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Abstract

In this paper, we present several innovative techniques
that can be applied in a PPRLM system for language
identification (LID). We will show how we obtained a
53.5% relative error reduction from our base system
using several techniques. First, the application of a
variable threshold in score computation, dependent on
the average scores in the language model, provided a
35% error reduction. A random selection of sentences
for the different sets and the use of silence models also
improved the system. Then, to improve the classifier,
we compared the bias removal technique (up to 19%
error reduction) and a Gaussian classifier (up to 37%
error reduction). Finally, we included the acoustic score
in the Gaussian classifier (2% error reduction) and
increased the number of Gaussians to have a multiple-
Gaussian classifier (14% error reduction). We will show
how all these improvements are remarkable as they have
been mostly additive.

1. Introduction

Automatic language identification (LID) has become an
important issue in recent years in speech recognition
systems. Multilinguality is a must for many systems, so
the language of the caller has to be identified as soon as
possible in order to use the appropriate recognition
system specific to that language.

To do language identification, first we have to
identify which factors are more critical to distinguish
between languages. We can identify several factors of
differentiation: the realization of allophones and sounds
(some allophones exist in one language but not in other
languages) and information related to the sequence of
allophones, which has demonstrated to be vital: some
sequences of allophones do not exist in one language
(or occur very little), so the identification of those
sequences is crucial for LID. Another possibility is to
use prosodic features — fundamental frequency, duration
and/or energy — as the intonation may differ drastically
between languages.

Many techniques have been suggested in recent
years for this task. The most widespread technique is the
phone-based approach, like Parallel phone recognition
followed by language modeling (PPRLM) [1][2], which
classifies languages based on the statistical
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characteristics of the allophone sequences and has a
very good performance.

Another popular technique is a simple GMM
classifier. This technique addresses the first differential
factor between languages: every language has sounds
that are specific to it. Its main advantage is that we do
not need labeled data to train the classifier, so it is a
very cheap system. Its main drawback is its low
performance, due to the fact that it does not deal with
any information regarding the sequence of sounds (the
second main factor of differentiation between
languages.) In recent years, some techniques have been
proposed that try to take the advantages from both
techniques: a GMM classifier called “GMM tokenizer”
[31[41[5]. In this approach, the output of the classifier
(for each frame, the tokenizer outputs the index of the
Gaussian component scoring highest in the GMM
computation), is used as input to a “language model”
(LM) module, where the sequence of the different
indexes is learnt. This technique uses both acoustic
information and sequence information, so it seems to be
suitable and has the same advantages as the GMM
alone: labeled data is unneeded and it is faster that the
phone-based approaches. Nevertheless, in all previous
studies the performance of this technique is worse than
PPRLM, but has one advantage: the combination of
PPRLM and this technique improves the overall result.
So, it offers complementary information to the task, but
with the cost of CPU time due to the use of PPRLM.

Another possibility is to base the identification on
the score given by a full continuous speech recognizer.
As we demonstrated in [6], the results obtained with this
technique are probably the best that can be obtained, as
it models both acoustic and phonetic information,
together with the sequence of allophones and words, but
it has some important disadvantages: a complete speech
recognition system has to be trained, a lot of labeled
data is needed and it would be difficult to have a real-
time system for several languages. In any case, for the
identification of two languages, which can be enough
for many applications and/or countries, it is the best
option. In [7] a full recognizer is also proposed and the
recognizer scores are normalized and compared with a
linear classifier.

An interesting variant of PPRLM is presented in [8]
with several proposals: different ways to combine the



allophone sequence information with the acoustic
models, use of durations (prosodic information) and a
tree-based language model. It is remarkable the
integration of several sources of information.

Another technique is to use a lattice instead of the
allophone sequence [9] and a neural network at the
output of the classifier, instead of doing the average of
the scores. This way, there is an improvement in the
classifier. In our paper we propose a Gaussian classifier
instead of the neural network.

We should also mention the proposal in [10]: use
PPR, include bias removal to improve the classification,
and include acoustic and allophone sequence
information in the classifier, using a Gaussian classifier
similar to the one proposed in this paper.

In summary, there is a general agreement that
PPRLM is the best option if you look for performance
and have labeled data available to model the phone
recognizers. In fact, it has been widely used for speaker
recognition with very good results [11], especially in
mismatch conditions.

This paper is a continuation of the work done in [2].
We are going to focus now on improving the classifier,
using bias removal and a multiple-Gaussian classifier
mixing acoustic and allophone sequence information.

This work has been done under project INVOCA,
for the public company AENA, which manages Spanish
airports and air navigation systems [12].

The paper is organized as follows. We present the
database used and the experimental setup in Section 2.
A brief overview of the PPRLM technique is given in
Section 3. Then, in Section 4 we present three initial
approaches to improve the base system. In Section 5, we
focus on the classifier, comparing the bias removal
technique with the Gaussian classifier. In Section 6, we
include acoustic information and increase the number of
Gaussians in the Gaussian classifier. The conclusions
are given in Section 7.

2. System setup

2.1. Database

We use a continuous speech database, which consists of
very spontaneous conversations between controllers and
pilots. For speech recognition it is a very difficult task,
noisy and very spontaneous, as in “lufthansa four two
seven nine start up approved clear to frankfurt standard
departure somosierra one echo three six left squawk one
zero two three report parking position”.

We have one big drawback with the database: all
speakers are native Spanish. So, many of them do not
reflect all the phonetic variations in English. This is a
decisive factor in all cases for English identification.
We have a second drawback: the controllers use to mix
Spanish for greetings and goodbyes even when the rest
of the sentence is in English. Also, many company

names and airports have the Spanish pronunciation
embedded in the English conversation.

In Table 1 we can see the contents of the database
in sentences and hours of speech. We have
experimented with different divisions of the training set
sentences to train the acoustic HMMs and to train the
language models. So, we will not include it here, but
some comments are included regarding this division in
the respective Sections.

Table 1. Database (sentences / hours)

Spanish English
Training set 5,529/ 8.0 3,153/5,7
Validation set 500/0.9 453/0.9

In the test set, we have considered sentences with a
minimum of 0.5 sec., and a maximum of 10 sec., with
an average duration of just 4.5 sec. This is another
limitation in our system: we have to identify the
language using less than 5 seconds of speech.

2.2. General conditions of the experiments

The system uses a front-end with PLP coefficients
derived from a mel-scale filter bank (MF-PLP), with 13
coefficients including cO and their first and second-
order differentials, giving a total of 39 parameters per
frame.

For the phone recognizers, we have used context-
independent continuous HMM models. For Spanish, we
have considered 49 different allophones and, for
English, 61 different allophones. So, we have tried to
cover all possible phonetic variations in both
languages, specially including allophones that do not
exist in the other language. All models use 10
Gaussians densities per state per stream.

3. Description of PPRLM

The main objective of PPRLM (Parallel Phone
Recognition Language Modeling) is to model the
frequency of occurrence of different allophone
sequences in each language. This system has two
stages. In the first stage, a phone recognizer takes the
speech utterance and outputs the sequence of
allophones corresponding to it. The sequence of
allophones generated by the phone recognizers is used
as input to a language model module. In the second
stage, the language model module scores the
probability that the sequence of allophones corresponds
to the language.

It can use several phone recognizers modeled for
different languages. The advantage is that using many
recognizers we can cover most of the phonetic
realizations of the languages. Its main drawback is
speed: processing time is multiplied by the number of
recognizers. Using PPRLM, we can even have phone
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recognizers modeled for languages different than the
languages that have to be identified, but obviously if
there is a match between the input language and the
language of the models the performance will be better,
because you can model explicitly the phonetic
variations of each language. In our case, as we want to
identify English and Spanish and we have labeled data
for both of them, the best option is to use PPRLM with
phone recognizers trained for English and Spanish.

In the identification stage a language model module
scores the probability that the sequence of allophones
corresponds to the language according to the process
illustrated in Figure 1. The overall score is calculated as
an average between both scores obtained for the same
language according to (1). Interpolated n-gram
language models are used to approximate the n-gram
distribution as the weighted sum of the probabilities of
the n-grams considered. In our case, we have
considered up to trigrams. For a sequence of three
consecutive symbols observed in the phone stream, we
use the formula (2).
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Figure 1. PPRLM Score average

3.1. Results presentation

In all our experiments we have obtained the results
for all possible combinations of weights oy, o, and o,
in 0.1 steps. Throughout the paper we will present the
results for the average of all weight combinations
(Average column in the tables) and for the best result
(Minimum column), because in some cases, especially
with the best systems, the improvements may be low
for the best combination of weights, but the technique
may be very promising as it works better in average for
all weight combinations. In general, best (minimum)
results occur with the biggest contribution from the
trigram score, reflecting that the trigram is the most
discriminative feature for language identification (if it
is estimated correctly, of course). In all tables, we
present in parenthesis the relative improvement in
relation to the base system considered.

4. Initial improvements to the base system

4.1. New distribution of the database

One important conclusion in [2] was that the database
had a bad distribution, as it dedicated a very small set to
the training of the language models. So, we decided to
dedicate 50% of the training material to train the
acoustic HMMs and 50% to train the language models.

The average improvement with this approach is
13.5%, showing that, as we assumed, the amount of
data dedicated to train the HMMs is not critic.

4.2. Threshold in score computation

As the size of the database is small, there is quite a big
number of trigrams that do not have enough training
samples and, so, their estimates are not reliable. We
tested several alternatives for language model
smoothing (Katz smoothing and Backoff Kneser-Ney
smoothing), but the results were very similar, showing
little improvement.

We decided to apply a fixed threshold or additive
factor to the score value, in a similar way to the
variance flooring applied in HMM estimation: use as
the minimum variance a fraction of the average
variance in the whole database.

The objective of this additive factor is to give more
importance to the allophone sequences that have a high
probability in one language and, at the same time,
reduce the effect of sequences that have not appeared in
training. This way, we give more relevance to
sequences that are really specific of one language, and
do not ‘spoil” the score with intermediate values from
less relevant sequences.

We considered three alternatives, in all cases
working in the log domain:

1) Fixed and common additive factor. We
propose the following formula for the score (the
logarithmic implementation of equation (2)):

S(F)= 101og(ﬁ B(F)] = —ﬁloai log(P(F)+ )
i=0 i=0 (3)

where N is the order of the N-gram, «; is the weight
for the i n-gram and Py(F) is its probability. f is the
additive factor. Several values were tested, being the
optimum 0.01.

2) n-gram specific fixed additive factor. The B is
now n-gram specific:

N N

S(F) = 101og[HB<F>j ==Y 10a,10g(R(F)+ ) @
i=0 i=0

The optimum values were [,,=0.027, Py=0.04 y

B4=0.08. Obviously, we do not like this approach
because the B value is too empiric.
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3) Variable additive factor. We decided to apply
an additive factor which was dependent on the average
scores in the language model. In the following
formula, p, is the average of all probabilities for the i

n-gram, and X is a smoothing factor.
S D

S(F)==>10¢, ~10g([§ (F) +7j 5
i=0

Several experiments were run to estimate the
optimum 2 factor. We are glad to say that very little
differences in performance were observed using A
values between 4 and 8.

In Table 2 we can see the results obtained with the 3
additive factors. In parenthesis we can see the relative
improvement in relation to the ‘None’ system. As we
describe in Section 3.1, we present the results for the
average of all weight combinations (Average column)
and for the best result (Minimum column).

Table 2. Results for different additive factors

Threshold Average Minimum
technique
None 8.27 6.80
Fixed 7.95 (4.0%) 6.27 (7.8%)
n-gram specific | 7.70 (6.9%) 5.84 (14.1%)
Variable 6.26(24.3%) | 4.46 (34.3%)

As we can see, the improvement is outstanding,
showing the suitability of this approach, especially for
the third approach. Even though it is simple, it has been
the best improvement in this series of experiments.

4.3. Random selection of sentences

Our database consists of conversations between
controllers and pilots. So, the same controller uttered a
large group of sentences which were sequential in the
database until there was a shift change. We were afraid
that our system was making some kind of speaker
modeling instead of language modeling, as we desired,
ie., our models could be capturing the specific
characteristics of the predominant controller instead of
the language used. So, we decided to create new lists
using a random selection procedure, namely Fisher-
Yates. We can see in Table 3 that there is an important
improvement of 16.6% in average, showing that in fact
there was some sort of implicit speaker modeling.

Table 3. Results with random selection

Average Minimum
Original lists 6.26 4.46
Randomly selected | 5.24 (16.6%) | 4.24 (5.0%)

4.4. Silence models

In our original system, we decided not to consider
silence models in the output of the phone recognizer,
because they could indicate just noise and do not have a
linguistic meaning. Nevertheless, we considered that
without the silence we were not estimating important
trigrams which are especially relevant for language
identification, e.g. ‘ai-t-sil” in the word ‘flight’, which
is extremely rare in Spanish. So, we run an experiment
considering the silence models with the results shown
in Table 4. We can see again that our intuitions were
correct, with a remarkable improvement considering
that there are very little changes with this approach.
The minimum result is obtained using a bigger weight
for the trigram, which supports our conclusions. We
have to mention that the improvement was even 14%
using the original lists instead of the random ones,
probably because our system is approaching a top
performance.

Table 4. Results with silence models

Average Minimum
Randomly selected 5.24 4.24
+ silence models 5.03 (4.0%) | 3.92(7.55%)

5. Improvements to the classifier
5.1. Bias removal

5.1.1.  Description

As is described in [10], the general PPRLM has a flaw:
there is the possibility of having a bias in the log-
likelihood score which is different for the languages
considered. This is especially relevant when the phone
recognizers have a different number of units. The
language with fewer units will have higher probabilities
in the LM score (think of the unigram case), and so the
classifier will tend to select that language. We had
observed that behavior before: in most experiments the
error rate was lower for Spanish because the classifier
tended to select Spanish. We first thought (as we
concluded in [2] and [6]) that it was due to the speakers
of the database being native Spanish, but now we are
sure that the real reason was this bias effect, as we have
49 phonetic units for Spanish and 61 for English.

To eliminate this bias, two options are proposed in
[10]. We have experimented with the first one, which
will be used for comparison purposes with the Gaussian
classifier proposed in Section 5.2.

The basic idea of bias removal is to use as LM score
the original score minus the average of all LM scores in
the training database (a language-dependent bias).
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5.1.2.  Database for bias estimation

The implementation is quite simple, but an important
issue that has to be faced is which part of the training
database must be used to compute this average value.

We can divide the training database in 3 different
sets: the first one is used to train the acoustic models,
the second one to train the language models and the
third set to estimate the bias value. This could be the
optimal option if the database was large enough, as all
estimations are independent. The problem is that, as our
database is small, when we reduced the size of the first
two sets to dedicate some sentences to estimate the bias
value, all results worsened due to insufficient training
data. So, we had to discard this option.

Another option is to estimate the bias value in the
original training sets. We have two options:

1. Estimate the bias with the language models
training list. This is the worst option: as the LMs have
been estimated using this list, the bias value estimated
is not reliable because it is too optimistic.

2. Estimate the bias with the acoustic models
training list. Even though this data does not participate
in the LM estimation, this could be a dangerous option,
because it could have the same undesirable effects as
the previous option. But we observed that the LM score
distribution in this set was very similar to the score
distribution in the test set. So, we decided to use this
option with good results.

5.1.3.  Results for bias removal

In Table 5 we present the results obtained using bias
removal in a system without the improvement described
in Section 42. We can see an outstanding
improvement, showing that this technique is effective
when there is an obvious bias in the log-likelihood
score as we had presumed.

Table 5. Results for bias removal

Average Minimum
No threshold 8.27 6.80
Bias removal | 6.98 (15.6%) | 5.5(18.9%)

But we have to admit that the same technique
applied to the best system so far — after the threshold
technique from Section 4.2 — showed no relevant
improvement, just 0-1% relative. The most probable
explanation is that the additive factor compensates the
bias effect, and the improvements in this case are not
additive.

5.2. Gaussian classifier

5.2.1.  Description

Another possibility to tackle the issue of different bias
in the LM scores is to use a Gaussian classifier instead
of the usual decision formula applied in PPRLM (see
equation 1 in Section 3). With all the scores provided
by every LM in the PPRLM module we prepare a score
vector. With all the sentences in the training database
we estimate the Gaussian distribution of their
respective score vectors for every language. So, we will
have a Gaussian distribution for each language in the
system.

Now, the recognized language is not the one with
the largest average score. The distance between the
input vector of LM scores and the Gaussian
distributions for every language is computed, and the
distribution which is closer to the input vector is the
one selected as identified language.

So, the LID problem can be treated as a
conventional N-class classification problem (for N
languages) in the score space of dimension D (D scores
considered in our system). Each class is represented by
a Gaussian density N(p;, %), where py and %; are the
mean and covariance of class /. They are estimated
from the training data of P vectors of class 1 as:

m=13 ©
P
s 15, Ly )
1 —_Z(xl,p )%, = 1)
P

A test utterance is classified as language /* based on
its score vector y, if:

d(yﬁﬂl*ﬂzl*)Sd(yﬂlulazl)al:19'-'9N (8)
where,
d(yuul:zl):(y_ﬂz)tzgl(y_ﬂz) ®

is the distance measure. We have considered the
weighted Euclidean distance (X diagonal) instead of a
full covariance matrix as we are aware of the
insufficient training data to estimate the full matrix.

The advantage of the Gaussian classifier is that it
does not suffer from the bias problem as it does not use
an absolute discriminant function.

5.2.2.  Database for the Gaussian classifier

For the Gaussian classifier, the same considerations as
for bias removal can be made (see Section 5.1.2). In this
case, the problem addressed is even more notorious, as
we need more data to estimate a reliable Gaussian
distribution than we need to estimate just the bias in the
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score. So, again we decided to use the acoustic models
training list to estimate the Gaussian distributions.

5.2.3.  Score vector for the Gaussian classifier

As we have several scores in the PPRLM system, there
are several options for the feature vector of scores:

1. Basic. Use the four scores (M acoustic models x
N language models, 2 x 2 in our case) shown in Figure
1. This would be the typical option, probably used by
most systems where a Gaussian classifier has been
considered. The problem with this approach is that
there are big variations in these scores even with
sentences from the same language, and the result is that
the Gaussian distributions estimated are too wide and
are not discriminative enough (there is a big overlap
between the distributions for the different languages).

2. Individual scores. To overcome the big variations
in score, we first considered the possibility to model the
distribution of each n-gram in the score computation for
our feature vector: the score for unigram, bigram and
trigram from equation (2) in Section 3. So, we had a
feature vector of dimension 12 (M acoustic models x N
language models x 3 n-gram scores). We considered
this approach because we observed that individual n-
gram scores were a little more homogeneous than the
global PPRLM scores. The drawback is that the
increase in dimension causes a worse estimation as we
still have the same amount of training data.

3. Differential scores. Instead of using absolute
values, we considered differential scores, which for
every sentence are computed as the difference between
the score obtained by the LM of the same language of
the acoustic models considered (Spanish-Spanish or
English-English) and the score obtained by the other
‘competing’ language: SCO — SC1 and SC3 — SC2 in
Figure 1. So, this score can be computed both in
training and testing. We also considered the
differentiation between individual scores: unigram,
bigram, and trigram. In Table 6 we can see the
summary of parameters for the score vector.

Table 6. Differential score vector

SCO-SCI for unigram
SCO-SCI for bigram
SCO-SCI for trigram
SC3-SC2 for unigram
SC3-SC2 for bigram
SC3-SC2 for trigram

Phonemes-SPA

Phonemes-
ENG

This is an important innovation in this work. We
observed that these differential scores are much more
homogeneous, being the result that the estimated
distributions exhibit a much smaller overlap with the
competing language.

In a multiple language system the proposal for the
differential score would be:
SC current language — AVerage (SC other languages)

In Table 7, we can see the results for the 3
techniques in a system without the improvement
described in Section 4.2. As we can see, the results for
the Basic and Individual options are similar, and in both
cases there is a remarkable worsening, which can be
due to two facts: the great variations in score that we
have already mentioned, and the insufficient size of the
database. Nevertheless, the results for the Differential
scores are outstanding, more than 30% relative,
showing the suitability of our approach.

Table 7. Results for the Gaussian classifier

Score vector Average Minimum
No threshold 8.27 6.80
Basic 11.43 (-38.2%) | 7.7 (-13.8%)
Individual 10.94 (-32.3%) | 7.7 (-13.8%)
Differential 5.82 (29.6%) | 4.3 (36.8%)

If we apply the technique with the best system so
far (see Table 8, only Differential is presented to
summarize, although similar conclusions can be
extracted for Basic and Individual), the results show a
smaller improvement, but are better than for the bias
removal technique. Again, the improvement of the
threshold technique is not additive with the Gaussian
classifier. The results for the ‘Average’ column cannot
be compared because the inclusion of the n-gram
weights in equation (2) is now completely different (we
have included them in the distance computation as a
factor that multiplies the standard deviation considered
in the distance measure).

Table 8. Results for the Gaussian classifier

Average Minimum
Base 5.03 3.92
Gaussian classifier 5.63 (not 3.71 (5.41%)
comparable)

In any case, getting these results is a fantastic
starting point, as it is easy to include acoustic and
allophone sequence information using this Gaussian
classifier. And, as we will see, some further
improvements are still feasible if we increase the
number of Gaussians in the classifier.
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6. Improved Gaussian classifier

6.1. Inclusion of acoustic information

One drawback in PPRLM modeling is that the basic
technique only takes into account information regarding
the allophone sequence. As we mentioned in the
introduction, another techniques as the “GMM
tokenizer” provide a good performance using both
acoustic and “sequence of sounds” information. But the
acoustic score of the phone recognizers cannot be
included in the basic PPRLM formula (equation (1)).

In this paper, we propose the inclusion of acoustic
information using our Gaussian classifier.

So, we will add two new features to our score
vector: the acoustic score obtained in the phone
recognizers of both languages. Again, the approach can
be easily extended to several languages.

In our first experiments we observed, as in Section
5.2.3, that the values of the acoustic score were not
homogeneous at all, and so, the estimated distributions
had a big overlap between the languages that we
wanted to classify. All experiments using those scores
provided worse results.

Then, we decided to use again the “differential
scores” idea: we used the difference between the score
for the Spanish phone recognizer and the score for the
English phone recognizer as feature value. Again, we
observed that the overlap between the estimated
distributions reduced drastically. So, we just have one
feature in the acoustic score vector.

0.1.1.  Database considered

Obviously, we need to estimate the acoustic score
distributions using non-training data. So, the dataset
chosen for this task is the language models training list,
because those sentences have not been used to train the
phone models.

One important consideration here is that, in fact, we
have trained Gaussian distributions for allophone
sequence scores and acoustic scores separately, as they
use different lists for the estimation. This is no problem
at all, it is very similar to the treatment of different
feature vectors in HMM models.

0.1.2. Results

In this point in our experiments, we decided to increase
slightly the test set size from 500 sentences up to 700
sentences both in Spanish and English in order to
increase the significance of the results. That is why
there is a slight change in the results for the Gaussian
classifier from Table 8. In Table 9, we can see the
results using the Gaussian classifier with two
distributions, one for the PPRLM scores and the other
one for acoustic scores. As we can see, the

improvement is limited for the Minimum (we are very
close to a top performance considering that sentences
are only 4.5 seconds long in average), but in Average it
is remarkable. The average includes experiments giving
more relevance to unigram and bigram and, so, results
show that acoustic information complements better the
least robust systems.

Table 9. Results with acoustic scores

Minimum
3.74
3.67 (2.0%)

Average
5.42
4.69 (13.5%)

Gaussian classifier
+ acoustic scores

6.2. Multiple-Gaussian classifier

One of the nicest characteristics of a Gaussian classifier
is that we can grow up to multiple Gaussians to better
model the distribution that represents our classes. Of
course, we will need more data to have a reliable
estimation of these Gaussians. We will show here that
with our data we can estimate reliable multiple-
Gaussian  distributions using both sources of
information: allophone sequence and acoustic score.
We have used different number of Gaussians for both
of them, as the dimension of the feature vector is
completely different: 6 features for sequence score and
1 feature for the acoustic score.

To increase the number of Gaussians we have
followed the classical HMM modeling approaches
(Gaussian splitting and Lloyd reestimation after each
splitting), so we will not describe them here.

In Table 10 we can see a summary of results
obtained using different numbers of Gaussians for both
scores.

Table 10. Multiple-Gaussian classifier

Number of Gaussians

LM Acoustic Average Minimum

score score
1 1 4.69 3.67
2 1 4.35(7.2%) | 3.52 (4.1%)
2 2 4.14 (11.7%) | 3.31(9.8%)
3 1 4.01 (14.5%) | 3.24 (11.7%)
3 2 4.12 (12.1%) | 3.23 (12.0%)
3 3 4.06 (13.4%) | 3.31(9.8%)
4 1 4.15 (11.5%) | 3.38(7.9%)
4 2 4.20 (10.5%) | 3.16 (13.9%)
4 3 4.08 (13.0%) | 3.17 (13.6%)
4 4 4.09 (12.8%) | 3.31(9.8%)

We can extract several interesting conclusions from

these results:
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o The improvements are really remarkable, up to 14%
in minimum value and almost 15% in the average
of all experiments.

e As we expected, the best system uses more
Gaussians for LM score than for acoustic score.

e [t is a nice feature that all systems provide better
results than the mono-Gaussian system, showing
that there is enough training data for the multiple-
Gaussian system.

e There are better improvements in the Average
value. Again, the more powerful estimation of
multiple Gaussians has more relevance in the less
robust systems (the ones with bigger weights for
unigram and bigram).

o After all these improvements, the difference
between the Average and Minimum values has
reduced drastically, showing the robustness of these
techniques which reduces the importance of the n-
gram weights from equation (1). This is a very nice
feature in any PPRLM system.

7. Conclusions

We have described several improvements in a language

identification system using PPRLM scores and acoustic

information. The system has improved from 6.80% to

3.16% error rate, which is a remarkable 53.5% relative

improvement. The results are outstanding, as the

average duration of the sentences is just 4.5 seconds,
although they are difficult to compare with other
systems where longer utterances are compared.

Increasing the sentence minimum duration to 2
seconds instead of 0.5 (5.3 seconds average duration)
we obtain a 0.82% error rate. So, most errors in our
system come from extremely short sentences.

The most significant improvements have been
obtained using the following techniques:

e The application of the variable additive factor in
score computation provided a significant error
reduction in all cases. It even compensated the bias
mismatch in the LM scores, as the results have
shown.

e For the classifier, we compared the bias removal
technique (up to 19% error reduction) and a
Gaussian classifier (up to 37% error reduction),
showing that the last one provides better results and
has the potential to include additional information.
To estimate them, the acoustic models training list
can be used with success. The use of differential
scores to estimate the Gaussian distributions is also
crucial for the technique.

e The inclusion of acoustic score in the Gaussian
classifier provided a 2% error reduction and the
increase in the number of Gaussians provided an
additional 14% error reduction.
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