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Abstract—Two new features have been proposed and used in the
Rich Transcription Evaluation 2009 by the Universidad Politécnica
de Madrid, which outperform the results of the baseline system.
One of the features is the intensity channel contribution, a feature
related to the location of the speaker. The second feature is the log-
arithm of the interpolated fundamental frequency. It is the first
time that both features are applied to the clustering stage of mul-
tiple distant microphone meetings diarization. It is shown that the
inclusion of both features improves the baseline results by 15.36%
and 16.71% relative to the development set and the RT 09 set, re-
spectively. If we consider speaker errors only, the relative improve-
ment is 23% and 32.83% on the development set and the RT09 set,
respectively.

Index Terms—Features for speaker diarization, speaker diariza-
tion, speaker segmentation, speech processing in meetings.

I. INTRODUCTION

S PEAKER diarization is the task of identifying the number
of participants in a meeting and creating a list of speech

time intervals for each participant. Speaker diarization is useful
as a first step in the speech transcription of meetings in which
each spoken sentence has to be assigned to a defined speaker. It
can also be used for speaker adaptation in speech recognition.

An overview of automatic speaker diarization systems is
given in [1].

Common speaker diarization systems consist of three main
blocks: the voice activity detection module (VAD), the feature
extraction module and the segmentation and clustering module;
see Fig. 1.

VAD algorithms differ, depending on the type of non-speech
sounds that appear next to the speech or mixed with it, from
the Gaussian mixture models (GMMs) to Laplacian and gamma
probability density functions [2]. Voice activity detection is, by
itself, a large area of research. Voice activity algorithms applied
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Fig. 1. Simplified diagram of a speaker diarization system.

to speaker diarization may differ from general algorithms be-
cause the diarization error rate is measured frame by frame in-
stead of other metrics that ponder the error based on the cor-
rectly detected speech/silence segments.

The feature extraction module usually extracts data related to
the spectral envelope such as the Mel frequency cepstral coeffi-
cients (MFCCs) [3], [4].

Regarding segmentation and clustering of speech regions,
some methods use bottom-up agglomerative clustering [5],
[6], while others use a top-down universal background model
(UBM) as a starting point to apply adaptation techniques iter-
atively to build the speaker models [7]. Clustering algorithms
need a distance measure to determine whether two speech
clusters belong to the same speaker. The most common used
distance is the Bayesian information criterion (BIC) distance
[8]. Recent studies have also presented great improvements
using other alternatives based on the t-test distance [9] or the
information theoretic approach [3].

Speaker diarization was first applied to broadcast news
recordings (BN). One of the best recently published systems
can be seen in [10]. Subsequently speaker diarization was ap-
plied to the meeting domain using a single distant microphone
(SDM). The meeting domain differs from BN as the topics are
highly diverse, the participants have idiosyncratic relationships
and vocabularies, the meetings are highly interactive, and there
can be simultaneous speech from multiple speakers. Further-
more, distant microphones are susceptible to reverberation and
background noise. Consequently, the problem is much more
difficult than in the BN domain, although in BN the number
of speakers may be much higher. In 2002, NIST conducted an
evaluation of speaker diarization in the meeting domain under
the SDM condition. Although tests carried out since 2002
have considered MDM as the primary condition, the methods
applied to SDM or previously to BN may be considered as a
first step toward the development of algorithms for MDM.
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PARDO et al.: SPEAKER DIARIZATION FEATURES: THE UPM CONTRIBUTION TO THE RT09 EVALUATION 427

In speaker diarization with multiple distant microphones
(MDMs) redundant information is available (one signal per
microphone) in comparison with single distant microphone
(SDM) diarization. Usually, all speech signals are combined
into one [11], from which some acoustic features are extracted.
The other source of information used in MDM scenarios is the
information related to speaker localization [12], such as the
time delay of arrival (TDOA) features [13]. TDOA features
permit short-term speaker segmentation but do not provide
any speaker identity information. On the other hand, acoustic
features provide long-term speaker identity but require min-
imum durations to build reliable acoustic models. In [14], it
was first demonstrated that TDOA between channels could be
mixed with spectral features to obtain improved performance
over a base system that used only spectral features. This TDOA
information combined with the MFCC information has been
used by all systems in the latest Rich Transcription evaluation
[15].

The shortcomings of TDOA methods are the result of distant
microphones. There are noises and reverberations in the record-
ings and the results are not free from errors. In speaker diariza-
tion in MDM scenarios, not only the improvement of the VAD
module or the segmentation and pattern classification modules
is necessary. It is also important to search for new features that
convey additional information to improve system performance
[16].

In [17], a method to improve inaccurate estimates of delays
and increase speaker separation in delay-space was presented.

In [18], the logarithm of F0 plus its derivative were used
successfully in a speaker diarization for single distant mi-
crophone meetings (SDMs) using a method to normalize the
features across all speakers and combine them with Mel fre-
quency coefficients (MFCC) at the segmentation phase and
using MFCC features only at the clustering phase. In [16],
the use of the F0 average and the median F0 calculated on a
500-ms Hamming window and several other so-called long
term features to improve the performance of an MFCC-based
system applied to SDM meetings were proposed. The authors
point out the importance of long-term features (longer than a
frame) in speaker discrimination and speaker diarization task.
In [19], the authors have used long-term and prosodic features
for clusters initialization for MDM meetings.

In previous work [20], we developed a method to combine
MFCC coefficients with a time delay of arrival features (TDOA)
to create an enhanced system for multiple distant microphone
meetings (MDMs).

In this paper, we present two new features that improve
speaker diarization for MDM meetings which were included in
the last submission by the Universidad Politécnica de Madrid
(UPM) to the National Institute of Standards Rich Transcription
Evaluation in 2009 (NIST RT 2009).

The first feature is related to the localization of the speakers
(similar to TDOA features) that we called the intensity channel
contribution (ICC) and which makes use of the normalized en-
ergy of the signal arriving at the different channels [21]. It is
the first time that such a feature is proposed and used in speaker
diarization.

The second feature is based on the use of the fundamental fre-
quency (F0) but instead of using it for SDM meetings as in [18],
or [16] we have used it for MDM meetings. It is the first time
that it has been used for MDM meetings in the segmentation and
clustering stage. Instead of using it in the segmentation stage as
in [18] we have used it both in the segmentation and agglomer-
ative stages similar to [20]. In contrast to using it as a long-term
feature (500-ms span) as in [16] we have used it as a frame-based
feature (20 ms). We also present in the paper experiments using
different methods to include F0 and different methods to com-
bine them with MFCC, TDOA, and ICC features.

By using ICC features, we have been able to improve the
baseline system DER by 4.6% and 7.9% relative for the devel-
opment set and the RT09 set, respectively. By using F0 we have
improved the baseline system DER by 7.31% and 10.63% rela-
tive for the development set and the RT09 set, respectively, and
finally using both ICC and F0 we have improved DER by 15.3%
and 16.7% for the aforementioned databases. A large part of the
DER comes from the speech/non speech errors. If we take into
account just the speaker errors, the improvement in the proposed
system is 23.4% and 32.83% relative on the development set and
the RT09 set, respectively.

Since the features module is very independent of other mod-
ules we think that the proposed system could contribute to the
improvement of alternative state of the art systems.

The paper is organized as follows. In Section II, the baseline
system is described. In Section III the proposed new features are
presented. Section IV describes the corpora used both for devel-
opment and test and describes the evaluation metric. Section V
includes the experiments carried out and the results obtained.
Section VI is the discussion of the results and finally Section VII
ends with the conclusions.

II. DESCRIPTION OF THE BASELINE SYSTEM

A. Baseline System Architecture and Baseline Features

Fig. 2 shows the system architecture. The input coming from
several different microphones is first Wiener filtered in
order to reduce the background noise.

Then, in order to estimate the TDOA between two segments
from two microphones, we use a modified version of the Gener-
alized Cross Correlation (GCC) called “generalized cross cor-
relation with phase transform” (GCC-PHAT) [22]. First, one
of the channels is selected as the reference channel (the one
with highest cross correlation with other channels). Then the
GCC-PHAT between the reference channel and the other chan-
nels is estimated and the TDOA for these two microphones is
calculated as

(1)

is the inverse transform of (the gener-
alized cross correlation).

The set of TDOAs from each microphone to the reference
channel will form what we call the TDOA vector which
has a dimension. Once the vector is calculated,
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Fig. 2. Proposed system architecture.

a weighted delay-and-sum algorithm is applied in the acoustic
fusion module, where the input signals are delayed and added
together to generate a new composed signal. More details on this
part can be found in [11]. The composed signal is then processed
by the MFCC estimation module, where MFCC vectors of 19
components, , are calculated every 10 ms with a window
of 30 ms.

The VAD module is a hybrid energy-based detector and
model-based decoder. In the first stage, an energy-based detector
finds all segments with low energy, while applying minimum
segment duration. An energy threshold is set automatically to
obtain enough non-speech segments. The segmentation is used
to train speech and non-speech models in the second module
and then several iterations of Viterbi segmentation and model
retraining take place, finally outputting the speech/non-speech
segmentation when the likelihood converges. More information
on the VAD module can be found in [23].

The segmentation and agglomerative clustering process con-
sists of an initialization part and an iterative segmentation and
merging process [24]. The initialization process segments the
speech into K blocks (equivalent to an initial hypothesis of K
speakers or clusters) uniformly distributed. We have set K to 16
empirically.

An individual cluster model consists of a set of sub-states,
where the number of sub-states is determined by the minimum
duration of each cluster, 2.5 seconds in our case. Every sub-state
is modeled using a Gaussian mixture model (GMM) initially
containing a number of components that has to be specified (we
use 5 for and 1 for streams). After the initial seg-
mentation a set of training and re-segmenting steps is carried

Fig. 3. Block diagram of the segmentation and clustering method.

out using Viterbi decoding. Then the merging step takes place.
When a merging takes place, the GMM for the new cluster is
retrained with the data now assigned to it and the number of
parameters (mixtures) of the merged model is the sum of the
number of mixtures of the component models. The segmenta-
tion and clustering steps are repeated until a stopping criterion
is reached; see Fig. 3.

To decide which clusters to merge, and when to stop the
merging, the BIC criterion has been used. The penalty term
in the BIC score is eliminated because we constrain both hy-
potheses to have the same number of parameters [24]. When
all possible merge pairs give a negative BIC, the merging is
stopped.

Some percentage of frames (silences, noises) constitute a dif-
ferent set and are too short to be part of a new cluster but cor-
rupt the cluster models [25]. A frame purification algorithm is
applied which aims to detect and eliminate non-speech frames
that do not help in discriminating speakers. 10% of frames with
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the highest likelihood computed on Gaussians with smaller vari-
ance are removed for training models that have more than two
Gaussians before computing the BIC.

The baseline features used in the diarization task are the
MFCC features combined with the TDOA features. In the
implemented system [20], the first 19 MFCC coefficients are
extracted and treated as the stream and the TDOA features
are treated as the stream. Each source of information is
modeled using a statistical model whose individual likelihoods
are combined using

(2)

keeping . is the compound model for any given
cluster is the model created for cluster a using the stream

, and is the model created for cluster a using the stream
. This baseline system is similar to the system presented by

the International Computer Science Institute (ICSI) at the RT06
evaluation in which the first author of this paper was a team
member, obtaining state of the art performance.1

III. PROPOSED NEW FEATURES

A. ICC Features

The first contribution of UPM (Universidad Politécnica de
Madrid) to the RT09 evaluation was the inclusion of a new set of
features related to the localization of the speakers. Apart from
the delay vector made up of the delays between every channel
and the reference channel we have computed the relative energy
for each channel and frame compared to the sum of the energies
for all the channels

(3)

in which is the intensity channel contribution per frame,
is the channel number, is the energy per frame, and

channel and is the number of channels as we mentioned
before. The vector of for each frame is concatenated to the
TDOA vector to form the vector. Note that
the vector has components, one less than the
ICC vector. The energy captured by each channel is related to
the distance of the speaker to that particular microphone: when
higher energy is detected, it means that the speaker is closer to
that microphone. This is related to the localization of the speaker
similar to the information conveyed by the TDOA features. The
difference is that the signal delay information used in the es-
timation of the TDOA features is proportional to the distance,
while the intensity is inversely proportional to it.

The consideration of both features, TDOA and the proposed
energy related features, assumes that the speakers do not move
around the room. Note also that although apparently both abso-
lute energy and ICC features are obtained from the
same measure (the energy) if the same speaker, at a certain loca-
tion, augments his intensity level from one turn to another, the

1The conditions for the evaluation prevent us from specifying the authors and
the rank of the systems presented, but they can be consulted in [26].

absolute energy features computed at each channel will have a
bias corrupting the speaker models while the ICC features will
not have this problem resulting in a more robust set of features.
An exhaustive analysis of the behavior of energy features and
ICC features and improvements that can be obtained by using
them can be seen in [21].

B. F0 Features

At the RT09 evaluation we have successfully used F0 features
to improve the diarization performance of MDM meetings. In
order to determine the way of calculating F0, we have experi-
mented with different parameters.

First, F0 is calculated using the algorithm in [27]. For each
frame we take a window of about 7.5 ms and calculate its nor-
malized cross-correlation with the speech signal in windows at
various “lags” in the future. Lags range from less than 2 ms (for

Hz) to more than 20 ms (for Hz).
Then the logarithm of F0 was calculated. For the unvoiced

part of the signal a constant value of F0 was used which is the
average of the last value of the previous voiced region and the
first value of the following voiced region. We will call this fea-
ture from now on. We have also experimented with the plain
interpolated F0, called from now on. Similarly, a third fea-
ture was the first derivative of the logarithm of the interpolated
F0 and called from now on.

Finally, a fourth method of calculating F0 has been re-
searched using a long-term window. F0 is estimated frame by
frame (10-ms frame shift). Then, a histogram of the F0 values
is calculated using a window of 500 ms (50 frames). 23 bins are
used: 19 bins (from 60 Hz to 250 Hz, with 10-Hz resolution),
3 bins (from 250 to 310 Hz, with 20-Hz resolution) and 1 bin
for F0 values higher than 310 Hz. The counts of the histograms
are normalized by the number of total observations (50 obser-
vations, equal to the number of frames) and used as a feature
vector. This feature vector will be called from now on.

C. Feature Combination

It is not trivial how to combine different features in speaker
diarization since they have diverse origin. In [18], it is men-
tioned that the concatenation of features did not help. They also
tried the combination of features using what they called the se-
lection method and combination method, both in the segmenta-
tion and in the clustering phase. We mentioned in the baseline
system how to combine MFCC features plus TDOA features
combining them at the likelihood stage but without normaliza-
tion as in [18] and both at the segmentation and clustering stage
[20]. When using the ICC features, the vector is appended
to the vector to form a joint second vector and follow the
same combination strategy. When using the F0 features, these
features make up a third stream with separate models for each
cluster. The combination of all three streams is made in the same
way as in (2) but now the combined likelihood for the and

streams is

(4)
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TABLE I
LIST OF MEETINGS FOR THE DEVELOPMENT SET USED IN THE EXPERIMENTS

in which similarly to (2) is the model created for any given
cluster using the stream . We have also tried the same strategy
but using four streams and .

Fig. 2 shows the architecture of the proposed system. Blocks
in the dashed line in the picture represent the modules of the
proposed new system.

IV. CORPORA AND EVALUATION MEASURES

In this paper, a subset of the NIST Rich Transcription of
2002–2005 sets, the RT06 set and the RT-07 set has been used
as the development set. For the evaluation set we have used
RT-90 set [15]. A subset of 12 meetings from RT02, RT04 and
RT05 (called devel06 in [20]) together with RT06 and RT07
(called—DEVELSET—from now on) is made up of more than
eighteen hours of audio data divided into twenty eight different
meetings (see Table I), and RT-09 comprises more than five
hours of audio data divided into seven different meetings.

The segments (UEM parts) defined by NIST for the official
evaluations have been used to measure the performance of the
systems described in this work. These parts consist of 27 612.64
seconds (2 761 264 frames) for the—DEVELSET—set and
10 858.49 seconds (1 085 849 frames) for RT-09 set that are
taken into account to calculate the statistical significance of the
results.

The speaker diarization performance is evaluated by com-
paring the hypothesis segmentation, given by the system, with
the reference segmentation provided by NIST [15]. This refer-
ence segmentation was generated by hand according to a set of
rules also defined by NIST and the exact speaker change points

are calculated by force aligning the head mounted microphone
audio to the reference transcripts using tools facilitated by the
Laboratoire d’Informatique pour la Mécanique et les Sciences
de l’Ingénieur (LIMSI). In the evaluation plan the evaluation
metric and a program to calculate it from both transcriptions is
also defined. The error obtained is called the diarization error
rate (DER) and it takes three errors into account (miss, false
alarm, and speaker error). The error is time-based. A miss error
occurs when a speech segment is classified as non-speech or an
overlapping speaker is missing in the hypothesis. A false alarm
(FA) error occurs when the system produces a speaker hypoth-
esis when there is no speech in the reference. To calculate the
speaker error, the program maps the hypothesis speakers to the
reference speakers (only one reference speaker to one hypoth-
esis speaker) in an optimal way so the overlap in duration be-
tween all pairs of reference and hypothesis speakers is maxi-
mized. A speaker error occurs for any region in the hypothesis
that is mapped to a wrong speaker in the reference.

V. EXPERIMENTS

A. Preliminary Experimentation With ICC Features

Experiments and discussion of results with ICC features have
been presented in another paper [21], so in this paper we will
only give a summary for completeness. For these experiments
the all06 set has been used.

In Fig. 4, DER is shown versus the weight applied to the
MFCC stream for the all06 (devel06 + RT06) set for three sys-
tems, the baseline system ( in a first stream and in a
second stream) the proposed improvement plus

in a second stream and an alternative system using three
streams, and for which the vector and
the vector are given the same weight. The baseline system
has a DER for this set of 13.4% which has been outperformed by
joining TDOA and ICC in the same vector thus obtaining a DER
of 12.7%. A significant 5.2% relative reduction in DER was
obtained. This experiment demonstrated that ICC features can
be successfully incorporated in an improved speaker diariza-
tion system. The alternative system obtains an error of 12.97%
and also improves the baseline but not as much as the proposed
system. Further research is needed to determine the reasons of
this behavior, one of them being that there is a strong correla-
tion between TDOA features and ICC features, both of them
related to the location of the speaker. As we will see later in
Section V-C when using four sets of features, best results are
obtained by concatenating TDOA features and ICC features in-
stead of using them separately.

Experiments with the DEVELSET including the ICC fea-
tures render a 4.6% relative DER improvement (13.04% versus
13.67%) over the baseline system that does not use ICC features
(see Table II lines 2 and 4). For the RT09 set, the ICC features
render a significant relative DER improvement of 7.9%.

B. Preliminary Experimentation With F0 Features

We made preliminary experimentation using plain interpo-
lated F0 features and the logarithm of the interpolated F0
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TABLE II
DER FOR EXPERIMENTS FOR THE BASELINE, AND FOR THE EXPERIMENTS INCLUDING ���� � ��� FEATURES AND

FOR EXPERIMENTS INCLUDING ����� ��� FEATURES AND F0 FEATURES IN THREE STREAMS

Fig. 4. DER for the all06 meetings set as a function of the weight associated to
the first stream used by the system (always the stream with the MFCC features).
The dashed line establishes the DER baseline to be improved (DER obtained
using���� and ���� streams). The �������� graph uses as a second stream
the concatenation of the ���� and ��� vectors. The ���� ���� ��� graph
uses three streams for which the weights for ���� and ��� streams are the
same.

features , the differential logarithm F0 features and the
histogram F0 features starting with 1 GMM (Gaussian mix-
ture model) per cluster. These features have been combined with
MFCC features to create an experimental system plus ei-
ther one of the other features. The DERs for the all06 set across
the weights for the stream using either or

are presented in Fig. 5.
In Fig. 5, it can be seen that there are several weighting points

in which the F0 features improve the MFCC features, thus con-
firming that the F0 adds information to the MFCC features.
The absolute minimum is obtained by using the F0 histogram

but for the neighboring weighting points the DER increases
quite abruptly. The next minimums are obtained using either the
interpolated logarithm of F0 or the plain interpolated F0. The
question is whether this F0 information in any of its forms can be
used in an MDM system which also combines information from
localization features. This will be shown in the experiments in
the next section. In Fig. 5, the DER obtained is also represented
when the MFCC features are concatenated with the features

Fig. 5. DER for a system that mixes ���� with either 	��
� ��
��	��
 or ��

as a function of the weight applied to the ���� vector for the all06 set. In the
picture DER for ���� only features and ���� and 	��
 features concatenated
in the same vector are also presented.

in a single vector. The results degrade, thus confirming the ex-
periments in [18]. The nature of F0 is quite different from the
MFCC coefficients and the concatenation of both features does
not help. The fact that we use a diagonal covariance matrix may
have an influence on this result.

C. Experiments With the Combination of All Features

We made experiments using the DEVELSET combining dif-
ferent F0 methods and the baseline system. The results can be
consulted in Table III.

It can be seen that the use of the lif0 stream delivers the best
performance. The absolute minimum obtained in the previous
experiment using hf0 has not been maintained in the new ex-
periments, possibly due to the fact that the minimum obtained
with these features is very unstable because the neighbors of the
minimum in Fig. 5 have a much greater DER.

Finally, in Table II we present the results of the baseline
system ( plus , second row), and the improvements
obtained from the baseline by including the stream (third
row). By including the we have been able to improve the
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TABLE III
DER FOR THE DEVELSET USING DIFFERENT WAYS OF CALCULATING

F0. THE BASELINE IS THE BEST PREVIOUS SYSTEM THAT

COMBINES TDOA AND ICC FEATURES

Fig. 6. DER for the all06 set for the three stream system versus different weight
values for the ���� stream. The remaining weight (up to 1) is divided between
the other two streams keeping a ratio between ���� weights and ��	
� ���

weights of 9.

DER of the baseline by 7.31% and 10.63% relative for the
DEVELSET and RT09 set, respectively.

We also present the improved baseline system plus
and the improvements obtained by including the

stream as a third stream. From this new baseline the rel-
ative improvements obtained by including F0 are 11.27% and
9.56% for the DEVELSET and RT09 set, respectively.

In Fig. 6, we show DER for the all06 set for the three
streams system (best system) across different weights for the

stream. For the other two streams we use the strategy to
divide the remaining weight (up to 1) between them keeping
a weight ratio between and of 9 (as it has
been concluded from the experiments in Fig. 4). The minimum
has been obtained for a stream weight of 0.21 that corre-
sponds to 0.711 and 0.079 weights for and ,
respectively.

The final system with all the improvements together was pre-
sented at the RT09 evaluation in April 2009 obtaining a 21.38%
DER on the RT 09 set. The relative improvements from the base-
line are 15.36% and 16.71% for the DEVELSET and the RT09
set, respectively.

We also tried using four different streams, separating the
TDOA features and the ICC features into two different vectors.
The experiments using the same set of features but in separate
streams, i.e., mfcc, tdoa, icc, and lif0 are shown in Table IV.
The weights used in this case are 0.659, 0.073, 0.073, and 0.194
for mfcc, tdoa, icc, and lif0, respectively, which corresponds to
a ratio of weight weight weight weight ,
and weight weight the same that the optimum
that was obtained for the three streams case . Other
values for weight weight keeping the other two ratios

TABLE IV
DER RESULTS INCLUDING ICC AND F0 FEATURES

USING FOUR SEPARATE STREAMS

Fig. 7. DER for the all06 set for the four stream system versus different weight
values for the quotient ��������� stream. The remaining weight (up to 1) is
divided between the other two streams keeping a ratio between ���� weight
and ��	
 weight of 9 and ���� weight and icc weight of 9.

constant were tested with a subset of the database obtaining
lower performance (see Fig. 7). This system was presented as a
contrastive system in RT09 evaluation obtaining 22.43% DER.
It can be seen that although they improve also the results of the
baseline, the improvement is not as big as the improvement in
the previous (official) system (see the discussion section for an
explanation).

VI. DISCUSSION

We have proved that both ICC features and F0 features im-
prove system performance. The ICC features do improve the
baseline system.

Using the baseline and using the baseline plus the ICC fea-
tures it is demonstrated that the F0 features can be combined
with other features for speaker diarization. Instead of testing F0
with SDM meetings as in previous experiments [18] we have
successfully integrated it into an MDM system including both
ICC features and F0 features and obtained a significant relative
improvement of 15.36% and 16.71% for the development set
and the evaluation set, respectively. Since the features are quite
independent of other modules of the system, we think that these
new features could be incorporated into other state of the art
systems.

In Table V, we present overall results for RT-09 meeting by
meeting. By comparing the third and sixth columns it can be
seen that with all of the contributions included there are signif-
icant improvements for six of the meetings and no changes for
one of them (which is also the meeting with lowest DER and
lowest speaker error). In the last column the speech/non-speech
errors are presented for all the meetings and systems. It can
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TABLE V
DETAILED %DER RESULTS COMPARING BASELINE SYSTEMS AND THE IMPROVEMENTS FOR RT09.

THE LAST COLUMN SHOWS THE SPEECH/NON-SPEECH ERRORS FOR ALL OF THEM

TABLE VI
NUMBER OF IDENTIFIED SPEAKERS, MISS SPEAKERS, AND FALSE ALARM SPEAKERS FOR RT09 AND ALL THE SYSTEMS TESTED

be noticed that a big part of the remaining errors are due to
the speech/non-speech errors (both Miss and False alarms). If
we do not take those errors into account the proposed system
with the new features improves the speaker error (SPKR) by
20.88% and 32.83% relative for the DEVELSET and the RT09
set, respectively.

In Table VI, a detailed analysis of the number of identified
speakers (ID_SPK), missed speakers (MISS), and false alarm
speakers (FA) is presented meeting per meeting. It can be seen
that compared to the original baseline, in the proposed final
system the number of identified speakers augments by two (30
to 32) while the number of miss speakers decreases by two (8
to 6) although one false alarm speaker is added (3 to 4).

It is not easy to determine the method to mix both features,
ICC and F0 to improve a system, a priori, since ICC features are
related to the localization of the speakers thus becoming more
independent of MFCC and F0 but not as much from TDOA, the
joint modeling of ICC and TDOA makes more sense than mod-
eling them separately. A canonical correlation analysis between
TDOA features and ICC features for all the meetings in the all06
set renders an average value of 0.37, which is significant. A sim-
ilar average correlation value of 0.35 between MFCC and F0
was obtained that would justify the joint modeling of these two
features. However, this was not supported by the experimental
results as can be seen from Fig. 5 (corroborating other published
experiments [18]).

Experiments using four streams instead of three streams re-
sulted in a lower relative improvement. However, no exhaustive
search has been done with the four streams system mainly due
to computation costs.

The number of initial Gaussians used in the model may have
also some influence. We have used five Gaussians for the MFCC
features and one Gaussian for the other features but thorough
investigation on it has not been done. Further research will be
needed to create algorithms that automatically determine the
best way to combine all the features. For instance in [28], the
authors combine MFCC features and TDOA features using an
information theoretic combination that is based in a different di-
arization methodology [3].

VII. CONCLUSION

In this paper, we present the contributions from the UPM to
the RT09 evaluation. We have proposed a new energy-related
feature, named ICC which represents an improvement of a pre-
viously used localization vector (the TDOA vector). We also
present an innovative method to use F0 successfully for the first
time at the clustering stage of MDM meetings. Instead of nor-
malizing the features across clusters and using only them in the
segmentation phase [18], or using a long-term window [16], we
have used a short term window and have applied them both to
the segmentation and to the clustering stage obtaining improved
results from two different baseline systems. The accumulated
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relative improvements using both ICC and F0 rise up to 15.36%
and 16.71% for the development and testing set, respectively.
If we consider only the speaker errors, the improvements of the
proposed features are of 23.4% and 32.83% relative for the men-
tioned sets.
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