniser can
generate nonsense sentences like “switch the volume on” that
in this version will be executed trying to switch the set on, not
examining the meaning of the word volume because no in-
crease/decrease value can be found.

The context dependent rules of this module try to
extract enough information from the sentence to fill in one or
a set of (SUBSYSTEM,PARAMETER,VALUE) frames that
can be directly executed by the actuator stage. These rules
make use of the basic context analysis functions that we show
in Table 1.

Following the design criterion of not necessarily ex-
amining all the input pairs, we consistently put more specific
rules in the first position. The specific rules look for literals
with very specific tags that are almost a command in its own
(like a sentence that includes the word “fm” where the as-
sumed interpretation, without looking at any other word, is
“set the radio in fm band”). Many of the specific rules use
directly the function There_is (tag) as the only condition to
trigger an interpretation. Then we put rules that progressively
need to examine more terms to determine the correct inter-
pretation like in the sentence “switch memory two on”. This
second set of rules makes extensive use of the rest of the basic
context analysis functions in their condition part. Finally we
put more general rules that, with the knowledge that no previ-
ous specific rules have been able to produce an interpretation,
relax the exigencies and produce a more general interpretation
like for the sentence “switch on”.

Most of the rules of this stage are only triggered if
no previous rule has been triggered allowing the behaviour
that more general rules run only if no more specific rules have
been used. Nevertheless, there are some cases where a rule is
written to interpret only a part of a sentence, being compatible
with the rest of the rules trying to interpret the rest. For exam-
ple, in the sentence “Record the song number six of the disc
one”, one rule will be involved with the playing of the speci-
fied song on the correct CD, another rule will switch the rec-
ord sound source to CD and another rule will issue the record
command to the only tape that can actually make the recording
in this set. So, five different frames will be filled in by the
rules and executed by the actuator. The first rule will produce
three frames: (CD, DISK_SELECTION, 1), (CD,
SONG_SELECTION, 6) and (CD, PLAY, void). The second
rule will produce the frame (TAPE, RECORD_SOURCE, CD)
and finally, the last rule will fill in the frame
(TAPE,RECORD,void) where the tape does not need to be
specified because only one of them can record. To allow such
behaviour it is very important the order in which the rules are
written (and consequently executed) taking into account the
possible inhibition effect suffered by some rules.

Another characteristic of most of the rules employed
is that they produce a correct interpretation independently of
the order in which the constituent phrases of the sentences
appear. This allows the understanding of sentences ranging
from the prosaic “Set the volume of the radio higher” to the
poetical “In the radio the volume set higher”. It is not the
specific sequence of concepts, but their conceptual contents
and the order-indifferent relations among them, which leads to
the correct interpretation of the command.

Each rule fills in two message strings, one to con-
firm the action that will be carried out or to inform about any
understanding problem and another where the system “ex-

There_is (tag): examines if the tag tag is pres-
ent anywhere in the sentence.

There_is_another (tag_list): examines if an-
other tag, different from the ones present in
the tags list tag_list, appear anywhere in the
sentence.

Previous_significant_tag (index): returns the
tag of the previous significant word to the in-
dexed word. It gives, with the help of the fol-
lowing function, a proximity criterion to the
understanding procedure.

Next_significant_tag (index): returns the tag
of the next significant word to the indexed
word.

Word_tagged_as (tag): returns the literal of
the word that has been tagged as tag. It is use-
ful to obtain literals to fill in the correspond-
ing slots of the frames.

Index_of_Word_tagged_as (tag): returns the
index of the literal that has been tagged as tag.

Table 1: The set of basic functions, constituents of the con-
text dependent rules



plains” its reasoning. The reasoning string is also filled in by
the tagger and tags refiner stage. These message strings are
composed of the concatenation of literal messages and concept
marks to be processed by the speech generation module.

For example, a rule of the tags refining stage disam-
biguates the verbs that may have an increasing meaning if
another word with this meaning is found. If the correct condi-
tions are met, this rule fills in a string like: “C_SEEING the
word W1 with an increment meaning, C_THINK that W2
means an increasing action”, where in W1 and W2 the rule
writes the specific words on which it is working. C_SEEING
and C_THINK are two marks of substitutable concepts. As it
can be seen this is a pattern based approach to speech genera-
tion.

Another example from the understanding stage: a
rule examines if a word with a tag related to a set mode is
found and directly issues the frame to change the set mode. It
then fills in the following pattern: “C_SEEING W1, I set this
mode”

2.4. Actuator

This program reads the triplets with the actions to be
taken and execute them generating the right coded waveform
on an infrared LED. It also keeps track of the HIFI set status,
so that some actions are corrected. For instance, if the user ask
the set to be switched on while the set is already on, the
actuator will not issue this command again. The user is
informed of these circumstances using the speech generation
module.

3. THE SPEECH GENERATION MODULE

The input to this module are strings composed of literal
messages and concept marks that are randomly substituted
with expressions carrying the same meaning to achieve a
degree of naturalness in the synthesised messages. In the
example: “C_SEEING the word higher with an increment
meaning, C_THINK that put means an increasing action”,
C_SEEING can be substituted by a set of expressions like: “As
I can see”, “As I have discovered”, “As It appears”, ... and
C_THINK by expressions like: “I think”, “I imagine”, “I
suppose”...

A VISHA board, designed in the Speech Technology
Group, housing another DSP ATT 32C, hosts the speech
synthesiser subsystem.

4. DISCUSSION AND FUTURE WORK

In this speech understanding application we have used
semantic-like tagging of the words and context dependent
rules to extract the meaning of commands uttered in
continuous speech. The use of the tag “garbage” gives the
system a certain degree of robustness against recognition
errors for short function words. The kind of rules we are

applying to refine the semantic tagging and to finally interpret
the sentence is dependent on the context but not on the order
of the words that represent this context (except for these
phrases where the previous and following words are used to
disambiguate the tag of another word), allowing flexibility
when issuing the commands. The speech response subsystem
is based on pattern based speech generation with the use of
randomly substitutable concepts, which produces a naturalness
sensation in the user.

We have to work more on the treatment of all
information available in the sentence to detect inconsistencies
that the user should be aware of. This work will also prevent
the system to directly execute a command due to a recogniser
error that includes in the string of words one with a direct
interpretation rule.

We want also to handle correctly more complex
commands. For this purpose we have used in other
applications a more complex architecture that includes
semantic-syntactic parsing to extract the sentence structure.

We have also realised that there are many points in
the system where a dialog can be established with the user to
complete or correct information. In this dialog points a speech
query should be issued to the user and a recogniser restricted
only to the expected answers (a word spotting algorithm for
example) could be launched to obtain the data needed.

5. ACKNOWLEDGEMENTS

The authors wish to thank in general to all Speech
Technology Group members for their help and specially to
Natalia París Navajas and Yolanda López Moreno for their
work on the speech recogniser for this system.

6. REFERENCES

1. José Colás, Juan M. Montero, Javier Ferreiros, José M.
Pardo , “An alternative and flexible approach in robust
information retrieval system”,  EUROSPEECH’ 97,
ISSN 1018-4074, Rhodes, Greece

2. Javier Ferreiros, José M. Pardo , “Preliminary
Experimentation of Different Methods for Continuous
Speech Recognition in Spanish”, EUROSPEECH’ 95,
ISSN 1018-4074, Madrid, España

3. J. Ferreiros, “Contribution to Markov Models training
methods for continuous speech recognition”. Ph D.
Thesis. Universidad Politécnica de Madrid, 1996


