
Accepted Manuscript

Application of Backend Database Contents and Structure to the Design of Spo‐

ken Dialog Services

Luis Fernando D’Haro, Ricardo de Córdoba, Juan Manuel Montero, Javier

Ferreiros, José Manuel Pardo

PII: S0957-4174(11)01650-2

DOI: 10.1016/j.eswa.2011.11.104

Reference: ESWA 7210

To appear in: Expert Systems with Applications

Please cite this article as: D’Haro, L.F., de Córdoba, R., Montero, J.M., Ferreiros, J., Pardo, J.M., Application of

Backend Database Contents and Structure to the Design of Spoken Dialog Services, Expert Systems with

Applications (2011), doi: 10.1016/j.eswa.2011.11.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.eswa.2011.11.104
http://dx.doi.org/10.1016/j.eswa.2011.11.104

Paper title: Application of Backend Database Contents and Structure to
the Design of Spoken Dialog Services

Authors: Luis Fernando D’Haro, Ricardo de Córdoba, Juan Manuel

Montero, Javier Ferreiros, José Manuel Pardo

Affiliations:

Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain
{lfdharo|cordoba|juancho|jfl|pardo}@die.upm.es

Contact information:

Mailing address:

Luis Fernando D’Haro (corresponding author)
ETSI Telecomunicación
Ciudad Universitaria s/n
28040-MADRID
SPAIN

Telephone: +34-91-453 35 43
Fax: +34-91-3367323
e-mail: lfdharo@die.upm.es

Keywords: Development tools, Automatic Design of Dialog Systems, Data Mining,

VoiceXML.

Application of Backend Database Contents and Structure to the Design
of Spoken Dialog Services

Luis Fernando D’Haro, Ricardo de Córdoba, Juan Manuel Montero, Javier

Ferreiros, José M. Pardo
Grupo de Tecnología del Habla, Universidad Politécnica de Madrid, Madrid, Spain

{lfdharo|cordoba|juancho|jfl|pardo}@die.upm.es

Abstract
Current development platforms for designing spoken dialog services feature different

kinds of strategies to help designers build, test, and deploy their applications. In general,
these platforms are made up of several assistants that handle the different design stages
(e.g. definition of the dialog flow, prompt and grammar definition, database connection,
or to debug and test the running of the application). In spite of all the advances in this
area, in general the process of designing spoken-based dialog services is a time
consuming task that needs to be accelerated. In this paper we describe a complete
development platform that reduces the design time by using different types of
acceleration strategies based on using information from the data model structure and
database contents, as well as cumulative information obtained throughout the successive
steps in the design. Thanks to these accelerations, the interaction with the platform is
simplified and the design is reduced, in most cases, to simple confirmations to the
“proposals” that the platform automatically provides at each stage.

Different kinds of proposals are available to complete the application flow such as
the possibility of selecting which information slots should be requested to the user
together, predefined templates for common dialogs, the most probable actions that make
up each state defined in the flow, different solutions to solve specific speech-modality
problems such as the presentation of the lists of retrieved results after querying the
backend database. The platform also includes accelerations for creating speech
grammars and prompts, and the SQL queries for accessing the database at runtime.

Finally, we will describe the setup and results obtained in a simultaneous summative,
subjective and objective evaluations with different designers used to test the usability of
the proposed accelerations as well as their contribution to reducing the design time and
interaction.

Keywords: Development tools, Automatic Design of Dialog Systems, Data Mining,
VoiceXML.

1 INTRODUCTION
The growing interest from companies in using new information technologies as a

means to getting closer to the final users has led to the quick growth of and
improvement in automatic dialog systems for tasks involving a database query. In this
kind of task, users interact with an automatic system to retrieve or exchange information
that is available in a backend database. Examples of this kind of service are flight
reservations, information retrieval about entertainment events, or customer care
services, etc., 24 hours a day; 7 days a week.

One of the main difficulties with these systems is the process of designing them in a
fast and flexible way, so that the time needed by the designer to design the service and
the time that it will take the user to obtain the desired information in the real-time
system can both be reduced. Given the different characteristics and requisites of the
final users, the service is also expected to be available in several languages and

modalities. It is also expected that the same design can be reused for new applications
with minimal modifications.

Fortunately, the increasing demand for automatic dialog systems has resulted in
several companies and academic institutions working in the development of fully
integrated platforms that provide all of the aforementioned requirements. In general, all
current development platforms allow rapid development, debugging, maintenance and
deployment of the service; at the same time, thanks to their being made of different and
independent assistant modules, they allow different teams of developers to work on the
same project at the same time (i.e. collaborative role-based development). Using these
modules, designers can specify, among others: the application flow, grammars and
system prompts, actions for error handling, integration with backend databases, etc. On
the other hand, all these platforms include as their main strategy for accelerating the
design, built-in components such as dialog libraries, grammars, and prompts for
common situations (e.g. for requesting a phone number, an address, names, etc.).
Finally, the usability of these platforms is increased thanks to a clear and fully
integrated graphic user interface.

However, in spite of all these advantages, it is surprising to observe that all current
development platforms lack of some kind of acceleration based on basic business
intelligence and data mining methodologies applied to the contents of the task database
and from the data model structure (i.e. the set of object-oriented classes and attributes
that model the database tables and fields together with their relationships). In order to
cope with this, we have included several dynamic and intelligent acceleration strategies
in our platform such as the prediction of the necessary information required to complete
the definition of a dialog state, the definition of the database access functions,
incorporation of built-in solutions for presenting lists of retrieved results after querying
the database, selection of the information slots to be requested to the user at the same
time given their complexity, or the possibility of creating complex dialog states, among
others.

��� �������	
���
�
	
���

Throughout this paper we will refer to some widely used terms which do not
necessarily have a general accepted definition but that we want to clarify beforehand.

Acceleration: This term will refer to the different methodologies incorporated into
the assistants in order to simplify the design and reduce the design time.

Action: This term will refer to any kind of procedure required to complete the dialog
flow, for example calls or jumps to other dialogs, arithmetic or string operations,
programming constructs (e.g. if-conditions, while loops), etc.

Data Model: This is a graphic and object-oriented representation specified by the
designer to represent the fields, tables, and relationships in the database that are relevant
to the service, i.e. information to show to or retrieve from the user.

Dialog, State, and Slot: In general, the term dialog will refer to a specific action
used to ask for or show information from/to the users. The term state will refer mainly
to a set of dialogs and other actions, such as a database access, that are grouped together
to achieve a given goal. The term slot will refer to any compulsory information that the
system requests from the user. For instance, in a banking application, the designer can
define a single state for carrying out a transaction between two accounts; in this case,
the slots for this state would be the debit and credit accounts and the amount to be
transferred, and in turn, the state would include several dialogs such as one for asking
for the credit account or another one for telling the customer the available balance.

Mixed-initiative and Over-answering: Throughout this paper the term mixed
initiative refers, in accordance with the definitions of the VoiceXML standard, to the
system ability for asking for two or more compulsory slots simultaneously from the
user, and, where the user answer is incomplete or wrong new sub-dialogs are started to
obtain the unfiled slots (for instance, in a flight reservation service, the system asks for
the departure and arrival city simultaneously). The advantage of using mixed-initiatives
is that they allow more natural interactions between the user and system, and if there are
not too many recognizer errors the interactions and time to obtain the information are
drastically reduced. On the other hand, the term over-answering means that the user is
providing additional data – not compulsory at the current state – to the system (for
instance, the system asks only for the departure city but the user provides it together
with the arrival city). According to the standard, the creation of mixed-initiative dialogs
is compulsory for any platform, but over-answering is not required; however, in our
platform both are allowed in such as way that the running script can be used in any
voice browser.

��� �����
�����
��	
��

This paper is organized as follows: section 2 provides a brief review of the state-of-the-
art on development platforms and acceleration strategies for designing speech-based dialog
systems. In section 3 we present an overall description of the platform architecture and the
main accelerations included in the assistants of the platform; then, in section 4 we will show
the setup and results of a subjective and objective evaluation to test the proposed strategies.
Finally, sections 5, 6, and 7 show the future work, conclusions, and acknowledgments
respectively.

2 STATE-OF-THE-ART ON DEVELOPMENT PLATFORMS
AND ACCELERATION STRATEGIES

This section describes relevant platforms and tools for designing VoiceXML-based
applications that were studied and compared with our design platform. In this study, we
have made a distinction between systems developed for both research and commercial
purposes, since this allows us to make a fair comparison between them and to extract
relevant features. For instance, commercial platforms usually present a clear and elegant
interface that reflects the great effort that companies are making in this respect, as well
as the high level of use of standard languages to increase flexibility and simplify the
sharing of files across platforms; features that developers often value highly when they
use or compare platforms. For further and more detailed information about these or
other development tools, please check the Web address of each of them or refer to
[López-Cozar and Araki, 2005], [McTear, 2004], and [D'Haro, 2009].

��� ��� � ���
��
���	���� �

Summarizing, we can say that all commercial platforms include state-of-the-art
modules such as speech recognizers, language identification, speaker verification, and
high quality speech synthesizers. They also allow the creation of the service using
widespread standard languages and protocols such as VoiceXML1, X+V2, xHTML, Call
Control XML (CCXML)3, etc, to guarantee the integration between different vendors

1 http://www.w3.org/TR/voicexml21/
2 http://www.voicexml.org/specs/multimodal/x+v/12/
3 http://www.w3.org/TR/ccxml/

and platforms. These platforms are often supported by advanced hardware modules that
can be used with a minimal programming effort and adapted easily to the runtime
system. Interestingly, the most common acceleration in these platforms is the
incorporation of a large number of predefined libraries for typical dialog states such as
requesting card or social security numbers. They also include assistants for debugging
and logging the service, for defining speech grammars and pronunciation dictionaries,
or for obtaining service metrics. Finally, they present a very friendly graphical user
interface that simplifies the development of very complex dialogs. Since these features
are common to most platforms, many of them included in ours, we will only focus on
those that are relevant to our system.

Speechdraw4: Allows the development of very complex dialog applications such as
“How may I help you” [Gorin et al, 1997] without requiring any knowledge about
VoiceXML. For complex dialog applications, the platform incorporates a graphical flow
editor that can switch between the application logic (i.e. the dialog flow with its states,
actions and transitions) and the error recovery logic (i.e. the actions and prompts that
control the system behavior against typical errors in the recognizer or runtime platform).
As an acceleration strategy, the error recovery is automatically drawn by using pre-
defined rules specified by the designer (following a similar approach as the one we
follow in our platform, see section 3.3). The platform also provides mechanisms to
enable different designer profiles (i.e. flow design, grammar and backend design) to
work on the same project at the same time. Finally, the IDE allows database emulation
by simply entering debugging data into precompiled tables and defining the parameters
that must be sent and returned when communicating with the backend. This way, the
platform avoids access delays and the strong interdependence between the designer
interface and the integration layer when debugging the application (In section 3.1.2 we
describe a similar assistant in our platform that follows the same underlying idea but
incorporating new features).

OpenVXML Studio5: This platform includes configurable built-in modules, similar
to some of the templates included in our development platform, which provide the main
functionalities supported by the VoiceXML language. Each time a module is used, the
visual interface allows the designer to set it up. However, the system only proposes
default values when configuring the modules and not state dependent values as we do.
In order to reduce the amount of information displayed in the workspace, the GUI uses
multiple parallel canvases and a special kind of connector between canvases called
wormholes. Our platform includes a similar functionality, as well as the possibility of
encapsulating dialog actions in order to provide basic or detailed information

On the other hand, the platform incorporates the concept of Business Objects that
represent the fields of the database that the designer defines as necessary for the current
service (a similar concept to the classes and attributes used in our platform, see section
3.1.1). These objects are used later, among others, during the definition of the database
queries to retrieve complex objects. At design time, the platform asks the developer to
match each particular attribute of the object to a dialog variable that is used to provide
the information retrieved from the database to the user. In our platform, we follow a
similar approach but we go a step forward by creating a semi-automatic procedure that
proposes the best matching, which automatically creates the dialog variables (see
section 3.2.2). Finally, the platform accelerates the creation of system prompts allowing
the designer to type in the words that make up the message and then complete it by

4 http://www.speechvillage.com/home/
5 http://www.eclipse.org/vtp/openvxml-announce/content/html/index.htm

using dynamic values stored in the dialog variables following a procedure similar to the
one we have implemented in our platform (see section 3.3).

Vocalocity App Center6: This platform provides several configurable object-models
that can be connected to each other through conditioned or direct transitions. Each
object includes its own kind of configurable parameter and may have one or several
outputs depending on its configuration for error handling or if there are different output
results. The most interesting feature of the platform is that the design of almost any
basic service can be specified in four steps, i.e. dragging and dropping three objects into
the application canvas and connecting them sequentially. The first step, called the Ask
step, consists of the creation of an action for requesting information from the user. The
second step, called the Data step, represents the process of accessing and retrieving
information from the backend database. The third step, called the Tell step, corresponds
to the action of providing the retrieved information to the user. Finally, during the
fourth step, called the Publish step, the designer creates the VoiceXML script and
configures the platform in order to make the service available. In our platform we have
developed a very similar approach where most of the actions required to define a dialog
correspond to the first three steps described above (see section 3.2.2) and the final script
is also automatically created.

��� ������
�
���
��������
���	���� �

In contrast to most commercial platforms, academic and research platforms allow
designers to create more complex dialog interactions by providing features not included
in any standard description language. They also allow the creation of more complex
dialogs, some are freely available as open source, and their functionalities can be
extended by using proprietary or third party modules. The following are noteworthy
examples of tools developed in academic environments.

DialogStudio: Described in detail in [Jung et al, 2008], this platform integrates
several tools that cover the different steps in designing a data-driven spoken dialog
system, i.e. from preparing the data to testing the service. One of the main objectives of
the platform is to provide a complete set of functionalities for preparing the input files
to be used by the speech recognizer, language understanding, and dialog manager
modules. The platform also provides an annotation environment for tagging semantic
and knowledge information, as well as dialog examples; in this case, the platform uses a
meta-model language that allows the quick definition and adaptation of semantic and
dialog structures to domain specific knowledge. Thanks to these accelerations the
platform also provides an average time reduction of 30% when compared to other
editors on the creation and annotation of different tasks.

CSLU RAD Toolkit7: Allows the development of multimodal system initiative
dialogs (combining voice, DTMF, interactive images, and animated agents), by using a
representation based on state-transition networks [McTear, 1998] that describe the
different functions and actions in the dialog. The states and transitions of the dialog
flow are created using a toolbar with objects that can be dragged and dropped into the
canvas and connected with arrows to other objects. The toolkit reduces the information
displayed on the canvas by grouping repetitive or common actions. The toolkit includes
embedded configurable speech recognition and text-to-speech systems, and an animated
agent with configurable and synchronizable facial expressions (i.e. the face/lip
movements of the agent can be aligned with the speech prompt).

6 http://www.vocalocity.com/products/productdetail.cfm?productid=100007
7 http://cslu.cse.ogi.edu/toolkit/

Finally, [Paternò and Sisti, 2010] describe an integrated environment for designing
ubiquitous multi-device dialog applications. One of the main advantages of this
platform is the use of a high-level definition language that can be automatically
transformed using XLST sheets into the corresponding script for each modality (e.g.
VoiceXML for speech or any Web-based standard). For the speech modality, this
language allows designers to specify all of the typical actions and elements included in
the VoiceXML standard, for instance: menu-based dialogs, grammars, error recovery,
prompts, recordings, fields, scripts, etc. In our platform we have developed a similar
high level XML syntax that is also automatically transformed into the final VoiceXML
script used by the runtime system (see the beginning of section 3). They also describe in
this paper interesting solutions to support the same kind of user interaction provided in
visual interfaces (e.g. Web) such as: spin boxes or multiple vocal selections by using
only elements supported in the VoiceXML standard. In this paper, we also describe
similar solutions in our platform to allow over-answering dialogs or to jump back to
previous dialogs in the flow.

��� ��������
���	���� �
	��	
����
��
���
�	��
�
����
���
��

As we have already said, surprisingly most of the aforementioned commercial and
academic platforms do not include any kind of acceleration based on the content and
structure of the backend database, which provide important information to accelerate the
design when developing the dialog service. This section describes examples of the most
relevant systems and strategies that we can find in the literature based on using the
database contents to accelerate the design of the dialog applications.

In [Polifroni et al, 2003] and [Polifroni and Walker, 2006] a rapid development
environment for creating spoken dialog applications using online content is described.
The development process starts by extracting knowledge from various Web applications
and composing a dynamic database from it. The dialog flow is determined at runtime
depending on the content of this database. The authors propose a methodology for
creating automatic clusters that group together and organize numerical data into
symbolic data. Thus a symbolic concept such as cheap/medium/expensive in the domain
of a hotel reservation is automatically created according to the information in the
database (i.e. hotel rates vary depending on the city). At runtime, the system also
summarizes the partially retrieved information and dynamically creates the prompts to
present it to the users, determining at the same time the order in which they appear
based on the most useful set of attributes to narrow down the current data subset.

In [Chung, 2004], the database content is used together with a simulation system in
order to generate thousands of unique dialogs that can be used to train the speech
recognizer and understanding module, as well as diagnosing the system behavior
against problematic user interactions or unexpected user answers, etc. In [Wang and
Acero, 2006], the database contents are used to accelerate the creation of grammars for
the speech recognition and spoken language understanding modules. The system uses
the database to generate a large number of artificial sentences that are integrated into
semantic frames in order to create customized grammars for different scenarios.

[Feng et al, 2003] present a different approach. In this case, they do not extract
information from a backend database but they apply data mining techniques to the
content of corporate websites for automatically creating spoken and text-based dialog
applications for customer care. The process is carried out through a Website analyzer
that exploits the content and structure of the site in order to generate structured and
semi-structured task data. Then, the generated data is classified according to predefined
information units (e.g. menu, question-answer, topic-explanation, etc.). With this

information, the dialog manager, at the runtime system, will identify the focus or
expectation of the user question and will provide a concise answer. Although the dialog
flow is not defined using a GUI, it checks that important knowledge for the different
modules of a dialog system can be extracted from well-designed contents.

3 PLATFORM ARCHITECTURE
Figure 1 shows the architecture and information flow between the modules of the

platform described in this paper. The platform includes several independent modules
that have been integrated into a common GUI to guide the designer in the design, step
by step, and at the same time, let him go back and forth. The platform is divided into
three main layers in order to separate the aspects that are service specific, those
corresponding to the high-level dialog flow of the application (modality and language
independent), and the specific details imposed by the speech modality and languages.

Figure 1. Summarized version of the Platform architecture

On the other hand, it is important to mention that in order to allow the sharing of
information between modules in the platform and to facilitate the process of converting
the generated model into the corresponding script required for different modalities, we
have developed an object oriented XML language named GDialogXML [Schubert et al,
2005]. The main feature of this specification is its flexibility, allowing the modeling of
all application data, database access functions, definition of dialog variables and actions
needed at each state, system prompts, grammars, user models, etc. The syntax also
allows the updating to new versions of the VoiceXML standard with little effort since
the platform includes an automatic translator module that can be modified accordingly.
Throughout the paper we will include fragments of the generated code for the assistants

giving suitable explanations of them; however, the complete specification can be
consulted in [GEMINI, 2010]. In order to clarify the design process, the assistant
functionalities, and the proposed acceleration strategies throughout this section we are
also going to use a running example to show the process of creating a typical dialog
where one of the goals is to perform a bank transfer between accounts by asking the
user for a known and customized alias of the source account and destination account,
and the amount of money to be transferred.

��� ��������	
���
 	�
 	��
 ���
�
	
��
 ��
 	��
 ��	�
 � ����
 ���
 ��	�����

������

Following the diagram in Figure 1, first the designer needs to specify the overall
aspects of the service and data. For instance, in the first assistant, the designer defines
general default values for the speech modality such as the number of results to be
provided, number of times to repeat a question before redirecting the call to an operator,
confidence values for different kinds of confirmations, languages of the service, etc.

����� ����	
��
��
	��
��	�
�����
�	� �	 ��

The next step is to specify the database structure by using an object-oriented Data
Model representation using classes, attributes, and relationships (see Figure 2). The idea
of these classes and attributes is to allow designers to provide information to the
assistants as to which fields in the database are relevant for the service (i.e. to provide or
request information to/from the users), as well as the relationships between the
attributes and the table and field that they refer to in the backend database.

Figure 2. Example of Object Oriented Classes in the Data Model

In the figure we can see that the Transaction class includes three attributes
corresponding to the information required to carry out the transfer: the
TransactionAmount (defined using a basic type, i.e. Float) and two object references to
the class Account that the system will use to have access to the account alias

(AccountAlias) and the available balance before or after carrying out the transfer
(AvailableBalance). The class Account also includes other information such as
references to other complex classes not shown in the figure. The figure also shows a
section of the GDialogXML code for the classes (number 1) and attributes in the
example, as well as information on the database table and its related fields (number 2,
i.e. table accounts and field account_alias).

In order to define the classes and attributes, the assistant includes a wizard window
that allows the designer to select from all the tables and fields in the database and which
ones to use. After selecting the fields, the assistant automatically sets the field type,
name, and relationship to the database for each new attribute.

As well as the definition of the data model structure, the assistant uses an open SQL
statement to extract information from the database contents such as the name and
number of the tables, fields, and records. In addition, the following heuristic
information for each field is also calculated: a) field type, b) average length in
characters, c) number of empty records, d) language dependent fields, e) proportion of
records that are different, f) number of different words (i.e. vocabulary), g) average
number of words, h) average length of the words, and i) number of different records.
This information is used afterwards to simplify the design or to improve the
presentation of information in later assistants. For instance, when using the wizard
window to define the data model classes, the system uses these heuristics to reduce and
sort by relevance the fields that can be used to define the class attributes. Thus, if we
have a field in a table with a high number of empty values or if the field type is
considered complex (e.g. URL addresses, bitmaps, auto-incremented fields), or the field
has a long number of words (e.g. as in a memo type field) they will not be shown since
they are not usually used in speech applications. We also use them to propose which
slots can be unified in order to be requested at the same time by the user (see section
3.2.1), or for creating automatic dialog proposals (see section 3.2.2).

����� ����	
��
��
��	�����
������
! ��	
���

The next assistant in the platform is used to define the prototypes of the database
access functions needed for the real-time system. The advantage of using prototypes is
that their actual implementation is not required during the design of the dialog flow. The
main acceleration strategy included in this assistant is the possibility of relating the
input/output arguments to the attributes and classes of the data model.

Figure 3 shows the XML code and a section of the assistant window to define the
input and output arguments of the function prototype. In the figure, number 1
corresponds to the input arguments (i.e. account aliases and amount to transfer) and
number 2 the output argument (i.e. the available balance after carrying out the transfer).
Number 3 and 4 are the information on the related class and attribute in the data model
(Account.AccountAlias) and the relationship to the table and field in the database
(accounts.account_alias). This information is then used to create dialog/state proposals
and to propose database access functions automatically for a given dialog in the design
(see section 3.2.2).

Figure 3. Example of a database access function prototype

We have also included a wizard window that semi-automatically creates the SQL
statements for the given prototype and provides a preview of the results that the system
would retrieve in the real-time system (see Figure 4), thus reducing the need to learn a
new programming language (SQL), and simplifying the inclusion of the generated
query in the Java servlet created for accessing the database at runtime. Currently, few
development platforms include this kind of help. The few platforms that include a
similar SQL wizard only provide debugging tools or support for many query language
standards but no automatic query proposals.

For creating the SQL query, the assistant uses the output arguments (defined in the
function prototype) as returned fields for the SELECT/UPDATE clause, and the input
arguments as constraints for the WHERE clause. During this process, the wizard uses
the heuristic field type in order to propose and debug the SQL statement correctly (i.e.
the statement to retrieve the information from a string field is different from the one
used to retrieve a number). Since the input/output arguments could be defined using
different types (i.e. atomic or object oriented), several strategies are applied in order to
create SQL queries that can use such kind of parameters. For instance, if the argument is
atomic the query uses the argument directly, but if the argument is an object the system
flattens it and provides a list with only the atomic elements allowing the designer to
select which ones to use in the SQL query from that class.

Moreover, the assistant allows the inclusion of new input or output arguments if the
function prototype is not complete or if the designer wants to test new combinations of
arguments. The assistant also allows the inclusion of several constraints supported by
the SQL language such as math functions (average, max, min, etc.), sorting, selection
(Top or Distinct), clustering (Group By), Boolean operators (And, Or) for combining
the query restrictions, among others. Finally, the wizard allows the designer to preview
the records that the proposed SQL statement will retrieve in real-time. In order to debug
the query, the designer specifies the values for the input arguments of the function,
using a pop-up window, to test the query (for acceleration, the wizard automatically
proposes the most common values for the given field in the database using the heuristic
information).

Figure 4. Wizard window for the automatic creation and testing of SQL queries

��� ��������	
���
	�
	��
���
�
	
��
��
	��
�
����
!��"

The following step in the design is to define the dialog flow at a high-level, i.e.
without specific language or modality information. The first assistant is used to define
the states, transitions between states, and the compulsory information that has to be
asked to the users at each state (which we call slots). Then, in the second assistant, the
designer defines all the actions (e.g., variables, math or string operations, conditions for
making transitions between states, calls to dialogs to provide/obtain information to/from
the user) to be done in each state defined previously. Thanks to this two-step process,
the specification of all the detailed actions in the last assistant is accelerated
considerably. Since these assistants are the most complex ones, here we have
incorporated the most important accelerations. Below we will describe the most
interesting ones. For further details please refer to [D’Haro et al, 2006] and [D'Haro et
al, 2009].

����� ����	
��
��
	��
�
����
!��"

There are currently two major kinds of dialog models: Non-structured and
Structured. In the former, the model allows the highest degree of freedom interaction
between the user and the system, since both of them are able to reason and to negotiate
the goals and information. In the latter, the dialog follows predefined paths; here the
richness of the dialog is limited because of the current limitations of the technology (i.e.
speech recognizers, understanding modules, and language generation). On the other

hand, structured models can be divided into two major categories: Finite-state (where
the dialog is expressed as a state-transition network that is naturally and easily
represented using a graphical interface) and Frame-based models (that follow the form-
filling concept in which predetermined information is required to be filled in from the
users) which is the only one supported by VoiceXML.

In our platform we have followed, in order to display and define the dialog flow, the
same kind of representation used in most of the current development platforms, i.e. a
state transition network that is made up of different states (forms or frames in
VoiceXML) consisting of several pieces of information that have to be filled in (i.e.
slots). The GUI allows the definition of new states by using wizard-driven steps and a
drag-and-drop interface. Below, we describe the most important accelerations included
these assistants.

Figure 5. Example of creation of a state with mixed-initiative

Reduction of the confusability in the canvas: In this assistant we have

implemented an automatic algorithm that helps the designer place the objects on the
canvas in order to reduce the visualization problems produced when all the transitions
between states are displayed. Here we have used the main idea incorporated into the
OpenVXML Studio platform (see section 2.1), i.e. using connectors between states
when they are far from each other (i.e. circles in Figure 5). The proposed algorithm
detects when to use connectors or solid lines to represent the transition between states.
The final decision depends on two factors: a) the distance in pixels between the
connected states in the GUI, and b) the number and size of the objects that are along the
path of the connection line. Thus, for instance, if the distance is longer than one third of

the size of the canvas or if when placing a solid line the number of objects that collide
with the candidate line is greater than two, then the system uses the connectors (see
circles with number 8 in Figure 5). The direction of the flow is indicated using arrows;
in number 4, we can see that the TransactionDialog and AskOtherTransaction states are
linked together with a forward and backward arrow that indicates the possibility of
returning back from the latter to the former. Finally, the GUI allows the possibility of
quickly finding states by name or by clicking the connector to go to the connecting
state.

Automatic State Proposals: In order to accelerate the creation of the states we have
included several configurable state templates, available in a floating window through
the GUI, that include the information as to the slots to be requested to the user at each
state. Three kinds of proposal state templates are available: a) Created from the classes
in the data model, b) Created from attributes with database dependency, and c) Created
from the database access functions. In detail, the first kind of template is created for
each class defined in the data model. When these templates are used, the assistant
allows the designer to select which attributes to use as definitive slots in the new state.
Italso expands complex attributes (with inheritance and objects) allowing only the
selection of atomic attributes because only these can be asked to the user in the real time
system. The second kind of template is created from any attribute defined in the data
model related to a database field only if it has been used as an input argument in any of
the database access functions. The main motivation for proposing these states is that
these attributes are very likely to be asked to the user. The proposed states contain only
one slot and its name corresponds to the name of the attribute in the data model.
However, the designer can select several states before doing the drag and drop and
allowing the creation of states with multiple slots (as we can see in Figure 5 in numbers
1 and 2). Finally, for the third kind of template the system analyzes all the prototypes of
the database functions containing input arguments defined as atomic types. Then, the
system uses the name of the function as proposal for the name of the state, and the input
arguments as slots for that state. Figure 5 shows an example of the floating window
with the template proposals (number 1) and how the designer, for the current example,
selects three attributes with database dependency (i.e. state_TransactionAmount,
state_DebitAccountAlias, and state_CreditAccountAlias), and then the three attributes to
be used as slots (number 2) in the new state TransactionDialog (number 4).

Automatic Proposal of Unifying Slots: This is one of the most innovative
accelerations since the system suggests when two or more slots in the state must be
requested one by one (using directed forms) or together (using mixed initiative forms)
according to the VoiceXML standard. The main goals of this functionality are: a) to
improve the performance of the speech recognition system by avoiding difficult data to
be asked simultaneously (e.g. two dates, long number, or fields with a high vocabulary),
therefore increasing the time users spend with the system due to confirmations, b) to
increase user satisfaction by allowing them to answer system prompts by using more
natural expressions, and c) to provide an objective criteria for selecting the slots that can
be especially useful for designers with a reduced knowledge of speech technologies.

The proposal is based on the heuristic information extracted from the database
contents related to the corresponding slots to ask to the user and on a set of predefined,
but editable, rules included in the platform from our knowledge by carrying out dialog
applications and from known guidelines in this area [Balentine and Morgan, 2001]. In
total, we provide a list of 30 different rules (16 for allowing mixed-initiative and 14 for
using directed forms) that ranges from analyzing from two to three slots with different
field types (e.g. three strings, one string and one integer, two dates, two floats). Thus,

for instance, if we need to ask for two numeric data with a proportion of different values
close to one (heuristic e in section 3.1.1), and the total number of records of both fields
is high (heuristic i), then the system determines that these slots have a large vocabulary
and a high probability of misrecognition, therefore it is better to ask one slot at a time
(i.e. directed forms). In another rule, mixed initiative is not allowed if there are two slots
defined as strings (heuristic a) and the sum of the average length of both is longer than
30 characters (heuristic b). In this case, the system tries to avoid the recognition of very
long sentences. Finally, an example of a rule that allows mixed-initiative is when we
have two slots (one string and the other float) but the vocabulary size of both fields is no
larger than 2,000 words (configurable value). The assistant includes a rule editor that
the designer can use to add, edit, delete or disable rules. In addition, the editor allows
the designer to export or import a rule file in order to be able to include rules that have
been successfully used in previous applications.

In Figure 5 we see an example where the designer is trying to create a state for
carrying out a banking transaction, where three slots are needed: debitAccountAlias
(string), creditAccountAlias (string), and transactionAmount (float) in accordance with
the heuristics of each one and the predefined set of rules, the system shows a list with
different kind of unifications for these slots (number 3). By default the assistant selects
the option that covers the higher number of slots at the same time (i.e. second option in
the figure); however, the designer can choose another one (i.e. selecting the third option
as in the figure).

����� ���
�
	
��
��
�
����
��	
���

The next step in the design is to define the actions to be carried out at each of the
previously-defined states. Here, for instance, the designer specifies the control logic
within each state and the conditions to jump to other dialogs, the dialogs to ask for or to
show information from or to the users, the slots that can be filled by using over-
answering dialogs, the functions to be used each time to retrieve or modify information
in the database, the procedures to modify dialog variables (e.g. using math or string
operations), etc. Below only three of the most important accelerations in this assistant
are described; for other strategies or further details please refer to [D’Haro et al, 2006].

Automatic dialog template proposals: the first time the assistant is started it
analyzes the data model information in order to create automatically, from all attributes
defined as atomic types, configurable and generic dialog templates that can be used to
request or provide information to the user (with prefix DGets and DSays respectively) at
any time in the design. If the attributes are complex or include object inheritance, the
assistant provides configurable DSay dialogs by using a template that shows the class
and its attributes, expanding the complex attributes (with inheritance and objects) and
selecting any attribute that will form part of the prompt. The assistant does not generate
DGet dialogs from these complex classes since they cannot be requested from the users
in real-time (i.e. users can only fill in information about atomic attributes). Other DSay
dialog templates are also available: generic DSay to provide concepts (useful in case of
providing help to the users), configurable DSay to present variables from a dialog, DSay
to present lists of objects retrieved from the database, and predefined DSay such as:
Welcome, Goodbye, Transfer to operator, etc. All these dialogs are available to the
designer to be used at any time through a dockable toolbar near to the workspace. The
list of all the generated dialogs is then filtered in the next strategy in order to provide
relevant actions for defining each state.

Automatic action proposals for each state: The idea of this acceleration is to show
the designer in a single window all of the typical actions in an information retrieval
sequence required to complete a state, i.e. the dialogs to fill in the slots (DGet), the
function to carry out the database access, the dialog used to show the results (DSay) and
the conditions to jump to following states (similar to the steps proposed in the
Vocalocity platform, section 2.1).

Figure 6. Window with proposal of actions to complete a state

Figure 6 shows the proposals for the state that carries out a transaction between two

accounts. By using this window the designer would only need to drag and drop into the
state edition window (not shown in the figure) first the mixed-initiative template
(DGet_Mixed_Initiative_Template) in order to request both account aliases, then the
dialog to ask for the amount (DGet_TransactionAmount), then the database access
function (PerformTransaction), and finally the dialog to inform the user of the available
balance (DSay_AvailableBalance).

In order to decide which actions are relevant, the wizard applies the following rules:
A. For the selection of the DGet dialogs: the system filters out the list of automatic

dialog templates (mentioned above) by selecting only those that have the same
data model relationship (i.e. from the same attribute or database information) as
the slots to be filled in in the current state; if the filtered list is empty, the system
searches similarities in the name or attribute type.

B. For selecting the database access functions: the system first considers functions
with the same number and type of input parameters as the defined slots for the
current state. The next criterion is to apply a partial matching in the number of

arguments but maintaining the same relationship with the data model. Finally, the
relaxed criterion is to find functions with similar names or arguments to the slots
and dialog. If even with the relaxed filter no function is selected/proposed, it
would probably mean that there is no database access function suitable for that
state. Therefore, the assistant offers the possibility of going back to the assistant
for creating a database function and then reload the proposals.

C. For selecting the DSay dialogs the system uses the same procedure as for the
DGet dialogs; here we also include DSays specific to the values returned by the
database functions selected in the previous step.

D. For selecting the dialogs and slots to jump to: the system directly uses the
information from the dialog flow. The information about slots in the following
states is used to allow the designer to create dialogs with over-answering.

Creation of Over-answering and Mixed-Initiative dialogs: As we mentioned in
section 2, current development platforms include the possibility of creating mixed-
initiative dialogs since this is compulsory in the VoiceXML standard. However, in our
platform we have included the possibility of creating over-answering dialogs by
creating a special flow using standard elements in VoiceXML (i.e. form, initial, block,
goto, and if conditions). First we will briefly explain the procedure to create these
dialogs and then the special flow designed to overcome the limitations of VoiceXML.

A. Mixed-Initiative: the system offers a configurable template (see the square item
in the field for dialogs to ask information to the user in Figure 6) which the
designer can drag and drop over the dialog that is being edited. The template
shows the slots specified to be requested using mixed-initiative for the current
state. In addition, the template gives the possibility of adding optional slots to be
used for over-answering at the same time. With this information, the system
generates the same flow proposed in the VoiceXML standard for mixed initiative
dialogs by using the GDialogXML syntax (i.e. a form tag containing one initial
element for asking for several slots at the same time, then one field tag for each
slot in order to handle the situation in which the user answers partially or only
some of the slots are filled after the recognition, so the system has to ask again
for unsolved slots, and handle the keeping of the optional slots when they are
input by the user).

B. Over-Answering: when the designer drops any DGet dialog, the system shows a
pop-up window to allow additional slots to be selected as over-answering from
the current state and slots from the following states in the flow (with a limit of
two in the hierarchy). By default, the slots defined as optional in the previous
assistant are automatically converted into over-answering slots here.

In order to define the special logic for allowing over-answering in the VoiceXML
script the system checks, before any call to a DGet dialog, whether the data to be asked
for has been already obtained in a previous state in the flow (as would be the case with
over-answering).

Figure 7 shows an example of the VoiceXML script and the logic created to support
over-answering dialogs. As we can see, the proposed flow only uses elements supported
by the standard although the code is a little more elaborated. In the example, the system
requests the credit account alias as a compulsory slot and the transfer amount as an
optional slot. In number 1 we define both slots as global variables in order to allow the
slots to be filled in at any state and document, or to allow jumping back to previous
states in the flow. Then in the form (number 2 and 3) we declare local variables to have
a copy of the values stored in the global variables. In number 4 we define a block that
analyzes whether the compulsory slot has been previously filled in or not (i.e. it is

possible that in the previous dialog we allowed this compulsory slot to be an optional
one at that state and the user filled in at that time). If that the slot is empty, the system
will try to fill it in by using the same approach as a mixed initiative dialog (number 5,
using the initial tag); if the slot is already filled in then we exit the form. In number 6
the system tries to fill in the slot by using a direct dialog if the mixed-initiative one fails.
In number 7 we can see a block that analyzes whether the optional slot is empty or not.
Ifit is, a Boolean variable is set to false in order to forbid this slot to be filled in at this
state (number 8, use a conditional field based on the value of the Boolean variable).
Finally, in number 9, the global variables are set using the local variables and the state
jumps to the next state (i.e. DGetTransferAmmount).

Figure 7. Example of VoiceXML generated for a dialog with over-answering

Passing of arguments between actions is automated: Finally, another important

action that the designer has to carry out in this assistant is the connection of input and

output parameters for database access functions or dialogs with existing dialog
variables. For instance, the designer needs to connect the variable that returns the
available amount after carrying out the transaction with the local variable of the dialog
that shows this information to the user. In order to automate this connection, the
assistant detects the input/output variables required in each action and, by using a popup
window, it offers the most suitable existing variables of a compatible type; if there is
more than one variable to offer, the assistant sorts them according to the name similarity
between variable and dialog. If there is no compatible variable already defined or the
name proposed by the assistant is not desired, the system allows the creation of a new
local or global variable. The assistant includes an edition window in case the designer
makes a mistake or needs to modify the matching made in the previous steps.

Other accelerations and capabilities: In addition to the strategies mentioned above,
the platform provides four basic dialog types that cover the usual possibilities in
programming: based on a loop, on a sequence of actions (or sub-dialogs), a switch
construct based on information input by the user (i.e. menu-based dialog), or a switch
construct based on the value of a variable. Empty dialogs, with no action inside, can
also be created (used to specify the call to a dialog that will be defined completely
afterwards) so that a top-down design of dialogs can be made; in this case, the dialog
type is selected whenever the designer tries to edit the empty dialog. Another possibility
is dialog cloning, useful when the dialog to be defined is very similar to an existing one.
On the other hand, given the large amount of actions that can be carried out in each
state, the assistant allows the creation/edition local/global variables/constants, the
creation of if-then-else structures, selection structures (switch-case), loops (for, while),
assignments between simple and complex (objects) variables, and an assistant for
mathematical operations and another one for strings.

We have also included some useful characteristics in the GUI, such as hotkeys for
accessing the most common functionalities of the assistant, different colours for
distinguishing each kind of dialog (i.e. already filled in, empty, DSay or DGet dialogs,
etc.). In order to reduce the number of dialogs shown in the canvas the designer can also
switch between a basic presentation of the dialog or a more detailed visual/textual flow
(i.e., including internal information about variables, dialogs that are called from or call
the current one, type, etc.). There is also a method to display the contents of complex or
nested actions contained in a dialog using tooltips, which helps the designer in their
interpretation, thus avoiding the need to open or edit them.

��� ��������	
���
 	�
	��
���
�
	
��
��
 ����
�
�
��	�
��
���
 	��
 ������

� ����
	#

The next assistants in the platform allow the designer to specify detailed information
for each language and modality. For instance, it is necessary to specify the dialog flow
used to present, using the speech modality, the list of retrieved results after querying the
database (e.g. the last movements in an account or the last credit card bill), the dialogs
to confirm user answers, the speech recognition grammars, or prompts in different
languages. In order to accelerate some of these steps we have defined the following
strategies:

Presentation of Object Lists: These lists are the result of retrieving information
from the database that need to be provided to the user in small groups since in the
speech modality it is not convenient to present all of the items at the same time. In our
platform we have incorporated a wizard window to specify the actions that have to be
carried out by considering the different cases that can result depending on the number of
items on the list (i.e. the list is empty, the list has one item, the list has more than one

item and less than a maximum allowed, and the list has more items than the maximum
allowed). For each case, a simple form-filling window allows the designer to specify the
actions that have to be carried out. After filling out the four forms, all the actions and
new dialogs needed are automatically generated. The assistant also proposes the most
reasonable default values to fill in the forms.

Confirmation handling: One of the main problems in a spoken dialog system is
how to cope with the speech recognition errors due to differences in the speaker voices,
environments, channels, noises, etc. One possible solution would be to request the user
to confirm the recognized information each time. However, this is not practical since it
would extend the dialog time and it would decrease user satisfaction. One solution is to
use the confidence level provided by the speech recognition. Thus, if the value is near to
1 then the recognition is very reliable and if it is near to 0 then the recognition should be
rejected. It is usual to define four confirmation types: a) no confirmation (i.e. the
confidence is high, the recognition is accepted as valid), b) implicit confirmation (i.e.
the system provides the recognition result to the user as a fact in the next dialog turn,
speeding up the dialog, e.g. “You want to travel to London. When do you intend to
leave?” The user can say “no” or “cancel” at that point to go back in the dialog if
London was not the intended destination), c) Explicit confirmation (i.e. the best option

is to ask the user if the result is correct, e.g. Do you mean London? to confirm that
London is the intended destination), and d) reject (i.e. The confidence level is extremely
low, so the result is clearly unreliable. The system rejects it and asks it again). Although
VoiceXML specifies all the required variables and flow to access the confidence values
and to handle each situation, in practice designers do not use all of them, i.e. only
supporting no confirmation and rejection, since the definition of the flow for each case
is a laborious task. In order to allow them all, in our platform, we have incorporated an
assistant that analyses the flow and automatically provides the logic for the four
confirmation types. The assistant also detects the states that cannot allow the four
confirmation types. For instance, for requesting a yes or no answer, we only need the no
confirmation or rejection level (i.e. we need a high confidence level only), or in the
states that carry out the database access the system does not allow implicit confirmation
since it cannot wait for a user confirmation in the following state since the access has to
be carried out in the current one.

Setting of system prompts: For the speech modality, a high number of prompts for
each kind of dialog (e.g. DGet, DSay, or for providing contextual help) have to be
defined. The designer also needs to take into account the different user levels (i.e.
novice, intermediate, advance), all possible recognition errors (no input, no match,
service timeout, etc.), and the number of times that the assistant allows every error to
occur (e.g. 1, 2, 3) before transferring the call to an operator or exiting. To speed up the
process of typing all these prompts, the assistant offers three possibilities: 1) reuse
prompts already available for the current application, 2) reuse prompts generated in
previous applications and saved as libraries, or 3) reuse wording libraries saved from
previous applications. The assistant also allows the designer to use SSML tags to
control the voice (e.g. break duration, pitch, rate, volume), as well as the possibility of
including audio files in order to allow hybrid prompts. Finally, the system allows the
designer to select the arguments of the dialog to be inserted into the prompt.

��$ ��	����	
��
�#�	��

In order to allow the manual creation and fine tuning edition of the different models
and libraries generated by the assistants, the platform includes a built-in editor called

Diagen [Hamerich, 2008]. The main acceleration included is the possibility of creating
any section of the specification with minimum effort, so instead of typing all the tags
nodes and children in the XML code, the assistant uses a set of pop-up windows that are
sequentially displayed in accordance with the information that the designer needs to
specify.

Figure 8 shows an example of the process for adding a dialog and a global variable
into the dialog flow. According to this figure, in (number 1) the designer specifies that
two elements are going to be added. After accepting, a new pop-up window is displayed
(number 2) allowing the designer to specify the information for the global variable to be
added. In order to add new variables, the designer only needs to check the
corresponding checkbox (i.e. Enter another variable) and a similar pop-up window will
be displayed after accepting the current one. The next step (number 3) is the definition
of the dialog state and the relevant information for this dialog. In the example, the
designer selects the specification of the help concept defined by using the pop-up
window marked as number 4. A similar procedure allows the incorporation of different
elements such as variables, calls, help messages, reactions, etc. After finishing the
process, the system automatically pastes the GDialogXML code into the editor (number
5).

Figure 8. Process for creating a dialog in GDialogXML using Diagen

4 EVALUATION OF THE ACCELERATION TECHNIQUES
In order to implement the acceleration strategies described above successfully, two

kinds of evaluations were carried out: a formative and a summative one. In order to
carry out the former, since the platform is made up of different assistants and several
programmers were working on them, each member of the programmer team was given
the role of evaluating one or two assistants different to the one that they were working
on. Thus, every time that one of the teams released a new version of the assistants, the
other team responsible for evaluating it spent some time testing the GUI, the new
accelerations, discovering bugs, and providing the respective feedback. As this process
was continuously done throughout the platform development, as well as the periodical
changes in the members of the teams, we could guarantee diversity of feedbacks and
permanent improvements. As regards the second kind of evaluation, we carried out two:
one at the end of the GEMINI project, and another one after incorporating the new
accelerations based on the database content together with some improvements that we
made following the advice from the first evaluation. Below we explain both, providing
further details for the latter.

Right at the end of the GEMINI project, we carried out a summative evaluation with
more than 40 developers in order to test a) the friendliness of each assistant in the
platform and the whole platform interface, b) the complexity and time required to learn
to use each assistant and the whole platform, c) the level of functionality of each
assistant, d) the level of consistency, transparency, and intuitiveness of each assistant,
and e) the willingness of the evaluators to use the platform to develop dialog
applications. During this evaluation, a complete dialog application was carried out,
allowing us to know the amount of time the evaluators spent on using and learning the
application, as well as different recommended improvements in terms of accelerations
and GUI. For instance, the testers suggested a new GUI for the assistant used to define
the states of the dialog in order to allow the quick inspection of the whole flow as well
as the creation of the states and transitions, or to include a new wizard window to create
complex classes in the data model quickly (for further details please refer to [D’Haro et
al, 2006] and [D'Haro, 2009]).

Taking into account these suggestions and after incorporating the accelerations based
on the database content information in certain assistants, we decided to do a new
summative evaluation by introducing some modifications into the survey in order to
give more weight to the evaluation of the acceleration techniques this time instead of the
whole platform or a final service since it was checked in the previous evaluation. The
subjects for the new evaluation were undergraduate students and teachers from our
university with experience in at least one programming language and a minimum
knowledge of the technologies and processes required for designing dialog applications.
The total number of participants was 9 who were classified, according to their
knowledge and experience on developing spoken dialog services, in the following three
levels: novice (4), intermediate (3), and expert (2). From this group, only three
participants had some knowledge of the platform.

In order to provide the same information about the platform and the test all of the
participants, the evaluation was carried out at the same time for all of them. Then, each
evaluator was placed alone at a computer with all of the software required for running
the platform and collecting the information. In addition, each evaluator received a short
handbook with more information about the platform, assistants, accelerations and
examples that they could consult at any time.

The evaluation was made in two sections of 4 hours each. During the first session,
the evaluators received a complete explanation of the whole platform, the goals of the

evaluation, and the interfaces used to get the statistics. Finally, they also received
instructions and evaluated the assistants used to specify the data model structure
(DMA), database access functions (DCMA), and state flow model (SFMA). During the
second session, the evaluators finished the evaluation of the SFMA and learnt how to
use and evaluate the assistants to specify the actions to be carried out at each state
(RMA). In turn, the evaluation of each assistant was divided into three main blocks: in
the first one, the evaluators received instructions as to the capabilities and accelerations
included in the corresponding assistant through examples of use. In the second block,
the evaluators carried out an example task that was useful to answer their doubts about
the assistant and to let them gain some practice. Finally, during the third block, the
objective evaluation was carried out and eventually the evaluators were requested to fill
in the subjective evaluation survey. The next sub-sections present full details of both
evaluations.

$�� %�&��	
��
'��� �	
��

For this evaluation we proposed that the participants perform predefined typical tasks
when designing dialog applications using our assistants and then to compare them with
an alternative assistant that included fewer accelerations. In order to compare the
performance of the evaluators using any of the v, we defined a set of quantitative
measures that were collected using a background process during the time that the
evaluators carried out the proposed tasks.

Up to the best of our knowledge, there is no current standard method for evaluating
and comparing this kind of development platforms and their acceleration strategies. In
[Jung et al, 2008] they describe DialogStudio, a development platform with some
similarities to ours (see section 2.2); in order to evaluate this platform and its
accelerations, they proposed a set of quantitative measures when performing different
tasks that the evaluators had to carry out and then to compare it when the same
evaluators build the same tasks but using an open text editor chosen by each participant.
During the evaluation, different objective metrics were measured such as mouse clicks,
keystrokes, and elapsed time.

For evaluating our platform, we decided to do a similar assessment by introducing
the following changes: 1) First, we included as new objective metric, the number of
keystroke errors, i.e. the number of times the evaluator used any delete keys for
correcting mistakes in the design. The goal of this metric is twofold: a) to measure how
much the strategies help to reduce human mistakes, and b) to measure the difficulty of
introducing information into the assistants or writing the GDialogXML code. 2) Since
the development of a complete dialog application requires a lot of time, different areas
of knowledge, and dealing with many details (e.g. database, runtime platform,
debugger) we decided to propose the evaluators to perform only a reduced number of
tasks specifically selected for testing the most important accelerations and the most
complex assistants. 3) We decided to compare the quantitative measures by using our
platform with those obtained when annotating the same tasks in the internal language
format used by our platform by using our built-in editor (Diagen, see section 3.4). In
this case, the motivation for using the built-in editor instead of allowing the evaluators
to use any XML editor of their liking was to make a fairest comparison between both
applications. The advantages of using this editor are: a) it includes several accelerations
especially designed for writing the platform files, b) it also reduces the time required to
write the models in XML, and c) it reduces the need to memorise the XML
specification.

On the other hand, it is also important to mention that the main reasons for making
the comparison between the assistants and Diagen, instead of comparing them with
other development platforms, were that we could not find any commercial or academic
platform comparable to our platform. For instance, most of these platforms do not take
into account the Database information nor do they include all of the accelerations that
we wanted to evaluate. Most of the commercial platforms have an advanced graphical
interface which we were not interested in evaluating (although it is well known that the
appearance of the GUI has had a great influence on the evaluators). Finally, because
these platforms are optimized for building speech-based applications only , in our
platform, thanks to the separation of the assistants into the three layers, we have the
possibility of incorporating new modalities such as Web or avatars in future releases.

$���� '(���
� ��	��
��	 �

We have to take into account that since the evaluation that we did at the end of the
GEMINI project not all the assistants in the platform were improved with the
incorporation of the database content information. So, in the new evaluation we decided
to include only the following: DMA (definition of data model), DCMA (definition of
database access functions), SFMA (definition of states), and RMA (definition of dialog
actions). As we mentioned before, during this evaluation we collected several objective
measures that were obtained using a background process that could be started, paused,
or stopped (see Figure 9) to start testing the assistant or to pause/repeat the test. The
objective of this system was to capture all mouse and keyboard events, but only when
the mouse focus was on the platform assistants (i.e. we avoided counting as events, for
instance, the process of checking the tutorial manuals during the evaluation). Finally,
this system also started a parallel screen recorder application that recorded and saved all
the interaction of the evaluators with the application during the evaluation. These videos
were later reviewed in order to obtain a visual feedback of the process that the testers
followed to complete the tasks and to find out the main problems the testers found. We
also used them to find out whether the testers used the accelerations or not, together
with the steps that took most of the elapsed time during the evaluation.

Figure 9. Interface to control and display the metrics during the evaluation

As we can see in the Figure 9, the control interface allowed users to select the task to

evaluate (1), to start or stop the test (2 and 4), to save the measured metrics when the
evaluator was confident of having evaluated the step correctly (number 3), and to
display the collected metrics at each task (5, 6, and 7).

$���� ��������
	��)�

In order to test the accelerations, we defined a set of typical tasks that covers those
that have to be done at each assistant when creating a full application. Depending on the
number of accelerations to be evaluated, each assistant could have one or more tasks.
Below, we provide a detailed list of all the proposed tasks and accelerations involved.

For the process of creating the data model (DMA), we proposed that the evaluators
test two different tasks or cases: a) in the first one, they were requested to create a class
model with two atomic attributes. Both attributes were related to the database, and b) to
create a class structure, including two atomic attributes (both related to the database and
with language dependency) and one complex attribute (a list of embedded objects).

For the DCMA assistant, we proposed that the evaluators do one single task. It
consisted of creating a function with two input arguments and one output argument,
where all the parameters were related to the data model. The participants were also able
to test the functionality of creating and testing SQL statements.

For the assistant used to define the dialog states (SFMA), we proposed that the
testers carry out three steps: 1) Creation of a state with one slot related to the database.
Here the testers had the option of creating the state by using the proposal of automatic
states with slots or using an empty state template and then defining the slot and its
relationship to the database. b) Creation of a state with two slots, where both slots had
to be set up as mixed initiative, and then to define a transition to another state. This step
allowed the testers to check the automatic unification of slots to be requested by using
mixed-initiative dialogs and the automatic creation of an undefined state when it is
referred to as a transition state (i.e., top-down design); and c) the creation of a
connection between two states. This step allowed the testers to check some of the
functionalities included in the graphical user interface (see section 3.2.1).

For the complete definition of the actions to be carried out in each state (RMA), we
proposed three tasks: a) the creation of a typical menu-based dialog where the system
requests the users to select between three different kinds of information, and according
to the user selection to jump to the corresponding state. In this case, we evaluated the
proposals of actions and different kinds of dialogs allowed for the platform, b) the
creation of a dialog with over-answering and an IF-Then-Else condition. Here the
following accelerations were used: the dialog proposals window, the automatic
matching of arguments between actions, the procedure for including compulsory and
optional slots, and the possibility of defining different programming structures. And c)
the creation of the same running example in this paper, i.e. a mixed-initiative dialog for
carrying out a transaction between two accounts and the amount to be transferred, and
saving this amount in a global variable that was required to be created. This task
allowed the accelerations provided by the assistant to be tested for defining mixed-
initiative dialogs, for matching variables, the action proposals window, and the assistant
for defining local/global variables.

$���� ��� �	�

Before describing the results of the objective evaluation we want to mention two
important factors that should be kept in mind when making the comparison between
using the assistants and Diagen, the built-in editor. First, when we reviewed all the
recorded videos for Diagen testing, we observed that all of the evaluators were getting
used to the editor as the GUI and the procedure to use it were basically the same for all
the tasks, therefore the evaluators were working faster with it, but only in the two first

assistants as their model complexity is low. On the other hand, each time they were
requested to test the platform assistants they had to learn to use a new interface and new
accelerations. Finally, we also found out that the evaluators were spending a lot of time
reviewing the final state created using the platform in order to check whether it
corresponded to the one specified by the evaluation. Although this behavior is normal,
we observed that for Diagen they did not spend so much time in that revision, probably
because a lot of XML text was already generated.

Figure 10. Chart with the average improvement by assistant considering all tasks

As regards the objective evaluation, Figure 10 provides an overview of the average
improvement considering all the tasks per assistant when comparing the objective
metrics obtained for Diagen and the corresponding assistant. In the figure, a positive
value means that the assistants of the platform performed better than Diagen, and a
negative value means that Diagen outperformed the corresponding assistant. As we can
see, the accelerations proposed produced an average improvement of 65.5% for defining
the data model structure (DMA), 16.6% for defining the prototypes of the database
access functions (DCMA), 42.2% in the definition of the finite state model of the
application (SFMA), and 84.8% for defining all the actions of each state of the dialog
flow (RMA). Thus, we obtained an overall average improvement of 52.3% that
corresponds to a 56.5% improvement in the elapsed time, 13.4% for the number of
clicks, 84% in the number of keystrokes, and 55.2% in the number of keystroke errors.
These results are consistent with the number and scope of the accelerations described in
this paper. We can also see that the improvements were greater in the assistants where
the more complex structures and actions are required; thus, we accelerated the design
and guide the designer in the steps where it is more necessary.

$�� � �&��	
��
'��� �	
��
���
��� �	�

In order to rate the acceptability of the evaluated assistants and the proposed
accelerations we provided the evaluators a survey form that included general questions
about each assistant and specific questions about each of the evaluated strategies. In
both kind of questions we used a 10-point scale (1=minimum, 10=maximum). The total
number of general questions was 20 (including Diagen, 4 questions per assistant) and 10
for the specific questions about the strategies. The general questions were:

1) How quickly did you learn to use the assistant?
2) Is the assistant easy and intuitive to use? Do you know what to do at each step?
3) Is the functionality sufficient?
4) How do you rate the appearance of the assistant (consistent, transparent, and

intuitive)?

Table 1 shows the average scores for all the general questions about the different
assistants evaluated. We can see that, in general, all the assistants were considered as
easy to use (question 2) and the appearance was marked with an average value of 8.5
(question 4). It is important to mention that although Diagen was easy to use for the first
steps, it got bad qualifications, as shown in the last column, probably because the
generation of the final models was too cumbersome in comparison to our assistants.

DMA DCMA SFMA RMA Diagen Assistants

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
Question 1 8.1 0.99 8.2 1.03 8.8 0.79 8.0 0.94 5.6 1.50
Question 2 8.6 0.83 8.2 1.23 9.0 0.82 8.8 0.79 4.6 1.42
Question 3 8.3 0.94 8.4 0.96 9.2 0.79 9.0 0.94 4.0 1.41
Question 4 8.2 1.03 8.1 0.99 9.0 0.82 8.8 0.63 4.0 1.41

Av. All 8.3 0.63 8.3 0.85 9.0 0.69 8.6 0.63 4.5 1.1

Table 1. Results of the subjective evaluation for the general questions

Regarding the specific questions on the strategies, we included the following: a)
Facility to create the data model structure using information from the DB, b) Facility to
define dialogs with Mixed-Initiative, c) Comparison of speed development between
using Diagen or the assistants of the platform, among others. Table 2 shows the results
for the questions on the accelerations strategies for each assistant and evaluator levels.
As we can see in the table, all the accelerations were positively assessed with an average
value of 9.0, with the maximum scores in the following accelerations: automatic
generation of action proposals (section 3.2.2) and the ease in defining the state flow
model (section 3.2.1). These results are consistent, and better in all the cases, with the
evaluation made at the end of the GEMINI project. The improvements are mainly due to
the incorporation of the new accelerations, together with the correction of some bugs
and the simplification of some procedures.

Novice Intermediate Experts Av. All Assistants

Mean Std. Mean Std. Mean Std. Mean Std.
DMA: Class Proposals 8.5 2.38 9.33 1.15 9.0 0.0 8.89 1.62
DCMA: SQL Wizard 8.75 0.96 9.33 0.58 9.00 0.00 9.0 0.71
SFMA: State Proposals 9.75 0.50 8.67 1.53 9.50 0.71 9.33 1.00
SFMA + RMA: Mixed
Initiative

9.25 0.96 8.00 1.00 10.00 0.00 9.00 1.12

RMA: Over-Answering 9.25 0.96 8.33 0.58 9.50 0.71 9.00 0.87
RMA: Pass Args
between actions

9.25 0.96 8.00 2.00 9.50 0.71 8.89 1.36

RMA: Action Proposals 9.50 0.58 10.00 0.00 10.00 0.00 9.78 0.44
Diagen: Speed to create
models

9.50 1.00 10.00 0.00 10.00 0.00 9.78 0.67

Table 2. Results of the subjective evaluation for questions regarding the accelerations

Finally, the survey included a section for comments and suggestions of the subjects
with respect to the accelerations of each assistant. A summary of the main comments
follows.

• Definition of data model: The evaluators considered the creation of classes
using the database information as extremely useful. However, there are some
aspects of the GUI that can be improved such as the possibility of copying and
pasting whole classes, and the direct edition of the class attributes directly on the
boxes in the workspace instead of using buttons/text-fields on the toolbar.

• Definition of database access functions: This assistant was considered easy
to use since the menus were clear and simple. The most valuable accelerations
were the automatic creation of SQL statements and the automatic proposal of
data model classes/attributes and tables/fields when defining the arguments. One
evaluator suggested improving the process of defining the function parameters
using graphic objects instead of the current text-based interface.

• Definition of the dialog flow: The most valuable accelerations were the
proposal of states from the classes and database functions, as well as the
automatic unification of slots as mixed-initiative. Here, the testers requested the
implementation of a easy mechanism for connecting states based on using
anchor points and drawing the connection line with the mouse.

• Definition of dialog actions: In this assistant, the best accelerations were the
window with the proposal of actions, the automatic creation of variables when
passing arguments between actions, and the mechanism for creating conditional
actions. The only suggestions were related to the graphical interface, for instance
changing the position of some buttons in the assistants to make them easy to
access, avoiding the use of modal windows that prevent the designer from
carrying out other actions, since the mouse or keyboard focus cannot be
redirected to other windows, etc.

• Diagen: In this assistant, two main problems were detected: 1.) the
information collected through the different pop-up windows can be lost in case
of problems. Sometimes it is confusing for the designer to follow the process of
completing many nested items, 2) the templates were not enough for most
designers. Several other features such as auto-completion and color tags were
also required.

5 FUTURE WORK
Considering the results obtained during the objective evaluation and taking into

account the feedback provided by the evaluators in the subjective evaluation, as well as
some ideas that we have been working on beforehand, we consider the following as
relevant improvements in the platform:

Creation of the Data Model Structure: To implement a mechanism for retrieving
the relationships between tables in the database in order to propose complex classes and
attributes automatically by selecting the most probable tables and fields to be used as
attributes by default; to tag automatically (based on the heuristics) when a given
attribute in a class will be used in the following assistants to provide or obtain
information to/from the user thus improving the creation of the state/dialog proposals in
the following assistants.

Creation of the Database Access Functions: To extend the capabilities of
generating SQL statements by improving the debugger wizard and including the
possibility of offering an N-best list of SQL statements instead of only one proposal.

Definition of specific actions at each state: To reduce the number of automatic
generated dialogs in order to simplify the main interface. The results of both evaluations
showed that most of the proposed dialogs in this window were not used at all. Here,
increasing the use of the heuristic information could help to identify which fields would
be used for requesting information from the user or to provide information to them.

Definition of User Dependent behavior: The platform currently allows the creation
of different user profiles that allow the designer to modify the system behavior in three
different areas: a) the thresholds for confirming the speech recognition results in each
state (e.g. novice users require higher thresholds since they usually provide longer
answers than expert users), b) the limits for different error handling (e.g. the number of
times the system tries to obtain an answer before directing the call to an operator, or the
number of times the system tries to access the database before reporting that an error
has occurred), c) different configuration parameters (e.g. number of items to show in
group when handling a list of retrieved results, allowing barge-in or not, time in seconds
allowed to record messages). In order to improve these capabilities, we propose the
incorporation of new user profiles that allow the distinction between young and old
people (following the indications suggested by [Zajicek, 2004] and [Wolters et al,
2009]) or between men and women. On the other hand, the process of detecting this
information could be based on using runtime modules or based on the information
provided from the database after the user goes through a previous verification process.

6 CONCLUSIONS
In this paper, we have described several accelerations strategies included in a

complete development platform to speed up the design of spoken-dialog systems. The
proposed accelerations are, in most cases, innovative in relation to the current ones
offered by any commercial or research platform. The proposed accelerations are based
on using three different sources of information: 1) cumulative information shared
between assistants throughout all the steps in the design, 2) heuristic information
extracted from the contents of the backend database, and 3) using an object-oriented
representation of the data model structure and relationships between this structure and
the backend database. With all this information, the platform assistants generate
different kinds of proposals that simplify the process of creating and completing the
dialog flow (e.g. automatic states and dialog actions, the unification of slots to be
requested using mixed-initiative dialogs, the semi-automatic creation of SQL
statements), help designers to create or debug models (e.g. grammars, prompts, SQL
functions) required by the runtime system, or to reduce the information displayed at
each assistant. Thanks to the internal XML syntax of the platform the creation of the
running scripts in VoiceXML is also accelerated, and at the same time it allows new
modalities to be included in the future.

The results obtained both in a subjective and objective evaluation confirms the
usability of the proposed accelerations. For the objective evaluation, different metrics
were proposed and compared with those obtained when using a less-accelerated
assistant for performing typical tasks when designing a dialog application. Thanks to the
accelerations, the design time the evaluators spent on performing the proposed tasks
was reduced by more than 56%, the number of keystrokes by 84%, and the keystroke
errors by 55%. As regards the subjective evaluation all the accelerations were marked
over 8.0 and the whole platform was rated with an average score of 8.0. According to
this evaluation, the most appreciated accelerations were the automatic generation of
action proposals for each dialog and the ease in designing the state flow model.
Although not described in this paper, the platform has been used for successfully

creating complex applications such as a banking application for a commercial product
by a Greek bank with very good results, as well as for a second application, called
CitizenCare, that offers basic voice information retrieval system functionality in the
context of public authorities available in both German and English (see [D’Haro et al,
2006]).

7 ACKNOWLEDGEMENTS
We want to thank all the members of the GEMINI project for making possible the

creation of the platform and especially to the following students for their contribution in
the coding of the platform and runtime system: Rosalía Ramos, José Ramón Jimenez,
Javier Morante, Ignacio Ibarz, and Rubén Martín from the Universidad Politécnica de
Madrid. This work has been supported by SD-TEAM (TIN2008-06856-C05-03) and
ROBONAUTA (DPI2007-66846-c02-02).

8 BIBLIOGRAPHY
[Balentine and Morgan, 2001] Balentine, B. and Morgan, D.P. 2001. How to Build

a Speech Recognition Application: Second Edition: A Style Guide for Telephony
Dialogs. Enterprise Integration Group; 2nd edition, 414 pages. ISBN-13: 978-
0967127828.

[Chung, 2004] Chung, G. 2004. Developing a Flexible Spoken Dialog System
Using Simulation. 42nd Annual Meeting on Association for Computational
Linguistics (ACL), pp. 63-70.

[D’Haro, 2009] D’Haro. L. F. 2009. Speed Up Strategies for the Creation of
Multimodal and Multilingual Dialog Systems. PhD Thesis. Universidad
Politécnica de Madrid.

[D’Haro et al, 2009] D’Haro, L. F., Cordoba, R., Lucas, J.M., Barra-Chicote, R., and
San-Segundo, R. 2009. Speeding up the design of dialog applications by using
database contents and structure information. SigDial, pp. 160-169. London, UK.

[D’Haro et al, 2006] D’Haro, L. F., Cordoba, R., Ferreiros, J., Hamerich, S.W., Schless,
V., Kladis, B., Schubert, V., Kocsis, O., Igel, S., and Pardo, J. M. 2006. An
advanced platform to speed up the design of multilingual dialog applications for
multiple modalities. Speech Communication Vol. 48, Issue 8, pp. 863-887.

[Feng et al, 2003] Feng, J., Bangalore, S., Rahim, M. 2003. WEBTALK: Mining
Websites for Automatically Building Dialog Systems. Workshop on Automatic
Speech Recognition and Understanding (ASRU '03). pp. 168-173.

[GEMINI, 2010] Web page of the GEMINI Project available at http://www-

gth.die.upm.es/projects/gemini/, October 2010.

[Gorin et al, 1997] Gorin, A. L., Riccardi, G., and Wright, J. H. 1997. How may I help
you?. Speech Communication, Vol 23:1-2, pp. 113-127.

[Hamerich, 2008] Hamerich, S. W. 2008. From GEMINI to DiaGen: Improving
Development of Speech Dialogs for Embedded Systems. 9th SIGdial Workshop on
Discourse and Dialog, pp. 92-95.

[Jung et al, 2008] Jung, S., Lee, C., Kima, S., and Geunbae Lee, G. 2008.
DialogStudio: A Workbench for Data-driven Spoken Dialog System Development
and Management. Speech Communications, 50 (8-9), pp. 683-697.

[López-Cozar and Araki, 2005] López-Cózar, R., and Araki, M. 2005. Spoken,
Multilingual and Multimodal Dialog Systems: Development and Assessment. 262
pp. Published by John Wiley & Sons, ISBN: 0-470-02155-1.

[McTear, 2004] McTear, M. 2004. Spoken Dialog Technology: Towards the
conversational user interface. Published by Springer Ed. 432 pp. ISBN: 1-85233-
672-2.

[McTear, 1998] McTear, M. 1998. Modelling Spoken Dialogs with State Transition
Diagrams: Experiences with the CSLU Toolkit. Intern. Conf. on Spoken Language
Processing (ICSLP), pp. 1223-1226.

[Paternò and Sisti, 2010] Paternò, F., and Sisti, C. 2010. Deriving Vocal Interfaces
from Logical Description in Multi-device Authoring Environments. ICWE 2010,
LNCS 6189, pp. 204-217. B. Benatallah et al (Eds). Springer-Verlag Berlin
Heidelberg.

[Polifroni and Walker, 2006] Polifroni, J. and Walker, M. 2006. Learning
Database Content for Spoken Dialog System Design. Intern. Conf. on Language
Resources and Evaluation (LREC), pp. 143-148.

[Polifroni et al, 2003] Polifroni, J., Chung, G., Seneff, S. 2003. Towards the
Automatic Generation of Mixed-Initiative Dialog Systems from Web Content.
European Conference on Speech Communication and Technology (Eurospeech),
pp. 193–196.

[Schubert et al, 2005] Schubert, V, and Hamerich, S. W. 2005. The Dialog
Application Metalanguage GDialogXML. European Conference on Speech
Communication and Technology (Eurospeech), pp. 789-792.

[Wang and Acero, 2006] Wang, Y., and Acero, A. 2006. Rapid development of
spoken language understanding grammars. Speech Communication, Vol. 48(3-4),
pp 390-416.

[Wolters et al, 2009] Wolters, M., Georgila, K., et al. 2009. Reducing working memory
load in spoken dialog systems. Interacting with Computers, Volume 21, Issue 4,
pp. 276-287.

[Zajicek, 2004] Zajicek, M. 2004. Successful and available: interface design
exemplars for older users. Interacting with Computers, Volume 16, Issue 3,
Universal Usability Revisited, pp 411-430.

• Accelerations strategies to speed up the design of spoken-dialog systems
• Accelerations based on heuristic information from the database
• Subjective and objective evaluation confirms usability of the accelerations
• Design time reduced by 56%, number of keystrokes by 84%, and keystroke

errors by 55%
• Subjective evaluation all the accelerations were marked over 8.0

Integer Float Date String Blank Mixed Bool Total
205 2 7 1

94.0% 0.9% 3.3% 0.5%
60 1 1

96.8% 1.6% 1.6%
43

100%
336 2 1

99.1% 0.6% 0.3%
1 1 34

2.8% 2.8% 94.4%
2 4 8 16

6.7% 13.3% 26.7% 53.3%
5 37

11.9% 88.1%
Total 213 66 43 353 38 17 37 89.6%

42

Mixed
0 0 0 30

Bool
0 0 0

0 0 0

00

43

339

Blank
0 0 0 0 36

String
0

0 0 0 0

215

Float
0 0 0 0 62

Real Type

R
E

 T
yp

e

Integer
0 0 0

Date
0 0

