
New Word-Level and Sentence-Level Confidence Scoring
Using Graph Theory Calculus and its Evaluation

on Speech Understanding

Javier Ferreiros, Rubén San-Segundo, Fernando Fernández, Luis-Fernando D'Haro,
Valentín Sama, Roberto Barra and Pedro Mellén

Speech Technology Group. Dept of Electronic Engineering. Universidad Politécnica de Madrid
E.T.S.I. Telecomunicación. Ciudad Universitaria s/n, 28040-Madrid, Spain

{jfl, lapiz, efhes, lfdharo, vsama, barra, mellen}@die.upm.es

Abstract
A lot of work has been devoted to the estimation of
confidence measures for speech recognizers. In the quite
extended case where a word-graph speech recognizer is in
use, we will present new confidence measures employing the
graph theory that shows us how to estimate some interesting
characteristics about the different paths through the graph that
constitute the recognition solutions, without the need of
expanding them all.

We will take advantage of some of these features to
generate confidence scores both at the word and sentence
level. We will also compare this new confidence scoring to
more traditional ones and will find similar behavior with less
computational load and with an increase in the simplicity of
the approach that will lead to more generalization power of
the confidence estimation to different applications of the
recognizer.

1. Introduction
Some good studies exist on sentence and word level
confidence scoring for speech recognition and its applications
to speech understanding systems [1], [3]. The search for
effective confidence measures usually goes through the
integration of several features more or less closely related to
the idea of confidence as some kind of combination, usually a
neural network [4], [5]. These combinations suffer from the
need to tune the combination parameters to new applications.

In this paper we are presenting a new confidence scoring
methodology based on some basic graph calculus [2] that
exhibits the nice property of eluding the presence of tuning
parameters.

In the experimental work we will show similar behavior

of this new scoring to more complex traditional combinations
of parameters in the task of predicting word and sentence
error rates. We also show similar performance when this
scoring is used in a speech understanding task as confidence
filters to refine the interpretation of the sentences.

2. Some graph theory basics revisited
The recognizer generates, as the best match to the acoustic
sequence belonging to a sentence, a word graph composed of

a set of arcs that connect two special nodes (in the sense that
they are not related to any existing word in the vocabulary):
the START node and the END node. From the START to the
END, a map of paths following arcs that contain words from
the vocabulary represents the solution obtained by the
recognition algorithm. This kind of graphs is called simple
directed graphs as they do not contain loops and each arc has
a specific direction from one node to another one. These
characteristics will be fundamental in the discussion about the
mathematics we will employ.

We need now to define the adjacency matrix, let call it A.
We will simplify the definition saying that the adjacency
matrix A for a graph is a binary-valued matrix which element
(i,j) is 1 if it there exists a connection between node i and j,
otherwise it is 0. It is straightforward to reach the conclusion
that if the graph has no loops, the diagonal will be composed
of 0s.

Also, as the graphs obtained as the result of the recognizer

are constituted by arcs going from words appearing before in
time to other following words and we will order the
numbering following this criterion, we notice that, in this
case, the adjacency matrices will have nonzero elements only
in the upper-triangular part (with a null diagonal). Another
important detail is that these adjacency matrices will be quite
sparse (indeed, as more sparse as better is the recognizer or
the acoustic sequence is nearer to usual examples of the
application learnt by the system) and the more common
appearance for these matrices is some 1s disposed near a
diagonal of 0s.

By its definition, we can see that the adjacency matrix let

us know if there is a simple connection between two nodes.
Now we will make some reflections about the meaning of the
successive powers of the adjacency matrix. The square of the
adjacency matrix would be composed by the number of two-
step paths form one node to another one. Following this
reasoning, we will reach to the conclusion that the number of
paths with s steps length from node i to node j will be the
element in the position (i,j) of the matrix As, i.e., the s-th
power of the adjacency matrix.

Now, consider the output of a word graph recognizer. If

we write down the adjacency matrix A, we will obtain the
connections between words with which we could redraw the
whole graph. We can follow by calculating the successive
powers of the adjacency matrix As and eventually will reach a
certain s=smin where the element As(START,END) becomes

different to zero (and not necessarily 1, but any positive
number). This represents the first occasion in which there
exist one or more connections from the START to the END
and we may save this smin number as the length of the shortest
solution paths, the minimum length of a recognized
hypothesis. If we continue the calculation of successive
powers of the adjacency matrix, we will reach another
s=(smax+1) where every element of the As matrix becomes
zero. The meaning is that there is no path with length (smax+1)
or, what it is the same, the largest paths have a length of smax
steps. One may think that this could be a path between any
two internal nodes, but this can not be the case: since the
graph is acyclic and directed from START to END, the
largest paths HAVE to be between START and END and
must actually be members of the solution family.

In the following descriptions we will also use another

matrix computed as the sum of all powers of the adjacency
matrix:

 ∑=
s

sAS (1)

The elements of this matrix will keep the total number of
paths (of any length) existing between two any nodes.

3. Keeping computational demands under
reasonable limits

We have just shown that we need to accumulate the
successive powers of the adjacency matrix for a graph. Some
may think that this will lead to computational limitations
easily. In this section we show some optimizations and
recommendations to obtain the calculations without
computational explosions.

First of all, there are pathological cases where the graph
may have an enormous size, like when the speaker utters a
sentence completely out of the supposed domain. For these
cases, a simple limit in the number of nodes of the maximum
size graph we will accept to be processed is the right solution
and we can assume directly that the confidence is low enough
to reject the input that caused this giant graph.

Now, for the graphs we do process, there are some

advises we can mention.

We just reviewed that the adjacency matrix is very sparse

in the sense that only a few elements near the diagonal (and
excluding the diagonal) will have non zero values. So, the
wise way to manage this matrix is not as a bi-dimensional
array of values but as a uni-dimensional array of concatenated
lists of actually existing values. This coding scheme also
applies to the successive powers matrix.

To obtain the successive powers of the adjacency matrix,

we have to multiply the last power obtained by the adjacency
matrix: As+1=As·A.

Without any other consideration, we would tend to code

this multiplication as two loops, one for the row index and
another one for the column index controlling a third loop that

would run trough the values with which we obtain one
element of the product.

Again, there is a better way to code this part: we can run

trough the uni-dimensional array of lists we just mentioned.
Then, for any non empty list, we can run through the existing
elements in the last calculated power. For each of them, we
look again in the corresponding list to make the products by
the existing elements, but in the adjacency matrix this time.
We have to note that, because the adjacency matrix is binary
valued, this product has not to be done, but we have only to
accumulate the value read from the existing element on the
last calculated power for the position existing in the
adjacency matrix. With this trick, we can process rather big
graphs without computational problems.

4. Graph features related to confidence

4.1. Word level confidence

We estimate word level confidence as the "purity" of each of
the words. This purity is defined as the relative number of
hypothesis in the graph that contain this word in the same
position.

For the calculation of this parameter, we will make use of
the accumulated-powers matrix S as defined in equation (1).
If we index the element S(START,wi), we will get the
number of paths of any length in the solution family coming
from the START to the word wi in question. In the other
hand, the element S(wi,END) is the number of paths from wi
to the END. Thus, if we take the product S(START,wi) ·
S(wi,END) we will obtain an estimation of the total number
of paths in the solution family going through wi.

We need to keep in mind that here wi means a word in a

particular position (for example, another wj may in fact be the
same word, but in a different position). To obtain the purity of
each word in the principal hypothesis, we need to know the
total number of possible hypothesis that the graph comprises.
This factor is easily obtained from the element
S(START,END) and leads us to the estimation of the purity
of each word in the principal hypothesis considering the
graph as:

() ()

()ENDSTARTS
ENDwSwSTARTSP ii

i ,
,, •

= (2)

This purity of each word acts as a confidence measure
because, when a word is correctly recognized, it would appear
in all the expanded hypothesis from the graph in the same
position. In the case where the recognizer would be less
confident about this word, the number of hypothesis compiled
in the graph divides between the possibility that in this
position would appear word wi and the possibilities for other
words in the same position.

One nice property of this confidence measure is that it has

no tuning parameter and should behave the same even
changing the application been worked out by the recognizer.

Basically, this confidence estimation follows the fact that

the complexity of the graph goes in inverse proportion to the
confidence of the recognizer in its delivered solution. In our
case, we have estimated the "partial complexity" of the graph
for each word as the proportion of alternatives to the word
under inspection, as compiled in the graph, and the purity or
confidence for this word as the complementary measure.

4.2. Sentence level confidence

For the sentence level we are describing first some features
extracted from the graph calculus that will be used as inputs
to a neural network confidence sentence scoring generator
and in the next sections we will propose and compare this
approach to the simple and more general approach of using
the last feature alone, the average of word confidence scores
generated as described in 4.1, as a confidence score for the
whole sentence.

Next, we are describing some features computed from the

graph that will be used by a neural network to give a
confidence score to a sentence.

• Total number of possible hypothesis. The number of

different hypothesis that could be obtained from the
graph. It is simply obtained from the element
S(START,END). The rationale behind this feature, once
again, is that the number of different solutions in the
graph (its complexity) will increase in inverse relation to
the confidence.

• N-best computation reduction. This feature is used when
we activate the generation of the n-best list of solutions
(usually we extract 10 different solution) and is the ratio
between the number of expansions needed to find these
10 different solutions and the total number of hypothesis
in the graph. If this feature gives numbers near 1, it
means that almost all hypothesis have been needed to be
expanded to obtain de 10-best list (or maybe, the
algorithm even could not find 10) and this intuitively is
an indication of closely competing hypothesis and low
confidence.

• Hypothesis length dynamic range. This is the ratio
between the length of the largest hypothesis and the
length of the shortest hypothesis. As we analyzed before,
this can be obtained as smax / smin. If a sentence is badly
recognized, a lot of different solutions with very varied
lengths are obtained. In high confidence cases, this
feature delivers values near 1.

• Percentage of words with high purity. Calculated as the
number of words with purity values over 0.5.

• Average purity. The average of purity values for all
words in the principal hypothesis. Although we present
here this feature as input to the neural network, we will
use also this one by itself as a confidence measure for the
whole sentence.

5. Our graph-based confidence scoring
proposal

As a summary, our proposal is to use the purity of each word
in the principal hypothesis defined in 4.1 to estimate the
confidence score for each word and the average of them all as
the global sentence score. We will now proceed to evaluate
this proposal against more classical neural net integration of
several confidence related features to obtain both word level
and sentence level confidence scores.

6. Experimental work
We have used our speech recognizer that is prepared to
generate graphs and n-best lists as the result of recognition.
The task is a spontaneous speech task of Air Traffic Control
in radio channels limited to less than 4KHz bandwidth.

The experiments with confidence measures where two-

fold. In first place, following the direction of analyzing the
effects of using these confidence scores as predictors of the
word and sentence level recognition errors and then in the
direction of evaluating the effects of using the confidence
scores in a speech understanding module to generate
confidence scores for the slots in the generated frame and to
refine them with filters based on the confidence of individual
items.

6.1. Evaluation of confidence measures as error predictors

First, we are comparing the word purity as a confidence score
to a neural network integration of several features (word
score, average word score, score variance, score of the worst
frame, score of the best frame, average difference to the best
score, N-best purity, N-best scoring and also the graph
purity). The performance of the purity alone compared to the
neural network integration (although slightly worst) is not
very different and make us think that most of the confidence
information resides already in the graph purity. This can be
seen in Table 1 where we present this comparison and also
the recognition performance for this task.

Table 1: Word level confidence evaluation

Experiment % Performance Band
Recognizer
accuracy 83.3 ±0.51

Graph
purity 86.88 ±0.46

NN
integration 88.31 ±0.41

Something similar is observed for the sentence level

confidence scoring. As it can be seen in Table 2, there is not a
great gap between the performance of just using the average
purity or a network integration of the graph features we
presented for that case.

Table 2: Sentence level confidence evaluation

Experiment % Error
Average Graph purity 10.66

NN integration 10.10

6.2. Evaluation of confidence measures for speech
understanding

We now comment some results obtained when using these
confidence scores in a speech understanding module. Our
speech understanding module is based on context dependent
rules applied on the principal hypothesis delivered by the
recognizer. The words in this hypothesis are labeled with
syntactic-semantic tags and now we accompany them with
the word confidence scores and the global sentence score.
The global sentence score is used simply as a multiplier to all
the word scores in these experiments to give it some
modulating capacity.

Speech understanding rules are written making use of

some primitive functions in a dedicated library. In this
primitives, we introduce the following simple confidence
elaborating mechanism: For the items generated by the rule, a
new confidence score is generated as the average confidence
of the terms on which the primitive relies to do its job.

Executing the understanding module, we eventually

arrive to a frame with a variable number of slots, each one
qualified now with a confidence score. Then we have applied
filters related to these confidences (basically removing
interpretations with low confidence scores or with confidence
scores far (and below) from their neighbors') and obtained the
results in Table 3, where we have consigned the concept
accuracy (paralleling the definition of word accuracy, but for
the application concepts in the sentence).

Table 3: Speech understanding evaluation

Experiment % Concept
accuracy

Without confidence 76.57
With NN confidence 79.74

With Graph confidence 80.52

In this table 3 we may note that using confidences

generated with graph calculus as we have introduced them,
we obtain similar results than using more complicated scores
coming form NN integration. And we would like to remark
again that NN confidence means the use of a neural network,
i.e., the tuning of the net weights to a particular application
whereas the graph confidences have no tuning parameter to
the application.

7. Conclusions
We have presented a new word and sentence level confidence
scoring estimated as features extracted from a word graph
recognizer through the application of some basic graph
calculus.

The nice property is that these features elude the presence

of tuning parameters and lead us in conclusion to confidence
scores independent of the application and circumstances of
the speech recognizer.

The experiments that we have carried out using this new

confidence scoring had two aims.

• In the first place, to study the predicting power of the
recognizer errors.

• In a second place, to study the help of the confidence
measures when used in filters to refine the interpretation
of the sentences in a speech understanding system.

For both cases, graph based confidence scoring revealed
similar performance compared to a classical complex
combination of features with neural networks.

8. Acknowledgements
This work has been partially funded by the Spanish Ministry
of Science and Technology under contracts DPI2001-3652-
C02-02 (URBANO-IVANHOE) and DPI2004-07908-C02-02
(ROBINT). The authors wish to thank all the rest of the
Speech Technology Group for the continuous and fruitful
discussion on these and many other topics.

9. References
[1] Timothy J. Hazen, Stephanie Seneff, and Joseph

Polifroni., "Recognition confidence scoring and its use in
speech understanding systems", Computer speech and
language, 16:49-67, 2002.

[2] Kennet H. Rosen., "Discrete mathematics and its
applications.", Mathematics & statistics series.
MacGraw-Hill International Editions, 1999.

[3] Manhung Siu and Herbert Gish., "Evaluation of word
confidence for speech recognition systems.", Computer
speecg and language, 4(13):299-319, 1999.

[4] Bernd Souvignier and Andreas Wendemuth.,
"Combination of confidence measures for phrases.",
Proc. Eur. Conf. Speech Communication and
Technology, pages 217-220, 1999.

[5] Rong Zhang and Alexander I. Rudnicky., "Word level
confidence annotation using combinations of features.",
Eursopeech, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

