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Abstract—Human-machine interaction in meetings requires the localization and identification of the speakers interacting with the

system, as well as the recognition of the words spoken. A seminal step toward this goal is the field of rich transcription research, which

includes speaker diarization together with the annotation of sentence boundaries and the elimination of speaker disfluencies. The

subarea of speaker diarization attempts to identify the number of participants in a meeting and create a list of speech time intervals for

each such participant. In this paper, we analyze the correlation between signals coming from multiple microphones and propose an

improved method for carrying out speaker diarization for meetings with multiple distant microphones. The proposed algorithm makes

use of acoustic information and information from the delays between signals coming from the different sources. Using this procedure,

we were able to achieve state-of-the-art performance in the NIST spring 2006 rich transcription evaluation, improving the Diarization

Error Rate (DER) by 15 percent to 28 percent relative to previous systems.

Index Terms—Speech source separation, speaker diarization, speaker segmentation, meetings recognition, rich transcription.
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1 INTRODUCTION

HUMAN-MACHINE interaction in meetings requires the
localization and identification of the speakers inter-

acting with the system, as well as the recognition of the
words spoken. A seminal step toward this goal is the field
of rich transcription research, which includes speaker
diarization together with the annotation of sentence
boundaries and the elimination of speaker disfluencies.
The rich transcription research area was initially motivated
by the problem of speech transcription for increasingly
complex audio sources: telephone conversations, broadcast
news (BN), and meeting domains. The goal is to annotate
the data with as much detail as possible with regard to
speaker turns, sentence units, and so forth, for possible
downstream applications (for example, indexing, transla-
tion, and so forth). With this ambitious objective in mind,
several years ago, the US National Institute of Standards
and Technology (NIST) started a series of evaluations to
tackle this problem and defined the field of rich transcrip-
tion to complement speech-to-text transcription or speech
recognition [1]. One of the tasks defined by NIST was
speaker diarization. For the meeting domain, speaker

diarization is the task of identifying the number of
participants in the meeting and creating a list of speech
time intervals for each participant. It is important to note
that diarization as defined by NIST is carried out without
any prior knowledge of the location or identity of the
speakers in the room, the location or quality of the
microphones, or the details of the acoustics of the room.
Although prior knowledge of the microphone locations
would permit precise speaker localization and segmenta-
tion, as used in [2], [3], [4], and [5], these types of methods
cannot be used in this task since microphone locations are
not available in the NIST diarization evaluation.

One use of speaker diarization is to aid the transcription
task. Instead of just transcribing a recording into unorga-
nized text, the transcription is annotated with a different
label for each speaker. Later, if we knew in advance the set
of possible speakers that would appear in the recording, we
could use a speaker verification algorithm to assign an
identified speaker to every label. A transcription annotated
in this manner is more readable and useful. It could also be
used for automatic speaker indexing of audio documents.

A second possible application of speaker diarization is to
aid in the application of adaptation techniques to speech
recognition. Once we know the regions that correspond to a
speaker, we can adapt the recognizer to do a better job by
using speaker-dependent speech recognition. A good
introduction to the topic of audio diarization and speaker
diarization is given in [6].

Finally, the methods used for carrying out speaker
diarization—particularly, if they use delays between signals
—will surely be relevant in the more difficult task of online
speaker diarization (identifying who is speaking in a
meeting and what is being said), particularly if only
multiple microphones are available (with no video cameras)
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and several speakers can talk at the same time (there is
overlapping speech).

Since 2002, NIST has included speaker diarization as one
of the tasks evaluated in the context of rich transcription of
meetings [7], which evolved from speaker diarization for
BN and telephone conversations. In 2002, the evaluation
was carried out using a single distant microphone (SDM).
Since 2004, the primary condition in the evaluation has
moved to multiple distant microphones (MDM).1

In the rest of this section, we present an introduction to
the methods used in speaker diarization, classifying the
topic into two different sections. Section 1.1 explains
diarization methods for tasks in which a single (distant)
microphone is available. Section 1.2 tackles the topic of
speaker diarization when several distant microphones can
be used. Finally, a summary of the contents of the rest of the
paper is given.

1.1 Speaker Diarization for Meetings Using an SDM

In general, the approaches used in the literature for speaker
diarization using an SDM or a single recording signal have
their basis in previous audio segmentation and diarization
systems from the BN domain [6], [8], [9], [10], [11]. A good
overview of this topic has recently been published [11]. The
process usually starts by finding and eliminating nonspeech
frames from the recording. This task is sometimes difficult
since nonspeech may include silence, music, laughter, breath,
lip smack, paper shuffling, and so forth. There are several
ways of accomplishing this. The first is to use maximum
likelihood classification with two Gaussian Mixture Models
(GMM): one for speech and one for silence and other sounds,
as in [12]. Other authors explicitly model noise and music
[13], [14]. Finally, speech detection can also be made using a
phone recognizer or a word recognizer [15].

The next step in the process is to find points of acoustic
changes in the signal and create acoustically homogeneous
segments (segmentation). This is done by analyzing
adjacent windows of data and calculating the distance
between them [17]. In integrated systems, such as the one
used at our laboratory at the International Computer
Science Institute (ICSI), there is no need to carry out this
step explicitly [18]. The next step, which is especially
relevant in BN, although it is optional, is to classify these
segments into male/female, narrow band/high band, and
so forth. The homogeneous segments are then hierarchically
clustered to combine acoustically similar segments appear-
ing at different times in the show. One limitation of this
method is that errors made in the segmentation step cannot
be corrected later. More advanced systems resegment the
signal after the clustering and further cluster the segments
in an iterative process [10].

The Laboratoire d’Informatique d’Avignon (LIA) sys-
tem and the Communication Langagiere et Interaction
Personne Systeme-Institut d’Informatique et Mathema-
tiques Appliquées de Grenoble (CLIPS) system [10], [16]
are good examples for the comparison of both approaches:

step-by-step versus integrated. The CLIPS system is a
sequential system based on speaker change detection
followed by hierarchical clustering. It uses the global
likelihood ratio (GLR) for acoustic change detection and
clustering distance and the Bayesian Information Criterion
(BIC) [19] as a stopping criterion. It also uses maximum a
posteriori (MAP) adaptation to train the cluster models
from a background model. The LIA system, in contrast, is
an integrated approach that uses a dynamic Hidden
Markov Model (HMM) to generate speaker clusters top
down, retraining the models and resegmenting the show
every time a new speaker is added. Run separately, the LIA
system outperforms the CLIPS system, 16.9 percent to
19.3 percent diarization error rate (DER) on the RT03s data
set [20]. The two laboratories created a joint system using
the CLIPS system as the first module followed by the LIA
model, obtaining a 12.9 percent error and winning the
RT03s evaluation.

Tranter and Reynolds present two systems in [8]: one
from the Cambridge University Engineering Department
(CUED) and one from the Massachusetts Institute of
Technology-Lincoln Labs (MIT-LL). The CUED system uses
a step-by-step approach, although segmentation is not
carried out with an acoustic change detector but with a
phone recognizer. Clustering is carried out using arithmetic
harmonic sphericity as the distance metric and they
compare three different stopping criteria with the winner
being BIC. MIT-LL also uses a step-by-step method, where
the acoustic change detector system is based on adjacent
window comparisons using BIC and the clustering and
stopping criterion also uses BIC. The paper also proposed a
“plug-and-play combination” using the components of both
systems with the best DER combination using CUED for
segmentation and MIT-LL for clustering.

One of the best systems recently published for BN was
presented by the Laboratoire d’Informatique pour la
Mécanique et les Sciences de l’Ingénieur (LIMSI) in [9].
Their system is an integrated system which uses innovative
methods to improve the performance. They include a
speaker identification module to carry out cluster adapta-
tion and a speech recognition module to refine the final
segment labels. The system uses all possible information
and data available to do the task, as well as training data
from the same domain. This system was the winner of the
RT04f evaluation [21].

The meeting domain differs from BN as the topics are
highly diverse, the participants have idiosyncratic relation-
ships and vocabularies, the meetings are highly interactive,
and there can be simultaneous speech from multiple
speakers. Furthermore, distant microphones are susceptible
to reverberation and background noise. Consequently, the
problem is much more difficult than in the BN domain,
although, in BN, the number of speakers may be much
higher. In 2002, NIST conducted an evaluation of speaker
diarization in the meeting domain under the SDM condi-
tion. Although tests carried out since 2002 have considered
MDM as the primary condition, the methods applied to
SDM or previously to BN may be considered a first step
toward the development of algorithms for MDM.
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1. For NIST Meetings, a distant microphone is a microphone located in
on a table or in a wall at a minimum distance from the mouth of any
speaker (several centimeters) as opposed to an individual head mounted
microphone (IHM) where the microphone is close to the mouth of the
speaker.



There has been extensive research at ICSI in the last few
years in the area of meeting recognition, including speech
recognition and speaker diarization [17], [18], [12], [22], [23],
[24], [25]. The basic method used at ICSI for SDM can be
considered an integrated approach, which models the
utterance using an ergodic HMM with a number of states
equal to the initial number of speaker clusters ðKÞ. Each
state in the HMM contains a sequence of substates that
imposes a minimum duration on the cluster. Within a state,
each of the substates uses a probability density function
(PDF) modeled by a GMM with a diagonal covariance
matrix [18], [12]. Essentially, the process consists of two
modules: an initialization and an integrated segmentation
and clustering module. The initialization requires an
informed guess at the maximum number of speakers ðKÞ
that are likely to occur in the data. The data is then divided
into K equal-length segments and each segment is assigned
one GMM. Each GMM is then trained using its associated
data. These models are then used to seed the following
clustering module, which uses agglomerative clustering
and segmentation steps in an iterative loop.

1.2 Speaker Diarization for Meetings with MDM

The task of speaker diarization for meetings with MDM
should be easier compared to an SDM because 1) there are
redundant signals—one for each microphone—that can be
used to enhance the signal, even if some of the channels
have a very poor signal to noise ratio (SNR), and 2) the
signals contain information on the spatial position of the
audio source (speaker). In a previous work [26], a
processing technique using the time delay of arrival
(TDOA) was applied to the different microphone channels
by delaying and summing the channels to create an
enhanced signal. With this enhanced signal, the DER was
improved by 3.3 percent relative compared to the SDM
error for the RT05s evaluation set, 23 percent relative for the
RT04s development set, and 2.3 percent relative for the
RT04s evaluation set. (See [7] for more information on both
the data sets and the task.)

The use of speaker location information to carry out
speaker diarization can be divided into two main cate-
gories, one that uses microphone locations and microphone
geometry to establish explicit speaker location and one that
cannot use microphone location information (because it is
not available) as in the task that we are addressing. The
benefits of using explicit speaker locations are that a precise
speaker segmentation can be carried out and that the
tracking of moving speakers is also feasible. The disadvan-
tage is that exact microphone location and the synchroniza-
tion of the signals are also needed. If microphone locations
are not available, the task of speaker diarization is more
difficult, as well as more generic. In the first category, we
can cite the work done by Lathoud et al. [4], [3]. In [3], an
algorithm is proposed that can track multiple moving
speakers using event location cues alone. The algorithm is
particularly efficient in tracking concurrent events such as
speakers’ overlaps (one of the most difficult problems to
tackle) in real time. The algorithm does not need any prior
knowledge of the speakers’ location, as in [4]. In the second
category, the only work that we are aware of is that of Ellis
and Liu in [27]. They used the cross-correlation between

channels to find a peak that corresponds to the time delay
between two channels and they then clustered the time
delays to create homogeneous segments of frames. The
result they reported for the RT04s development set was a
62.3 percent DER�.2

When several microphones are available, it is obvious to
try to merge acoustic information from the speakers, as well
as speakers’ location. TDOA features permit short-term
speaker segmentation but do not provide any speaker
identity information. On the other hand, acoustic features
provide long-term speaker identity but require minimum
durations to build reliable acoustic models. Again, in this
part, we have to consider whether microphone locations are
available or not as two different tasks. Ajmera et al. [2] and
Lathoud [5] use microphone location information and
combine both features. They demonstrate that the fusion
of these two types of information improves speaker
diarization. For the NIST task where microphone locations
are not available, a different approach is needed and we are
not aware of any published work that addresses the
combination of acoustic features and TDOA features.

In the first part of this paper, we present several
experiments to determine to what extent the TDOAs by
themselves can be used to segment and cluster the different
speakers in a room. We have tried to develop a system that
is robust to the changes in the conditions of the meeting,
room, microphones, speakers, and so forth, although our
method assumes that the speakers do not move far from
their seat. We present a method that only uses the delays to
segment and cluster the speakers. In our method, we obtain
a diarization error ðDER�Þ [7] of 35.73 percent on the same
set of meetings used by Elis and Liu, a 42.64 percent relative
improvement. We also provide the results obtained from
other data sets, including RT05s and RT06s.

In the second part of the paper, we present an original
method to combine the acoustic front-end features, MFCC,
with the TDOA features to obtain an enhanced segmenta-
tion. By merging both TDOA and acoustic features, we have
been able to improve the baseline results (using only
acoustic features) by 16.34 percent relative on the RT05s
evaluation set, 27.52 percent relative on the Devel06s
development set (see the explanation of the data sets
below), and 15.10 percent relative on the RT06s evaluation
set. This method was a top performer in the RT06s
evaluation [28]. For information on the databases men-
tioned in this section, see [29].

The paper is organized as follows: In Section 2, we
describe the basics of our system. In Section 3, we present
the data set used and the evaluation metric. Section 4
explains the basic diarization system using only acoustic
data and multiple microphones. In Section 5, we introduce
our novel method to use interchannel differences exclu-
sively to carry out speaker diarization, which shows good
performance compared to previously published results on
the same data and task. This is the first contribution of this
paper. Section 6 explains the second novelty, the technique
we used to combine acoustic information and delay
information to improve the performance of the ICSI system.
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2. The equivalent that they used is DER minus false alarm (in NIST
terminology); we have called it DER�



In Section 7, we discuss the results obtained and the

advantages and drawbacks of our proposal. Section 8

describes the conclusion.

2 SYSTEM DESCRIPTION

2.1 System Architecture

The general system architecture is shown in Fig. 1. First, the

utterance is segmented into speech and nonspeech regions.

The speech is segmented into homogeneous chunks and

then clustered and resegmented iteratively until a stopping

criterion is reached.

2.2 Speech/Nonspeech (SNS) Detector

One of the most important tasks in the process of speaker

diarization is the separation of speech from all of the other

audio components, including silence, background noise,

and nonspeech sounds such as laughs, coughs, breaths, and

so forth. In fact, the task is so important that NIST has

decided to evaluate it separately from speaker diarization in

a task known as Speech Activity Detection (SAD). The

detection of speech plays a crucial role in both speaker

diarization and speech recognition because errors made at

this stage cannot be recovered later. Because of the method

used to calculate DER, every speech detection error is

propagated to the end of the process either as a false alarm

(FA) error—speech is detected where there is no true

speech—or a missed speech error—nonspeech is detected

where there is speech in the reference.3

The question that arises is: What is the best method to

accomplish this task? Clearly, the approach is dependent on

the application. It is also important to know whether there

is training data available.
Two methods have been used at ICSI for this task. The

first method was provided by Stanford Research Interna-

tional (SRI) and is based on a two-class HMM decoder with

a minimum duration of 30 ms (three frames) enforced with

a three-state HMM structure trained on telephone con-

versations and further tuned to RT02s data. The features

used in SRI’s SNS detector, MFCC12, are different from the

features used in the subsequent process of segmentation

and clustering. The resulting speech segments are merged

to bridge short nonspeech regions and padded according to

NIST scoring guidelines. The SNS detector used was the

same as that used in the RT05s evaluation. The parameters

of the detector were tuned on the RT05s meeting develop-

ment data to minimize the combination of misses and FAs

reported by the NIST mdeval scoring tool [7] (more
information about this can be found in Section 3).

The second SAD technique was developed at ICSI and
does not require any outside data to train the system,
although its parameters have been tuned with the Devel06
data set. The method is based on an iterative two-class
segmenter that is initialized by considering all frames that
fall below a certain relative energy threshold to be
nonspeech. More information on this system can be found
in [30]. Although the method has a similar SAD perfor-
mance, the total DER is improved by using it. The method
assumes that most nonspeech segments are silence with low
background noise or close to it.

2.3 Iterative Segmentation and Clustering

The segmentation and agglomerative clustering process
used was originally proposed by Ajmera and Wooters [18]
and is shown in Fig. 2. The first module is the initialization,
which will be explained later. Then, a resegmentation is
carried out using Viterbi decoding with the initial HMMs
along with a step to retrain the GMMs. This process may be
iterated several times. Next, a cluster comparison and
merging is carried out. When a merging takes place, the
GMM for the new cluster is retrained with the data now
assigned to it and the number of parameters (mixtures) of
the merged model is the sum of the number of mixtures of
the component models. The initial number of mixtures used
for every cluster is a parameter that has to be determined
empirically. A large number of initial mixtures may result
(after cluster merging) in a high number of parameters that
cannot be suitably trained. On the other hand, a small
number of initial mixtures may result in poor modeling.
The segmentation and clustering steps are repeated until a
stopping criterion is reached. The segmenter consists of an
ergodic HMM with a number of states equal to the number
of speaker clusters (see Fig. 3). An individual cluster model
consists of a set of substates, where the number of substates
is determined by the minimum duration of each cluster.
Every substate is modeled using a GMM containing a
number of components that has to be specified initially.
After passing through the minimum number of substates,
the system can transition to a new cluster or stay in the
same one. The transition is determined, in our system,
solely by acoustics. This means that no penalty is applied at
the final state of the cluster. If the log-likelihood of the last
frame given a particular cluster is the largest of all the
clusters, the systems stays in this cluster; otherwise, it
transitions to the cluster that has the highest log likelihood.
(see Figs. 3 and 4).

2.4 Merging and Stopping Criterion

One of the main problems in the segmentation and
clustering process is deciding which merging and stopping
criterion to use. The �BIC criterion has been used
extensively, providing good results in Broadcast news data
BN [17], [19], and the modification of �BIC to eliminate the
penalty term has also given us good results for BN data [18].
The modified �BIC that we use for merging clusters is

�BIC ¼ log p D
����

� �
� log p Da

����a
� �

� log p Db

����b
� �

; ð1Þ
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3. If there is more than one speaker in the reference, every missed speech
error will be multiplied by the number of speakers.

Fig. 1. Speaker diarization system architecture.



where �a is the model created from Da, �b is the model
created from Db, and � is the model created from D, the
union of Da and Db. The key to this modified BIC is that the
number of parameters in � must equal the sum of the
number of parameters in �a and �b. Nevertheless, it is still an
open question as to how much the performance depends on
the kind of data vectors and models used in the
comparisons, particularly if the number of parameters in
the combined cluster has to be the sum of the number of
parameters of the separate clusters (see [31]). If �BIC is
greater than 0 for a particular pair of clusters, those two
clusters are believed to be similar enough to be merged. We
find and merge the cluster pair that gives the largest �BIC.
This basic method has been used at ICSI since 2003 to carry
out speaker diarization with a single channel source such as
the SDM condition.

2.5 Initialization

Ajmera and Wooters claim in their paper that the
initialization procedure is not important to the diarization
process [18]. They divided the data into K parts with
equally long segments and these segments were used to
train the initial GMMs. An additional loop of segmentation
and training could be made before proceeding to the
clustering module. Although other published results
indicate that the initialization may be crucial to this process
[22], [32], the objective in this paper was to study the
influence of TDOA features in diarization not the influence
of initialization. For this purpose, uniform segmentation has
been used. The parameter K (the number of initial clusters)

has to be decided empirically. If K is very small, there will
be a high probability of missing some speakers since our
method is bottom up (agglomerative). On the other hand, if
K is very large, the system may stop at a very large number
of clusters (speakers), increasing the error rate.

3 DATA USED AND EVALUATION METRIC

3.1 Data Sets

In this paper, we will use data coming from all of the NIST
releases related to this task in the years 2002-2006: RT02s,
RT04s, RT05s, and RT06s [29]. When the experiments are
carried out with a subset of the data, it will be specified. A
selection of data coming from RT02s, RT04s, and RT05s has
been used as a special development set. This selection was
made in our laboratory in order to fine-tune the algorithms
that were going to be presented to the RT06s official
evaluation campaign. We will call this selection the
Devel06s set. This set is presented in Table 1. In general,
the meetings consist of up to 16 speakers and up to
16 microphones located on top of a table or at a distance
from the speakers. These microphones are considered
“distant,” which means that the microphone is not close
to a speaker’s mouth. In Table 1, we present all of the
meetings used along with the number of microphones and
speakers per meeting.

3.2 Evaluation Metric

The speaker diarization performance is evaluated by
comparing the hypothesis segmentation, given by the
system, with the reference segmentation provided by NIST
[7]. This reference segmentation was generated by hand
according to a set of rules also defined by NIST. In the
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Fig. 2. Segmentation and clustering process.

Fig. 3. Model for an entire meeting. A cluster tries to model a speaker
and has the topology presented in Fig. 4. At the end of every cluster, a
transition to any of the other clusters is permitted. This way, any speaker
can take his turn after any other speaker. The nonspeech regions are
previously removed (after Ajmera and Wooters). Fig. 4. Model for a cluster (from Ajmera and Wooters).



evaluation plan, the evaluation metric and a program to
calculate it from both transcriptions is also defined. The
error obtained is called the DER and it takes three errors
into account (miss, FA, and speaker error). The error is time
based. A miss error occurs when a speech segment is
classified as nonspeech or an overlapping speaker is
missing in the hypothesis. An FA error occurs when the
system produces a speaker hypothesis when there is no
speech in the reference. To calculate the speaker error, the
program maps the hypothesis speakers to the reference
speakers (only one reference speaker to one hypothesis
speaker) in an optimal way so the overlap in duration
between all pairs of reference and hypothesis speakers is
maximized. A speaker error occurs for any region in the
hypothesis that is mapped to a wrong speaker in the
reference.

Because the metric is time based, it is weighted toward
the loquacious speakers. An error for a speaker who does
not speak much is less important than an error for a
loquacious speaker. Consequently, the DER obtained for a
specific meeting may be very much dependent on how
many speakers talk and the time relationship between
loquacious and nonloquacious speakers.

For the purpose of this paper, two kinds of reference
transcriptions have been used. The first ones are the official
hand-made references delivered by NIST. The second ones
were created by aligning the official textual transcriptions
obtained from the individual headset microphones with the
ICSI-SRI speech to text system presented to the RT05s
evaluation [24]. A reason for using force-aligned labels was
that the RT06 evaluation campaign was originally intended
to use those labels, but, later, this condition was dropped
and hand-made labels were used. One question that arose
in the last evaluation campaign was the appropriateness of
using hand labels to compare and evaluate systems,
especially when overlapping speech is included in the
evaluation. During this year’s development period, we
experienced difficulties when using hand-made reference
files, mostly when scoring on speaker overlapping regions.
By comparing the hand-made references with the acoustic
data, we observed that varying amounts of extra padding
were inserted around each speaker overlap region, making
its duration much longer than the actual acoustic event. We

also observed some speaker overlapping labels on non-
speaker-overlapping regions—because the hand references
were created with close talk microphones, the overlap may
be noticed by the labelers who were listening to the
Individual Head Mounted (IHM) microphone channels,
but the overlap is masked by noise in the MDM channels.
All of these artifacts create an extra amount of missed-
speech and speaker error that is not consistent over the
different evaluation sets. Therefore, for the 2006 system
development we decided to use references derived from
forced alignments. Results with force-aligned labels were
also calculated in the RT06 evaluation campaign by NIST,
although they were not considered official [28].

4 SPEAKER DIARIZATION USING ACOUSTIC

FEATURES

The signals coming from the different microphones are
Wiener filtered to improve the SNR as in previous systems
[33]. Then, one of the signals (microphones), the one with
the highest SNR, is selected as a reference channel. The
TDOA between each of the other channels and the reference
channel is calculated.

4.1 Time-Delay Calculation

In order to estimate the TDOA between segments corre-
sponding to two microphones, we used a modified version
of the Generalized Cross Correlation with phase transform
ðGCCPHATðfÞÞ [34]. GCCPHATðfÞ has been used by several
people in the blind signal separation field [35]. The N best
peaks are calculated and the best is selected with a
postprocessing mechanism, see [26].

4.2 Acoustic Fusion

Once the delays are calculated every 500 ms (with a
window shift of 250 ms), the signals are delayed and added
together with a triangular window to generate a new
composed signal (beamformed signal). The composed
signal is then processed as a single signal. MFCC of
19th order are calculated every 30 ms using a window shift
of 10 ms. These vectors are used in the segmentation and
agglomerative clustering process (only the ones corre-
sponding to the speech part). Using this procedure on the
RT05s set, we obtained an 18.48 percent DER (using the
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TABLE 1
Set of Meetings in the Databases Used with the Number of Microphones and Speakers per Meeting



standard NIST scoring software without counting over-
laps). It is worth mentioning that, for this experiment, we
used an initial number of clusters of 10, an initial number of
Gaussian mixtures per model of 5, and a minimum duration
of a cluster of 3s.

5 SPEAKER DIARIZATION USING ONLY BETWEEN

CHANNEL DIFFERENCES

5.1 Baseline

For the speech regions, we calculate the TDOAs using the
procedure mentioned in the previous section. The window
shift is 10 ms, the same as the one used for the calculation of
acoustic features. We form a vector of delays that has as
many components as the number of microphones minus 1.
Nonspeech frames, estimated previously, are excluded
from the subsequent process. The vector of delays is then
fed into the aforementioned segmentation and agglomera-
tive clustering module instead of the acoustic vectors [36].
We experimented with several values for the segmentation
and agglomerative clustering parameters such as the initial
number of mixtures per cluster and the number of initial
clusters as mentioned in the previous section. In contrast to
the insensitivity to the parameters when using acoustic
vectors as mentioned by Ajmera and Wooters [18], there is
sensitivity to the parameters when we used only delay
vectors. In Table 2, we present the DER for different sets of
parameters for the RT05s data set using a minimum
duration of 2 sec.

In the subsequent experiments, we will be using one
initial mixture and 10 initial clusters. Obviously, if the
number of speakers in the room is more than 10, the errors
of the system will dramatically increase. In Table 3, we
present the DER for RT05s and the components of it (Miss

error, FA error, and Speaker error). Note that the SNS error
is the addition of the Miss error plus the FA error. It is not
surprising that one initial mixture gives better results than
two initial mixtures because, if we assume that the speakers
do not move far from their seats, the information contained
in the delay vector is likely to be unimodal. In any event,
due to errors in the delay calculations and some small
movement of speakers, the real distribution of the data may
be multimodal. This fact is automatically modeled in our
system because, when two clusters are merged, the number
of mixtures of the merged model is the sum of the number
of mixtures of the component cluster models.

In Fig. 5, we present the DER for every meeting,
comparing the results using only the acoustics and the
results using only the TDOAs. The results using only the
delays are less stable across different meetings than the
results using the acoustics and the average results using
acoustics only are better than the ones using delays only. It
can also be seen that there is a set of meetings whose results
for every method are very similar. One can also see that the
results for a pair of meetings are extremely bad. This effect
may be due to several factors, such as the total number of
speakers and total number of turns. In [37], there is a study
on the diarization results for several shows in the BN
domain across several algorithms. The authors conclude
that there are shows that are very difficult to analyze (they
called them “nuts”) and others have a large amount of
variation in the DER when using different algorithms (they
called them “flakes”). This fact is also demonstrated in our
data, as can be seen in Fig. 5. Some meetings perform poorly
and others show a large variation in DER across different
algorithms (acoustic vectors or delay vectors). The result of
their study is that the shows that are more difficult to
diarize are the ones that contain many speakers, many
speaker turns, and the absence of a dominant speaker.

In order to compare our results with those presented by
Elis and Liu [27], we have run the system with the same set of
meetings that they used in their experiments and have
reduced the number of channels available to four in all cases
(Elis and Liu used only four channels). The comparisons of
both experiments are presented in Table 4. It is important to
note that, in these results, two of the meetings from the NIST
RT04s development data (the CMU meetings) have not been
used because they contain only one distant microphone

1218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 9, SEPTEMBER 2007

TABLE 2
Speaker Diarization Errors DER for the

RT05s MDM Conference Room Evaluation Set

TABLE 3
Missed Speech, FA Speech, Speech/Nonspeech Error Speaker Error and Diarization Error

for the RT05s Evaluation Set Using One Mixture and 10 Initial Clusters



and are thus not compatible with the conditions of our
experiment (MDM).4 The results presented here also
include the overlapping regions and no FAs (we call it the
DER� error). We have also included the standard DER error
in Table 4 (including the FAs) for completeness. The
analysis of the results shows a large improvement com-
pared to that of Elis and Liu. The differences may well come
from the different ways of calculating the delays between
signals and the different segmentation and clustering
procedure. Since the number of microphones used in this
experiment was less than the number of microphones
available, we have also computed the error rate that we
could obtain for the same set of meetings if we had used all
of the available microphones. Table 5 shows the results of
this comparison. It can be seen that the use of more
microphones reduces the DER error rate by 8.8 percent
relative.

5.2 Delay Calculation Improvements

The calculation of the delays is not exact and, occasionally,
the autocorrelation between signals does not find the
highest peak for the correct delay value. In this paper, we
have also experimented with a new method to make the
calculation of the delays more robust [38]. It consists of two
phases. The first phase processes N peaks (experiments
carried out with N ¼ 8) of the cross-correlation between
each channel and the reference and performs a Viterbi
alignment to extract the two best paths (two best peaks) for
every frame. For the Viterbi process, the emission prob-
ability used is the cross-correlation value for the peak and
the transition probability between two nodes (frames) is the
inverse of the difference between delay values, ensuring
that the N transition probabilities in a particular instant
sum to 1. The second phase processes the two best peaks for
every frame and every channel and performs a Viterbi
alignment between all channels to find the best path of the
delay vector across the entire sentence. The emission
probabilities are the product of the individual correlation
values of each delay. The transition probabilities are
computed by adding all delay distances from all considered
delays, normalized to sum to 1. This technique aims to find

the optimum trade-off between reliability (value of the cross
correlation) and stability (distance between delays corre-
sponding to contiguous frames).

The DER for the Devel06s set using delays obtained by
the baseline system is 35.39 percent and the DER obtained
using the improved system is 29.45 percent. Thus, for this
set of meetings, we can see that the improvement that we
obtained by using the improved method is 16.78 percent
relative. In contrast to the results presented so far, the DER
presented in this section was evaluated using overlapping
regions, force-aligned transcriptions, and the second ICSI-
developed SAD technique.

6 SPEAKER DIARIZATION MIXING BETWEEN

CHANNEL DIFFERENCES AND ACOUSTIC

PARAMETERS

After having experimented with acoustic vectors only and
delay vectors only, the obvious continuation is to combine
them [39]. The first idea that we had was to concatenate
both vectors, that is, join the MFCC vectors and the TDOA
vectors in a single vector, but we could not obtain an
improvement compared to the use of acoustic vectors only.
We believe that this was due to the use of diagonal
covariance matrices to model the multidimensional Gaus-
sians. Another possible reason for this method not working
is the fact that the number of initial Gaussians used in the
MFCC models alone is five compared to one in the case of
TDOA models (parameters determined empirically, see the
Section 5). The inherent nature of the data (TDOAs for a
speaker in a determined location tend to be unimodal,
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Fig. 5. Results across RT05s meetings for two different systems: using

acoustics only or delays only.

4. Elis and Liu developed an artificial condition for those two shows that
does not make sense in our method. Those two shows are then not used.

TABLE 4
Comparisons between Results Obtained by Elis and Liu and

Our Results in the Same Subset of Meetings from
NIST RT04 Development Data-DERast

TABLE 5
Comparisons between DER Obtained Using Four Channels and

Results Using All of the Channels Available in the System



whereas MFCCs for a speaker tend to be multimodal) led us
to develop a different method of combining both vectors.
Therefore, we decided to keep both vectors separate and
model the clusters with independent information coming
from both sets of vectors. The general architecture of the
system is detailed in Fig. 6.

The channels are first processed to obtain the delays
between them and create both a beamformed signal and a
vector of delays. The beamformed signal is used to classify
speech versus nonspeech. The speech regions are then
processed to obtain the MFCC, as mentioned in Section 4.
This set of vectors is used in parallel with the delay vectors
by the segmentation and agglomerative clustering module.
The segmentation process uses the log likelihood of the best
path to create a segmentation hypothesis. The agglomera-
tive clustering uses �BIC to define the clusters to merge,
which also requires the computation of the log likelihood of
a set of vectors given a model. For the combined system, we
used a joint log likelihood as follows:

log pðx½n�; y½n�j�aÞ ¼
� log pðx½n�j�axÞ þ ð1� �Þ log pðy½n�j�ayÞ:

ð2Þ

�a is the compound model for any given cluster a, �ax is
the model created for cluster a using the acoustic vectors
x[n], and �ay is the model created for cluster a using the

delay vectors y[n]. � is a weight factor that has to be
determined. The DER for the RT05s set (not counting
overlaps) as a function of the weighting factor used is
presented in Fig. 7. Starting from a DER of 31.2 percent for
delays only and 18.48 percent for acoustic only, we obtain
15.46 percent for the compound system using a weight of
0.9 (using a minimum duration of 2 sec and 10 initial
clusters). This is a DER reduction of 16.34 percent relative.
In Fig. 8, we show the same plot, this time for the Devel06s
set. It is important to mention that, in this plot, compared to
the previous one, overlap and force-aligned labels were
used in scoring. Also, for this experiment, the speech/
nonspeech detector was changed and the system described
in [30] was used. Finally, for this experiment, we used the
improved method for delay calculations, a minimum
duration of 2.5 sec and 16 initial clusters. From 29.45 percent
using only delays and 13.44 percent using only acoustic
features, we obtain a DER of 9.74 percent, also using a
weight factor of 0.9. This means a DER reduction of
27.52 percent. In Table 6, we give details of the DER
obtained for each meeting, for future reference.

In Table 7, in the first and third columns, we present the
aforementioned data. In the second column, we present the
results obtained using the old delay calculations (called
System A). The improvement in the delay calculations for the
combined system is 3.4 percent relative (see the third column
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Fig. 6. General architecture of the system that uses both acoustic and delay vectors.

Fig. 7. Plot of DER as a function of the weight factor applied for the

RT05s. Fig. 8. DER as a function of the weight factor for the Devel06s data.



in Table 7, System B). In the fourth column, we present the
results obtained from this system (weight factor 0.9) at the
official RT06s evaluation campaign (35.77 percent DER,
which was a top performer [28]). In the same column, we
also present the results obtained after the evaluation with
acoustic only data and delay only data, resulting in a
15.1 percent relative improvement over the acoustic only
result.

In Table 7, we also present the data obtained with force-
aligned labels (fifth column). The relative improvement
(acoustic only versus acoustic plus delays) obtained using
force-aligned labels is larger (25.84 percent).

If we examine Table 7, we can see that the relative
improvement in the combined system compared to the
acoustic only system is greater when we use force-aligned
labels even though the base error is lower—25.84 percent
versus 15.10 percent. We can also see that the relative
improvement in the Devel06s data set, 27.52 percent (force-
aligned data), is greater than the improvement obtained in
the RT05s 16.34 percent (hand aligned). We believe that
force-aligned labels provide a better reference to compare
different algorithms than hand-aligned labels.

In Fig. 9, a plot of the results obtained after the
evaluation using the RT06s data is shown. It can be seen
that, fortunately, the minimum DER is obtained at the same
point (weight factor 0.9) as in our development data.

However, for weight factors 0.1 and 0.2, the combined error
is greater than with the TDOA or the MFCC values alone.
We did not find this behavior in our development data, as
seen in Figs. 7 and 8. This maximum comes exclusively
from the EDI_20050216-1051 and EDI_20050218-0900
shows. The EDI site is a new site that is not included in
either RT05s or Devel06s. One possibility is that the joint
information of acoustic and delays counteract each other,
giving worse results. It is also possible that the existence of
overlapping regions or the movement of the speakers has
an influence, but this should be investigated further
(although we could analyze the amount of overlapping
speakers in RT06s, we do not have data on the location
across time of the speakers or that of the microphones). In
Fig. 10, a breakdown of DER for every meeting in RTO6s is
presented.

7 DISCUSSION

In Section 5, we mentioned the problem that some shows
give good DER results and others give much worse results.
The method that we have used to segment the speakers
using delays only assumes that the speakers are not moving
far from their positions. In other words, the system assigns
a speaker to a region in space. If this assumption is invalid,
the DER using TDOAs only will be severely increased.
Alternatively, using only acoustics, some shows give poor
performance and one of the reasons may be the existence of
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TABLE 6
Results for the Set Devel06s

We present the percentage of missed speech, FA speech, speaker
error, and total diarization error (DER).

TABLE 7
DER for the Eval05s and Devel06s and the Official RT06s Data Set Obtained
Using Acoustic Features Only, Delay Features Only, and Combined Features

System A stands for original delay calculations and System B for improved delay calculations.

Fig. 9. DER as a function of the weight factor for the RT06s data.



speakers who are close in the acoustic space. An advantage
to mixing delay information with acoustic information is
that it results in a system that is robust against the
weaknesses in either one or the other dimension.

In the RT06s evaluation, we used a weight factor
between delays and acoustics, which was optimum accord-
ing to our development set. However, again, the optimal
weight factor may be dependent on the meeting itself. To
illustrate this problem, in Fig. 11, we present the DER across
different weights on the Devel06 set (labeled Average all)
versus the same plot for a subset of the Devel06 set (labeled
Average subset) containing just the CMU_20050228-1615,
LDC_20011116-1500, and VT_20050304-1300 meetings. For
this experiment, the only change that we made was the
weight factor. We can see that the minimum DER for the
subset of meetings appears when the weight factor is 0.7.
That may well correspond to the case of several speakers
who are acoustically close but who are in fixed well-
separated areas of the room. In Fig. 12, we present a
breakdown per set of meetings for the RT06s set. We notice
that there is a set of meetings with minimum weight of 0.7,
another set with a minimum weight of 0.8, and there is even
a meeting with a minimum weight of 0.3. The overall
minimum weight is 0.9, as shown in Fig. 9.

The results presented here could be further improved by
improving the discrimination capability of both methods
separately. We have shown that, by using the improved

method of calculating the delays presented in Section 6, we
have been able to get better results for the Devel06s set and
decrease the DER by 3.4 percent relative. These results
could be further improved if we add other sources of
information, such as pitch, as preliminary experiments
carried out in our laboratory have demonstrated [40].

8 CONCLUSION

We have proposed and developed a new method to mix
delay information from different channels with acoustic
information to improve the task of speaker diarization for
meetings with multiple distant microphones. The results
are encouraging and a first step on the path of combining as
many sources of information as possible to solve the
problem. Of particular interest could be the inclusion of
suprasegmental information, such as pitch, language
models, and so forth, and other techniques used in speaker
verification/recognition systems. An important area of
research is the development of a robust mechanism to
combine all sources of information that is stable against
diverse shows and application environments. Another
relevant area of research would be to include some of the
techniques developed here in an online system to make
discriminative and interactive communication between
humans and computers in meetings an attainable goal.
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Fig. 10. Breakdown of DER for every meeting in RT06s. Results are

presented using acoustics only, delays only, and the combined system.

Fig. 11. Comparison of DER across different weight factors for the

Devel06s set (average all) and for a subset of it (average subset).

Fig. 12. Analysis of DER for RT06s data depending on the set of
meetings. The label Minimum 0.7 corresponds to the average from the
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