
 Journal of
Visual Languages
 & Computing

ARTICLE IN PRESS
1045-926X/$ - se

doi:10.1016/j.jvl

�Correspondi
fax: +3491336

E-mail addre

juancho@die.up

(J. Macı́as-Guar

jfl@die.upm.es
Journal of Visual Languages and Computing 19 (2008) 523–538

www.elsevier.com/locate/jvlc
Proposing a speech to gesture translation architecture for
Spanish deaf people

R. San-Segundo�, J.M. Montero, J. Macı́as-Guarasa,
R. Córdoba, J. Ferreiros, J.M. Pardo

Grupo de Tecnologı́a del Habla, Dpto. Ingenierı́a Electrónica, E.T.S.I. Telecomunicación, UPM,

Ciudad Universitaria sn, 2804, Madrid, Spain

Received 10 January 2005; received in revised form 16 June 2007; accepted 20 June 2007
Abstract

This article describes an architecture for translating speech into Spanish Sign Language (SSL). The architecture

proposed is made up of four modules: speech recognizer, semantic analysis, gesture sequence generation and gesture

playing. For the speech recognizer and the semantic analysis modules, we use software developed by IBM and CSLR

(Center for Spoken Language Research at University of Colorado), respectively. Gesture sequence generation and gesture

animation are the modules on which we have focused our main effort. Gesture sequence generation uses semantic concepts

(obtained from the semantic analysis) associating them with several SSL gestures. This association is carried out based on a

number of generation rules. For gesture animation, we have developed an animated agent (virtual representation of a

human person) and a strategy for reducing the effort in gesture animation. This strategy consists of making the system

automatically generate all agent positions necessary for the gesture animation. In this process, the system uses a few main

agent positions (two or three per second) and some interpolation strategies, both issues previously generated by the service

developer (the person who adapts the architecture proposed in this paper to a specific domain). Related to this module, we

propose a distance between agent positions and a measure of gesture complexity. This measure can be used to analyze the

gesture perception versus its complexity. With the architecture proposed, we are not trying to build a domain independent

translator but a system able to translate speech utterances into gesture sequences in a restricted domain: railway, flights or

weather information.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Animation; Animated agents; Lifelike characters; Spanish sign language; Speech to gesture translation; Gesture complexity
e front matter r 2007 Elsevier Ltd. All rights reserved

c.2007.06.002

ng author. Tel.: +3491549 5700;

7323.

sses: lapiz@die.upm.es (R. San-Segundo),

m.es (J.M. Montero), macias@die.upm.es

asa), cordoba@die.upm.es (R. Córdoba),

(J. Ferreiros), pardo@die.upm.es (J.M. Pardo).
1. Introduction

Speech and language technologies have always
had an important relationship with their corre-
sponding animated agents (virtual representations
of a human person). These technologies provide
them with new capabilities that improve the inter-
face between animated agents and the end users
(people who interact with the system to obtain some
.

www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2007.06.002
mailto:lapiz@die.upm.es
mailto:juancho@die.upm.es
mailto:macias@die.upm.es
mailto:macias@die.upm.es
mailto:cordoba@die.upm.es
mailto:jfl@die.upm.es
mailto:pardo@die.upm.es

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538524
service). The users can interact with animated
agents using the common language. A community
of scientists worldwide is developing and evaluating
virtual humans embedded in spoken language
systems. These systems provide a great variety of
services in very different scenarios. Some research-
ers have embedded animated agents in information
kiosks in public places [1]. At HTK in Stockholm,
Joakim Gustafson [2], Björn Granström [3] and
their colleagues have developed several multimodal
dialogue systems where animated agents were
incorporated to improve the interface. These include
Waxholm [4] (a travel planning system for ferry-
boats in the Stockholm archipelago), August [5] (an
information system at the Culture Center in Stock-
holm), and AdApt [6] (a mixed-initiative spoken
dialogue system, in which users converse with a
virtual real estate agent to locate apartments in
Stockholm).

Education is another domain in which language
and animated agent technologies can be combined.
At this point, it is necessary to remark that there is a
CSLU Toolkit which integrates an animated agent
named Baldi. This toolkit has been developed at
CSLU (Center of Spoken Language and Under-
standing, Oregon Graduate Institute, OGI) [7,8]
which is now being expanded at CSLR (Center for
Spoken Language Research at University of Color-
ado) [9]. This toolkit facilitates the speedy develop-
ment of interactive books with multimedia resources
and natural interaction. Nowadays, researchers
have generated systems and architectures for
representing and managing behaviors of animated
agents. In [10,11], the authors present a good
overview of computational models for developing
believable virtual humans.

Not only research centers but also companies like
Microsoft and IBM are interested in animated
agents. Microsoft has developed a software plat-
form [12] where users can use several animated
agents or create new ones (http://www.microsoft.
com/msagent/). This platform began with the
Persona Project [13]. IBM is also interested in
technology which will be the future for human–
computer interfaces. In both the aforementioned
systems, the synergy between language and virtual
agent technologies is due to the fact that virtual
humans offer a friendlier computer–user interface.
This synergy becomes stronger in our case where we
want to develop a system to translate speech into
gestures for Deaf people. In the recent years several
groups have shown interest in machine translation
for Sign Languages, developing several prototypes
based on different language translation techniques:
example-based [14], rule-based [15], full sentence
[16] or statistical [17] approaches. In a speech to sign
language translation system, the virtual agent
appears as an essential part of the system. It
represents the gestures obtained from the semantic
analysis of the recognized words. All of the
aforementioned agent platforms suffer the incon-
venience of the great effort needed to develop the
agent animations. This is one of the problems we
focus on in this paper: the development of a
platform where minimal effort is required to create
a new agent animation. This is an important aspect
because the amount of gestures required by our
system is higher than those of the aforementioned
systems.

Sign Languages vary greatly depending on the
country and even between different regions within
the country. In 1960, Professor William Stokoe [18]
presented the first conclusions from several studies
on ASL (American Sign Language). After these
studies, new works appeared not only in the USA
[19,20] but also in Europe [21–23], Africa [24] and
Japan [25]. In Spain, during the last twenty years,
there have been several proposals for normalizing
Spanish Sign Language (SSL), but none of them has
been very well received by the Deaf community.
These proposals tend to constrain the sign language,
limiting its flexibility. In 1991, MA. Rodrı́guez [26]
carried out a detailed analysis of SSL illustrating the
main characteristics. She detailed the differences
between the sign language used by Deaf people and
the standardization proposals. This work has been
one of the main studies on SSL and it has been the
main reference for our work. Because of variations
in SSL (even between different regions in Spain), we
have proposed a flexible architecture which is easy
to modify. The system’s behavior is defined in
auxiliary text files also easily modified by system
developer (the person who adapts the architecture
proposed in this paper to a specific domain): a
context-free grammar, generation rules and gesture
animations (Fig. 1).

In Section 2, we present an overview of the
architecture describing the principal modules. Sec-
tion 3 describes the speech recognizer. Section 4
presents the Phoenix parser. In Section 5, the
gesture sequence generation module is described.
Section 6 shows the gesture-playing module and the
tools needed to generate the agent animations.
Finally, Section 7 summarizes the main conclusions

http://www.microsoft.com/msagent/
http://www.microsoft.com/msagent/

ARTICLE IN PRESS

SPEECH
RECOGNIZER

SEMANTIC
ANALYSIS

TEXTSPEECH

GESTURE
SEQUENCE

GENERATION

CONCEPTS

GESTURE
PLAYING

GESTURES

GESTURE
ANIMATION

POSITION
GENERATION

POSITIONS

Gesture
Animations

Generation
Rules

Context Free
Grammar

Language and
Acoustic
Models

Trajectories
and Timings

Fig. 1. Speech to gesture translation architecture.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 525
of the work and Section 8 presents several avenues
of further research.

2. System overview

In Fig. 1, we show the architecture proposed for
translating speech into gestures for Deaf people. In
this diagram, we have remarked on the four main
modules, which carry out the four steps needed in
the translation process: speech recognition, seman-
tic analysis, gesture sequence generation and gesture
playing. The position generation and gesture
animation modules permit the animations needed
by the gesture-playing module to be generated.

The first module (speech recognition) converts
speech utterances into text words. For this module,
we have used the latest version of the IBM ViaVoice
software for Spanish. It is a voice recognition
product that includes essential dictation, and
command/control features. This module uses lan-
guage and acoustic models adapted to Spanish
pronunciation.

The semantic analysis module carries out a
semantic evaluation of the text sentence (output
from the speech recognizer) extracting the main
concepts related to the application domain. For this
module, we have used the Phoenix v3.0 parser
developed at CSLR. This parser uses a context-free
grammar to extract the semantic concepts from the
word sequence.
The gesture sequence generation module pro-
cesses the semantic analysis output and assigns a
sequence of gestures to the semantic concepts. In
this process, we consider four situations: one
concept is mapped onto a unique gesture, one
concept generates several gestures, some concepts
are mapped onto a unique gesture, and finally,
several concepts generate several gestures. We have
studied different analyses of SSL [26,27] and we
propose solutions for the four aforementioned
situations. To resolve these situations, we consider
both the Context-Free Grammar (semantic
analysis module) and the Generation rules (gesture
sequence generation module). The semantic analysis
and the gesture sequence generation modules are
designed for restricted domain services, i.e. the
Context-Free Grammar and the Generation rules
used in these modules do not contain all the
possibilities for any interacting context. When the
number of interacting contexts grow, the system
complexity increases causing a drop in perfor-
mance. Because of this, these modules must be
adapted to a specific domain like railway,
flight or weather information in order to guarantee
a good performance. In the same way, although the
IBM speech recognizer can be used for a wide
variety of contexts, the performance increases
greatly when we adapt its language and acoustic
models to the application domain and to the
speaker.

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538526
In the fourth module, an animated agent signs the
gesture sequence. This agent is a very simple
representation of a human being but it permits the
gestures of the sign language to be represented
properly. For each gesture, the system plays a
different agent animation (all gesture animations
must be created previously). Some companies and
research centers have developed animated agents for
human–computer interfaces. The main problem
with these agents is the great effort needed to create
an animation. Each animation needs at least 20
agent positions per second to guarantee a contin-
uous movement. In this paper, we propose a
strategy for generating animations with minimal
effort. In our proposal, the system automatically
creates a significant percentage of agent positions
needed to generate the animation. The system
developer only defines a few positions manually
(main positions) and several interpolation strategies
(trajectories and timings). The system uses these
main positions (two or three per second) and the
interpolation strategies to create all agent positions
needed in the continuous movement.

3. Speech recognizer

For this module we have used the latest version of
the IBM [28] ViaVoice software for Spanish: the
release 8 Standard Edition [29]. IBM ViaVoice
Standard Edition is a voice recognition product that
includes essential dictation, and command/control
features. This software permits users to dictate, edit,
correct, and format text in a speech-enabled word
processor, SpeakPad or directly into Microsoft
Word 2002, Word 2000, and Word 97 to create
letters, reports, and other documents easily. With
this software, it is also possible to control applica-
tions using the voice. In our case, we use IBM
ViaVoice for controlling our program (command
features) and for dictating the sentences that will be
translated into gestures (dictation features). The
main features of the IBM ViaVoice 8 Standard
Edition are:
�
 It comes with a 100,000 word basic vocabulary
that can be customized to add new words,
addresses, acronyms, and other personal phrases
and expressions. The developer can increase this
vocabulary. IBM ViaVoice can manage up to
164,000 active words working in real time.

�
 It knows the orthography and pronunciation of

475,000 words.
�
 The recognition engine incorporates a language
model capable of distinguishing homophones.

�
 This speech recognition software permits user

adaptation of both the acoustic and language
models. Several user profiles are possible on the
same PC.

�
 IBM ViaVoice permits dictation voice shortcuts

to be created to insert blocks of text (e.g.
greetings, addresses, salutations and quotes)
directly into your dictation documents.

�
 It incorporates noise models and background

noise adaptation to deal with noise produced by
the user (breath, lip smack, tongue click, etc.) and
the environment.

As previously stated, the translation architecture
proposed in this paper is oriented towards develop-
ing restricted domain applications such as travel or
cinema ticket reservation. In these cases, the
vocabulary used by the IBM recognizer must be
adapted to these specific domains (eliminating
useless words). Additionally, the acoustic and
language models can be adapted to the speaker.
These two facts allow us to obtain high word
accuracy.

4. Semantic analysis

This step tries to extract the main semantic
concepts from the text sentence (output from the
speech recognizer). For this module, we have used
the Phoenix v3.0 parser developed at CSLR by
Wayne Ward [30–33]. The Phoenix parser is
designed for the development of simple, robust
Natural Language interfaces to spoken language
applications. Often, spontaneous speech utterances
are ill formed causing the recognizer to make
recognition errors. Because of this, the parser needs
to be robust in order to deal with errors in
recognition.

Phoenix parses each input utterance into a
sequence of one or more semantic frames. The
system developer (the person who adapts the
architecture proposed in this paper to a specific
domain) must define a set of frames and provide
grammar rules that specify the word strings that can
fill each slot in a frame. This information is used by
the parser engine to map input word strings onto a
sequence of semantic frames. A Phoenix frame is a
named set of slots where the slots represent related
pieces of information. A frame represents some
basic type of action or object for the final speech to

ARTICLE IN PRESS

Frame: Short meeting
Nets:

[Greetings]
[Leave-takings]
[Time questions]
[Time answers]
...

 Hello
[Greetings] Hi <end>

Good [period_of_day]

Network of Greetings

Fig. 2. Example frame for short meetings.

Input: Good afternoon sir, could you tell me the time?, please

Parse: Frame: Short meetings
[Greetings](good [period_of_day](afternoon))
[Time questions](tell me [time](the time))

Fig. 3. Example-parsed output.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 527
sign language application. Fig. 2 shows an example
frame for short meetings. Slots in a frame represent
information that is relevant to the action or object.
Each slot has an associated Context-Free Grammar
that specifies word string patterns that match the
slot (grammar rules or nets). The grammar rules are
compiled into Recursive Transition Networks
(RTNs) and the slot name will be the root of the
corresponding semantic parse tree. In this parser, it
is possible to define new slots within other slots
implementing a hierarchical structure. An example-
parsed frame is shown in Fig. 3.

The parsing process is a dynamic programming
algorithm where grammars for slots are matched
against a word string to produce a slot graph. The
set of active frames defines a set of active slots. Each
slot points to the root of an associated RTN. These
networks are matched against the input word
sequence by a top-down RTN chart-parsing algo-
rithm. The parser proceeds from left to right in an
attempt to match each slot network starting with
each word of the input, as in
For (each word of input)
For (each active slot)
match_net (slot, word)
The function match_net is a recursive function
that matches an RTN against a word string
beginning at the specified word position. The
function produces all matches for the network
starting at the word position and may have several
different endpoints. The networks are not designed
to parse full sentences, just sequences of words.
Because of this, the parser is very robust for use
with automatic speech recognizers. The RTNs for
the slots call other nets in the matching process.
Each time a net match is attempted (all nets, not just
slots), this is noted in the chart. All matched
networks are added to the chart as they are found.
Any time a net match is attempted, the chart is first
checked to see if the match has been attempted
before. When a slot match is found, it is added to
the slot graph. Each sequence of slots in the slot
graph is a path. The score or metric for the path is
the number of words accounted for by the sequence.
Words are not skipped in matching a slot, but
words can be skipped between the matched slots.
The graph growing process prunes poor scoring
paths. The pruning criteria are firstly the number of
words accounted for and second, the degree of
fragmentation of the sequence. If two paths cover
the same portion of the input and one accounts for
more words than the other, the less complete is
pruned. If the two paths account for the same
number of words, and one uses fewer slots than the
other, the one with more slots is pruned. The
resulting graph represents all of the sequences found
that have a score equal to the best. The sequences of
slots represented by the graph are then grouped into
frames. This is done simply by assigning frame
labels to the slots. Again in this grouping, the least
fragmented parse is preferred. For example, if two
parses each have five slots, and one uses two frames
and the other uses three, then the parse using two
frames is preferred. The result is a graph of slots,
each labeled with one or more frame labels. Each
path through the graph, scoring equally, is a parse.
This mechanism naturally produces partial or
fragmented parses. The dynamic programming

ARTICLE IN PRESS

Good afternoon sir, could you tell me the time ? , please

Hello
[Greetings] Hi

Good [period_of_day]

Networks

What time is it
[Time questions] <end>

<end>

tell me [time]

Fig. 4. The matching process.

[Greetings](good [period_of_day](afternoon)) {G_GREETINGS}

Independent of the word string which generated the [Greetings] concept, the system
always produces the same gesture: {G_GREETINGS}

[Greetings](good [period_of_day](morning)) {G_GREETINGS_MORNING}

[Greetings](good [period_of_day](afternoon)) {G_GREETINGS_AFTERNOON}

[Greetings](hello) {G_GREETINGS_HELLO}

In this case, the gesture is different depending on the slot content.

Fig. 5. Assigning a unique gesture to a semantic concept.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538528
search produces the most complete, least fragmen-
ted parse possible, given the grammar and the input
Fig. 4.

The parser segments the input at natural break-
points and carries out garbage collection at its data
structures. This allows it to parse entire reports as
single utterances if necessary. The processing speed
is generally linear with the length of the input. More
details on the parser can be consulted in [32].

5. Gesture sequence generation from semantic

analysis

The semantic analysis output is a sequence of
parsed slots: each parsed slot is considered a
semantic concept. In this step, the gesture sequence
generation processes the semantic analysis output to
obtain the final gestures that the animated agent will
sign. In this process, we describe four situations:

5.1. One semantic concept corresponds to a specific

gesture

In this case, a semantic concept (parsed slot) is
directly mapped onto a specific gesture. The
translation is simple and it consists of assigning
one gesture to each semantic concept. This gesture
can be a default translation, independent of
the word string, or can be different depending
on the word string from which it is generated
(Fig. 5).

5.2. Several semantic concepts are mapped onto a

unique gesture

The second situation appears when several con-
cepts generate a unique gesture. This situation
should be solved in the previous step (semantic
analysis). The solution is to unify the concepts
(slots) in the parser grammar (resulting in just one
concept or slot) and to proceed as in the previous
situation (Fig. 6).

The Phoenix parser (semantic analysis) provides
the possibility of organizing the concepts (slots)
into a hierarchical structure. This fact allows
us to establish more complicated relationships
between them in order to generate a unique gesture.
As in the previous situation, the gesture being
generated may or may not differ according to the
slot content.

ARTICLE IN PRESS

[Asking](tell me) [Time] (the time) {G_ASK-TIME}

Two concepts ([Asking] and [Time]) together generate a unique gesture. To solve the
problem, we unify both slots in the parser grammar and we proceed as in the previous

situation.

[AskingTime] (tell me the time) {G_ASK-TIME}

Fig. 6. Assigning a unique gesture to several semantic concepts.

ACTION TENSE

I played football yesterday {G_PAST} {G_I} {G_PLAY} {G_FOOTBALL} {G_DATE_YESTERDAY}
[Subject](I) {G_I}
[Play](played) {G_PAST} {G_PLAY}
[Football](football) {G_FOOTBALL}
[Date](yesterday) {G_DATE_YESTERDAY}

In this example, the verb generates 2 gestures: action and tense. The tense gesture must be
introduced at the beginning of the gesture sequence. The sign language distinguishes 3 verb tense:
past, present and future. The default tense is present and it does not need to be assigned. In the
other cases, it is necessary to introduce a tense gesture at the beginning of the sentence.

SUBJECT

In Spanish (as opposed to English), it is quite common to omit the subject of the verb. This fact does
not cause any ambiguity because the verb conjugation is different depending on the action subject. In
these cases, the verb concept must generate 3 gestures: term, subject and action. In the previous
example, we could omit the subject in Spanish:

Jugué al fútbol ayer. (I played football yesterday)

Jugué al fútbol ayer {G_PAST} {G_I} {G_PLAY} {G_FOOTBALL} {G_DATE_YESTERDAY}
[Play](jugué) {G_PAST} {G_I} {G_PLAY}
[Football](fútbol) {G_FOOTBALL}
[Date](ayer) {G_DATE_YESTERDAY}

GERUND

For indicating that the action is (or was) in process, the gesture associated with the verb action is
repeated twice.

I was playing football when you arrived

{G_PAST} {G_I} {G_PLAY} {G_PLAY} {G_FOOTBALL} {G_PAST} {G_YOU} {G_ARRIVE}

[Subject](I) {G_I}

[Play](played) {G_PAST} {G_PLAY} {G_PLAY}

[Football](football) {G_FOOTBALL}

[Subject](you) {G_YOU}

[Arrive](arrived) {G_PAST} {G_ARRIVE}

Fig. 7. Type of gesture sequences generated by verb concepts.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 529
5.3. One semantic concept generates several gestures

The third situation occurs when it is necessary to
generate several gestures from a unique concept.
This problem strongly justifies the need for the
gesture sequence generation module. Similar to
previous sections, the gesture sequence and its order
can depend on the concept and its content, or just
on the concept. This situation appears in many
translation issues:
�
 Verbs. A verb concept generates a gesture related
to the action proposed by the verb and some
gestures provide information about the action
tense (past, present or future), the action subject
and gerund action (Fig. 7).

ARTICLE IN PRESS

I need furniture for my house {G_I} {G_NEED} {G_TABLE} {G_CHAIR} {G_MY} {G_HOUSE}

[Subject](I) {G_I}

[Need](need) {G_NEED}

[Furniture](furniture) {G_TABLE} {G_CHAIR}

[Possessive](my) {G_MY}

[House](house) {G_HOUSE}

In this example, the furniture concept has no associated gesture so it must be represented by several
gestures related to specific nouns (table and chair) included in this general noun.

Fig. 8. Gestures for general nouns not presented in the sign language.

[Clay] {G_LAND} {G_WITH} {G_WATER}

[Quarry] {G_STONE} {G_EXCAVATE} {G_MOUNTAIN}

[Burrow] {G_HOLE} {G_EXACTLY} {G_RABBIT} {G_HOME}

[Fence] {G_GREEN} {G_DEFENSE}

Fig. 9. Examples of Lexical–Visual Paraphrases.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538530
�

[Week-end] {G_SATURDAY} {G_SUNDAY}

[Hospital] {G_PATIENT} {G_HOUSE}

[Democracy] {G_VOTE} {G_LIBERTY}

Fig. 10. Examples of Complex Signs.
General and Specific Nouns. In sign language
there is a tendency to refer to objects with high
precision or concretion. As a result of this, there
are numerous domains where several specific
nouns exist, but there is no general noun to refer
to them collectively. For example, this happens
with metals: there are different gestures to refer
to gold, silver, copper, etc. but there is no general
gesture to refer to the concept of metal. The same
thing happens when considering furniture: there
are several gestures for table, chair, bed, etc. but
there is no general gesture to refer to the concept
of furniture. This problem is solved in sign
language by introducing several specific gestures
(Fig. 8).

�
 Lexical–Visual Paraphrases. Frequently, new

concepts (in Spanish) appear and they do not
correspond to any gesture in sign language. In
order to solve this problem, Deaf people use
paraphrases to represent a new concept with a
sequence of known gestures. This solution is the
first step for representing a new concept. If this
concept begins to appear frequently, the gesture
sequence will be replaced by a new gesture for
reducing the representation time. Some examples
of Lexical–Visual Paraphrases are shown in
Fig. 9.

�
 Complex Signs. Similar to the paraphrases,

complex signs are made up of several gestures.
Each of theses gestures can be used indepen-
dently but they are represented together in order
to show another concept. Some examples are
shown in Fig. 10.

�
 The gestures are language representations which

are more difficult to memorize and distinguish
than words. Because of this, the gesture dic-
tionary is smaller than the Spanish word
dictionary. This fact makes it necessary to
combine gestures (complex signs) in order to
represent other concepts.

�
 Date and Time. As it is shown in Fig. 11, a date

representation can be made with one or several
gestures. The time generally requires several
gestures for a full representation.

�
 Emphasis. When you want to emphasize some

aspect of a sentence, the way of doing so is by
repeating the associated gesture. For example, if
we want to emphasize the possessive ‘‘my’’ in the
sentence ‘‘this is my house’’, we should repeat the
associated gesture. Nowadays, the commercial
speech recognizers do not detect emphasis or
emotion in the speech, so this aspect cannot be
translated into sign language. We expect that this

ARTICLE IN PRESS

[Date](tomorrow) {G_TOMORROW}

[Date](May 3
rd

, 2001) {G_MAY} {G_THIRD} {G_TWO} {G_THOUSAND} {G_ONE}

[Time](4:35) {G_HOUR} {G_FOUR} {G_AND} {G_THIRTY} {G_FIVE}

[Time](6:45) {G_HOUR} {G_SEVEN} {G_QUARTER_TO}

Fig. 11. Dates and Times examples.

[House](houses) {G_HOUSE} {G_HOUSE}

[Apple](apples) {G_SEVERAL} {G_APPLE}

[Car](cars) {G_CAR_2HANDS}

Fig. 12. Plural noun examples.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 531
characteristic can be available in the near future.

�
 Plural Nouns. There are several ways of specify-

ing an object in plural (all of them with the same
meaning): repeating the gesture, introducing an
adverbial gesture or representing the gesture
with both hands. In Fig. 12, we show several
examples.

�
 Gender. A new gesture can be introduced into

the sequence to indicate the gender of some
object. Generally the gender can be deduced by
context and it is not necessary to specify it. This
gesture appears when the gender is necessary for
the meaning or we want to remark on this fact.
5.4. Several semantic concepts generate several

gestures

Finally the most complicated situation appears
when it is necessary to generate several gestures
from several concepts with certain relationships
between them. Some examples are the followings:
�
 Verb/action gesture depending on the subject of
the action. For example, the verb ‘‘fly’’ is
represented with different gestures depending
on the subject of the action: bird, plane, butterfly,
etc.

�
 A similar situation crops up when the gesture

associated when an adjective changes depending
on the qualified object. For example, the gesture
for the adjective ‘‘good’’ is different when
referring to a person or a material thing.

These cases, presented in this section, are less
frequent than those presented in Sections 5.1–5.3.
In our system, the cases presented in this section are
solved by mixing the strategies carried out in
Sections 5.2 and 5.3. First, we group the different
concepts under a unique concept structure, and then
we apply similar strategies as in Section 5.3, to
generate a gesture sequence from a unique semantic
concept structure. The characteristics of the sign
language used by Spanish people have been
extracted from [26] where we obtained an extended
and detailed description.

6. Gesture animation

In order to represent the gesture sequence
(generated in the previous module), we have
developed an animated agent. This agent is a simple
representation of a human person but it is detailed
enough to represent the gestures used in sign
language. In this section, we focus on the descrip-
tion of this agent and gesture design. Around the
world, several companies and research centers have
developed animated agents for human–computer
interfaces. The main problem with these agents is
the great effort needed to build an animation: it is
necessary to generate several agent positions per
second in order to obtain a continuous movement.
One of the main issues dealt with in this section is
the way to generate gesture animations from a very
small number of agent positions. The main target
for us has been to reduce drastically the effort in
gesture design.

6.1. The animated agent: AGR (agent for gesture

representation)

For representing the gestures, we have developed
a very simple animated agent. This agent is made up
by combining rectangles, circles and different sized
lines (Fig. 13).

The AGR is made up of five fixed points (the
center of the circular head and the four points of the
rectangular torso) and 60 mobile points: 18 for the
right arm, hand and fingers, 18 for the left arm,

ARTICLE IN PRESS

Fig. 13. AGR: agent for gesture representation.

NORMAL SAD SURPRISED

WINK ANGRY HAPPY

RIGHT TURN

LEFT TURN

Fig. 14. Facial expressions.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538532
hand and fingers, and 24 for the face representation
(eyes, mouth, eyebrows and two hairs).

6.2. AGR’s head and face

The AGR’s head is represented by several lines
compiled from 24 points and three circumferences:
two for the pupils and another for the outline of the
head. Each eye is made up of four points connected
by four lines, and each eyebrow is a single line. The
mouth is drawn using five points and five lines
(two for the upper lip and three for the lower lip).
The two hairs are represented by three points and
two lines each (with the same point of origin).
Although, they are not necessary, they help to
reinforce the facial expression. The architecture has

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 533
the possibility to hide the hair. This possibility is
configurable by the system developer. In Fig. 14, we
show different facial expressions.

In order to simulate a head turn, it is necessary to
change the position (inside the head) and the size of
eyes, eyebrows and mouth (Fig. 14).
6.3. AGR’s arm and hand

For the arm and hand representation, we use 18
points and 15 lines. Two points represent the arm:
shoulder and elbow. For the hand, we use 16 points:
one for the wrist, two additional points for the palm
of the hand and 15 for the fingers (knuckle, phalanx
and tip). The forefinger and little finger knuckles
coincide at the corners of the palms (Fig. 15). In
order to distinguish the front (palm) and the back of
the hand, we have incorporated the possibility of
changing the color of the hand: white to refer to the
front of the hand (palm) and gray to refer to the
back (Fig. 15).

The finger lines are drawn in a lighter shade of
gray in order to identify their movements easily.
Although the color of the back of the hand is the
same as the color of the fingers, it is not a problem.
In a normal movement, fingers are never bent over
the back of the hand.

Three articulating points per finger (knuckle,
phalanx and tip) are enough to represent clearly
the gestures in sign language. In Fig. 16, we show
the hand letter positions (dactylography).

In order to specify an agent position, we have
developed a new tool where the system developer
can modify and set up the AGR position: face, arm
and hand positions. This tool has the following
characteristics:
�
 For each agent point or agent region, the system
developer can define different representation
planes (from zero to six). These planes represent
the distance from the view point: six is the closest
plane and zero the furthest away plane. This
Fig. 15. Arm and han
utility permits the developer to specify which
lines are drawn first and which should be drawn
subsequently. The tool begins drawing the lines
and points associated with the lower representa-
tion plane. By default, when all the points are in
the same representation plane, the program
draws the agent parts in the following order:
head, torso, right arm, right hand, left arm and
finally, the left hand (wrist, palm and fingers).

�
 The head, torso and palms are opaque regions. If

another body part is in the same position as any
of these regions, and it has a lower representation
plane, it will not appear in the drawing. That
region will hide this part of the body.

�
 The position tool permits the developer to store/

recover any definition of agent position in/from a
file. This is an important feature for the genera-
tion of the agent animation (see the next section).

�
 In order to generate agent positions faster, the

tool offers the possibility to store/recover several
parts of the agent independently: head and right
or left hands. It is possible to combine different
face expressions with several hand gestures.

�
 Furthermore, the tool provides a zoom utility to

facilitate the design of details.

When specifying the agent position, the program
establishes limitations concerning the length of
some parts: arm, fingers, eyebrow, etc. The target
is to avoid generating extremely deformed gestures.
It also checks some conditions, e.g. that eyes,
eyebrow and mouth are within the head limits, or
that the pupil is situated within the eye limits.
6.4. Obtaining gesture animations from agent

positions

An animation is generated automatically from a
very small set of agent positions. These are defined
in advance using the tool described in the previous
section. The main target of this module is to
generate an animation using as few positions as
d detail.

ARTICLE IN PRESS

Fig. 16. Signs for the letters.

INITIAL

FINAL

Fig. 17. Trajectory specification.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538534
possible in order to reduce drastically the effort of
generating gesture animations. A typical gesture
takes approximately 2 s. This means that, consider-
ing 20 frames per second (for a continuous move-
ment), we should create 40 frames/agent positions
for a typical gesture. In sign language, there are
more than 5000 different gestures. Animation
creation is no trivial task. In this paper, we propose
a strategy that reduces this effort. The main idea is
to define a small number of frames/positions
(around four or five per gesture), and to generate
the intermediate positions automatically. The pro-
gram creates these frames by interpolation. For any
subsequence (positions created automatically be-
tween two positions defined by the developer), the
system developer can specify different interpola-
tions. In order to design an interpolation, it is
necessary to define two aspects: the trajectory and
timing.
6.5. Trajectory specification

The developer can define the trajectory that any
point of the agent body will follow when moving
from the initial to the final position (see Fig. 17).

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 535
The trajectory is specified by the developer in a
visual interface (with an adequate zoom) by moving
the mouse cursor.

When the developer defines a trajectory, this
trajectory can be assigned to a unique mobile point,
a set of mobile points, or to all mobile points. No
trajectory is assigned to a static point of the agent.
For the mobile points for which the developer does
not define any trajectory, the program generates a
rectilinear one by default. This allows a complete
specification. The default trajectory is not fixed and
can also be modified by the developer.
6.6. Interpolation timing

The second aspect to define is the timing: how fast
the point passes through the different parts of the
trajectory. The trajectory is a continuous line
(infinite points) but the number of intermediate
positions is small: around 10. Because of this, the
developer needs to specify where, in the trajectory,
the mobile point will be situated for each of the
interpolated positions. In the same visual interface
(Fig. 18), several intermediate circles appear, as
many as there are intermediate positions. The
developer can position each circle at any trajectory
point (as it is not possible to change the circle
order).

When the developer defines timing, it is asso-
ciated with a unique mobile point, a set of mobile
points or to all mobile points. Two points with the
same trajectory can have different timings. By
default, if no timing is specified, the program
positions the intermediate points equidistantly.
The interpolated positions/frames are created by
the program combining the trajectory and timing
INITIAL

FINAL

1

2

3

4 5

Fig. 18. Timing specification with five intermediate positions.
associated to each point. In this process, as in the
position module, the program checks for limitations
concerning the length of some parts of the body.
The goal is to avoid generating extremely deformed
gestures. It also checks certain conditions, e.g. that
eyes, eyebrow and mouth must be within the head
limits, or the pupil should be situated within the eye
limits.

The gesture animation can be stored in a file;
completely or partly (a sub sequence of frames). The
subsequences are very useful for new gesture design.

6.7. Playing a sequence of gestures

As previously mentioned, a gesture animation is
treated (and stored) as a set of agent positions (20
positions per second). When we want to play a
sequence of gestures, we need to carry out two
actions: first we concatenate the gesture animations
in order to produce a continuous movement, and
second, we define the speed of play. These two
actions are described in the following sections.

6.8. Gesture concatenation

When concatenating two gestures, it is necessary
to introduce new agent positions between the last
position of a gesture and the first position of the
next gesture. This action is very important in order
to produce a continuous movement. One issue is to
decide how many positions should be included
between the two gestures. In this paper, we propose
a variable number depending on the difference
between the first and last positions of the con-
secutive gestures. The measuring of agent position
difference, proposed in this paper, is the average
Euclidean distance for all mobile points from one
agent position to another: Eq. (1), where N is the
number of mobile points and Pn Position X is the
mobile point n in agent position X:

Position Difference ¼

Pn¼N
n¼1 Euclidean Dist ðPn position 2 � Pn position 1Þ

N
.

(1)

The greater the difference, the higher the number
of positions should be and vice versa. The relation-
ship between the Position Difference and the
number of agent positions is given by Eq. (2),
where PD is the Position Difference (see its
representation in Fig. 19).

Number of Positions ¼ 20� 17eaPD (2)

ARTICLE IN PRESS

20

3
Position Difference

N
um

be
r

of
 P

os
iti

on
s

Fig. 19. Number of positions vs. position difference.

R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538536
The a parameter can be modified. The target of
this relationship is twofold: to guarantee a mini-
mum number of positions for small differences and
to define a limit of 20 intermediate positions, in
order to avoid a long transition. The intermediate
positions between two gestures are generated auto-
matically by interpolation. The trajectory and the
timing are the default strategies defined in the
previous section: rectilinear trajectory and equidi-
stant timing.

Expanding the ideas shown in this section, we
propose a measure for the complexity of a gesture.
This measure is the average Position Difference
between consecutive agent positions throughout the
gesture, Eq. (3), where M is the number of position
in the gesture.

Gesture Complexity ¼

Pm¼M�1
m¼1 position Difference ðm;mþ 1Þ

M � 1
.

(3)

The idea of proposing a gesture complexity
measure is to define empirical measurements to
compare them to how users perceive the gestures.
This comparison permits the gesture to be modified
according to these measurements. Greater gesture
complexity could be associated with a more difficult
gesture and it should be played more slowly.
In further research, we plan to study the relation-
ship between these measurements and gesture
perception.

6.9. Synchronization

The final aspect we must keep in mind is the speed
of the gesture sequence. This aspect is defined by the
time between two consecutive agent position repre-
sentations. If we want to slow the gesture, we
increase this time and vice versa. Typically, there is
a relationship between the duration of the utterance
and the duration of the gesture sequence. The
gesture sequence is around one and half and two
times longer than the utterance duration. In some
situations, the speaking rate (in phones per second)
can vary significantly from one utterance to
another. This variation can be also applied to the
gesture sequence in two steps: first, we compute the
percentage of increase or decrease in respect
to the average speaking rate and then, this
percentage is applied to the standard gesture
sequence duration:
�
 If it is necessary to increase the gesture speed, the
program automatically reduces the time between
positions.

�
 On the other hand, if the program needs to reduce

the speed, the time between positions is increased.
In this case, there is a risk of loss of gesture
continuity. When the number of positions per
second is less than 15, the program interpolates
new frames/positions using a rectilinear trajectory
and an equidistant timing for the mobile points.

6.10. Gesture animation quality

In order to evaluate the quality of the gesture
animation, we have performed a preliminary study
about how Deaf people perceive gestures played by
AGR. In this study 10 people (all of them knew SSL
very well) have been asked to recognize several
gestures played by the system. The system presents a
gesture and the user has to recognize it. In order to
evaluate the gesture animation, we have decided to
consider the gestures corresponding to the letters
(dactylography). This decision has been made based
on two reasons:
�
 Using isolated gestures avoids the user recogniz-
ing the gesture using context information. This

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538 537
kind of information can be very useful when
recognizing gestures in a logical sequence.

�
 Secondly, letter gestures are very similar and they

are a very good benchmark for evaluating the
gesture animation quality.

The evaluation process was carried out in two
steps:
�
 In the first step, 50 gestures were randomly
selected and presented to every user. For every
gesture, the user had to recognize the letter. At
this point, more than 70% of the letters were
correctly recognized. After this evaluation, the
users were informed about which letters were
recognized incorrectly.

�
 In a second step, another 50 gestures were

presented to every user. In this case, almost
100% of the letters were recognized correctly. As
the gesture is always played in the same way, the
user learns easily how the system represents the
gesture and recognizes it easily.

7. Conclusions

In this paper, we have proposed an architecture
for a speech-to-gesture translator made up of four
modules: speech recognizer, semantic analysis,
gesture sequence generation and gesture sequence
animation (gesture playing). The main effort in this
work has focused on the gesture sequence genera-
tion and gesture animation. The gesture sequence
generation is applied over the semantic analysis
provided by the Phoenix parser. The most complex
case is when a semantic concept generates several
gestures. For this case, the detailed description of
the SSL carried out by Rodrı́guez [26], has been
very useful.

For the gesture animations, we have developed an
animated agent and a strategy for reducing the
gesture design time. This strategy consists of
combining agent positions created by the developer
and positions generated automatically by the
system. The position generation is carried out by
interpolation considering the previously designed
point trajectories and timings.

In this work, we have also proposed a position
distance metric and a measurement of gesture
complexity. This measurement can be used to
analyze the gesture perception versus its complexity.
Although we have not carried out a complete
evaluation as to how Deaf people perceive our
agent gestures, preliminary evaluations with the
letters of the alphabet reveal that Deaf people find
less than 30% of the gestures difficult to under-
stand. These situations occur only the first time the
gesture is played. The subsequent times, as the
gesture is always played in the same way, the Deaf
person recognizes it easily.

With the architecture proposed, we do not want
to build a domain independent translator but a
system able to translate speech utterances into
gesture sequences in a restricted domain: railway
information, weather information, etc.
8. Future work

Three main ideas seem worthwhile for future
research:
�
 The first is to evaluate in depth how Deaf people
perceive the gestures played using our AGR
agent. We will also try to establish a possible
relationship between this perception and gesture
complexity.

�
 The second is to carry out a more sophisticated

method for gesture design. The idea is to develop
a program able to generate all the positions of a
gesture using several gesture characteristics: hand
orientation, finger movement, articulation point,
etc. For each characteristic, the developer will
choose a value from a finite set.

�
 The last one is the possibility of collaborating

with another research group working in gesture
recognition in order to build a bi-directional
system.

Acknowledgments

This work has been supported by the following
projects TINA (UPM y DGUI-CAM. ref: R05/
10922), ROBINT (MEC ref: DPI2004-07908-C02)
and EDECAN (MEC ref: TIN2005-08660-C04).
Authors also want to thank Mark Hallett for the
English revision and the anonymous reviewers who
helped with their comments to improve the quality
and clarity of the presentation.
References

[1] J. Cassell, T. Stocky, T. Bickmore, Y. Gao, Y. Nakano, K.

Ryokai, D. Tversky, C. Vaucelle Vilhjálmsson,MACK:Media

lab Autonomous Conversational Kiosk, in: Proceedings of

ARTICLE IN PRESS
R. San-Segundo et al. / Journal of Visual Languages and Computing 19 (2008) 523–538538
Imagina: Intelligent Autonomous Agents, Monte Carlo,

Monaco, 2002.

[2] J. Gustafson, Developing multimodal spoken dialogue

systems- Empirical studies of spoken human-computer inter-

actions, PhD. Dissertation, Department of Speech, Music

and Hearing, Royal Institute of Technology, Stockholm,

Sweden, 2002.

[3] B. Granström, D. House, J. Beskow, Speech and Gestures

for Talking Faces in Conversational Dialogue Systems,

Multimodality in Language and Speech Systems, Kluwer

Academic Publishers, Donrecht, 2002 pp 209–241.

[4] J. Bertenstam, et al., The Waxholm system-A progress

report, in: Proceedings on Spoken Dialogue Systems, Vigso,

Denmark, 1995.

[5] M. Lundeberg, J. Beskow, Developing a 3D-agent for the

August dialogue system, in: Proceedings on Audio–Visual

Speech Processing, Santa Cruz, CA, 1999.

[6] J. Gustafson, L. Bell, Speech technology on trial: experiences

from the August system, Journal of Natural Language

Engineering: Special Issue on Best Practice in Spoken

Dialogue Systems (2003) 273–286.

[7] S. Sutton, R. Cole, Universal speech tools: the CSLU toolkit,

in: Proceedings of the International Conference on Spoken

Language Processing, Sydney, Australia, 1998, pp. 3221–3224.

[8] R. Cole, et al., New tools for interactive speech and language

training: using animated conversational agents in the class-

rooms of profoundly deaf children, in: Proceedings ESCA/

SOCRATES Workshop on Method and Tool Innovations

for Speech Science Education, London, 1999, pp. 45–52.

[9] R. Cole, S. Van Vuuren, B. Pellom, K. Hacioglu, J. Ma, J.

Movellan, S. Schwartz, D. Wade-Stein, W. Ward, J. Yan,

Perceptive animated interfaces: first steps toward a new

paradigm for human computer interaction, IEEE Transac-

tions on Multimedia: Special Issue on Human Computer

Interaction 91 (9) (2003) 1391–1405.

[10] W.L. Johnson, J.W. Rickel, J.C. Lester, Animated pedago-

gical agents: face-to-face interaction in interactive learning

environments, International Journal of artificial Intelligence

in Education 11 (2000) 47–78.

[11] J. Gratch, J. Rickel, E. André, N. Badler, J. Cassell, E.

Petajan, Creating interactive virtual humans: some assembly

required, IEEE Intelligent Systems 17 (4) (2002) 54–63.

[12] Microsoft Agent web. /http://www.microsoft.com/msagent/

index.htmlS.

[13] G. Ball, D. Ling, D. Kurlander, J. Miller, D. Pugh, T.

Skelly, A. Stankosky, D. Thiel, M. Van Dantzich, T. Wax,

Lifelike Computer Characters: the Persona Project at

Microsoft Research, 1999, /www.microsoft.comS.

[14] S. Morrissey, A. Way, An example-based approach to

translating sign language, in: Workshop Example-Based

Machine Translation (MT X–05), Phuket, Thailand,

September, 2005 pp. 109–116.

[15] M. Huenerfauth, A multi-path Architecture for Machine

Translation of English Text into American Sign language

animation, HLT-NAACL, Boston, MA, USA, 2004.
[16] S.J. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M. Wells,

M. Tutt, S. Abbott, TESSA, A System to Aid Communica-

tion with Deaf People, ASSETS, Edinburgh, Scotland, 2002,

p. 205–212.

[17] J. Bungeroth, H. Ney, Statistical sign language translation,

in: Workshop on Representation and Processing of Sign

Languages, LREC, 2004, pp. 105–108.

[18] W. Stokoe, Sign Language structure: an outline of the visual

communication systems of the American deaf, Studies in

Linguistics, Buffalo University Paper 8, 1960.

[19] L.B. Anderson, Aspect in Sign Language Morphology: The

Role of Universal Semantics and Pragmatics in Determining

Grammatical categories, Linguistics Research Laboratory,

Gallaudet College (for the Symposium on Tense/Aspect:

between semantics and pragmatics, UCLA, 4–6 May),

1979.

[20] C. Christopoulos, J. Bonvillian, Sign Language, Journal of

Communication Disorders 18 (1985) 1–20.

[21] B. Hansen, Varieties in Danish Sign Language, Sign

Language Studies 8 (1975) 249–256.

[22] J. Kyle, British Sign Language, Special Education 8 (1981)

19–23.

[23] B. Frokjaer-Jensen, The sciences of deaf signing, Copenhagen

University 1980.

[24] C. Penn, R. Lewis, A. Greenstein, Sign Language in South

Africa, South African Disorder of Communication 31 (1984)

6–11.

[25] M. Notoya, S. Suzuki, M. Furukawa, R. Umeda, Method

and acquisition of sign language in profoundly deaf infants,

Japan Journal of Logopedics and Phoniatrics 27 (1986)

235–243.

[26] M.A. Rodrı́guez, Lenguaje de signos, PhD. Dissertation,

Confederación Nacional de Sordos Españoles (CNSE) and

Fundación ONCE, Madrid. Spain, 1991.

[27] O. Juncos, A. Caamaño, MJ. Justo, E. López, RM. Rivas,

MT. López, F. Sola, Primeras palabras en la lengua de

signos española (LSE). Estructura formal, semántica y con-

textual, Dpto. Psicologı́a Evolutiva, Facultad de Psicologı́a,

Universidad de Santiago de Compostela, Federación de

Asociaciones de Sordos del Paı́s Gallego, 1996.

[28] IBM, web: /http://www.ibm.com/S.

[29] Outsource-sl, web:/http://www.outsource-sl.com/fabricantes/

IBM/ViaVoiceStd.htmS.
[30] W. Ward, Extracting information from spontaneous speech,

International Conference on Spoken Language Processing,

September, 1994.

[31] W. Ward, B. Pellom, The CU Communicator System, in:

Proceedings of the IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), Keystone,

Colorado, 1999.

[32] W. Ward, B. Pellom, 2002. The Phoenix Parser User

Manual, downloadable from /http://cslr.colorado.edu/

beginweb/cumove/cucommunicator.htmlS.

[33] Phoenix Parser Software, /http://cslr.colorado.edu/beginweb/

cumove/cucommunicator.htmlS.

http://www.microsoft.com/msagent/index.html
http://www.microsoft.com/msagent/index.html
http://www.microsoft.com
http://www.ibm.com/
http://www.outsource-sl.com/fabricantes/IBM/ViaVoiceStd.htm
http://www.outsource-sl.com/fabricantes/IBM/ViaVoiceStd.htm
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html
http://cslr.colorado.edu/beginweb/cumove/cucommunicator.html

	Proposing a speech to gesture translation architecture for Spanish deaf people
	Introduction
	System overview
	Speech recognizer
	Semantic analysis
	Gesture sequence generation from semantic analysis
	One semantic concept corresponds to a specific gesture
	Several semantic concepts are mapped onto a unique gesture
	One semantic concept generates several gestures
	Several semantic concepts generate several gestures

	Gesture animation
	The animated agent: AGR (agent for gesture representation)
	AGR’s head and face
	AGR’s arm and hand
	Obtaining gesture animations from agent positions
	Trajectory specification
	Interpolation timing
	Playing a sequence of gestures
	Gesture concatenation
	Synchronization
	Gesture animation quality

	Conclusions
	Future work
	Acknowledgments
	References

