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ABSTRACT

This presents a robust voice activity detector (VAD)
based on Hidden Markov Models (HMM) in stationary
and non-stationary noise environments: inside motor
vehicles (like cars or planes) or inside buildings close to
high traffic places (like in a control tower for air traffic
control (ATC)). In these environments, there is a high
stationary noise level caused by vehicle motors and
additionally, there could be people speaking at certain
distance from the main speaker producing non-stationary
noise. The VAD presented herein is characterized by a
new front-end and a noise level adaptation process that
increases significantly the VAD robustness for different
signal to noise ratios (SNRs). The feature vector used by
the VAD includes the most relevant Mel Frequency
Cepstral Coefficients (MFCC), normalized log energy,
and delta log energy. The proposed VAD has been
evaluated and compared to other well-known VADs using
three databases containing different noise conditions:
speech in clean environments (SNRs > 20 dB), speech
recorded in stationary noise environments (inside or close
to motor vehicles), and finally, speech in non-stationary
environments (including noise from bars, television, and
far-field speakers). In the three cases, the detection error
obtained with the proposed VAD is the lowest for all
SNRs compared to Acero’s VAD (reference of this work
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[4]) and other well-known VADs like AMR, AURORA, or
G729 annex b.

INTRODUCTION

The advantages of using Automatic Speech Recognition
(ASR) are increasing for several types of applications,
especially those where the subject wants to develop
complementary actions (using ASR) when having his/her
hands occupied performing the main task, as is the case of a
car driver, an air traffic controller, or a pilot. Speech
Recognition has important problems when the main speaker
is embedded in noisy environments. These problems are
related to the correct detection of speech: there are false
alarms (provoked by strong noises), and speech losses (when
this speech is confused with noise). These factors degrade
speech recognition rates producing an unsatisfactory
experience for the user. If there are too many recognition
mistakes, the user is forced to correct the system which takes
too long, is a nuisance, and the user will finally reject the
system. A high error rate is not acceptable for critical tasks,
such as in ATC environments, which is probably the main
reason for the low use of speech interfaces in ATC. With the
purpose of reducing these problems, this paper presents a
robust Voice Activity Detector (VAD) for segmenting an
audio signal into speech and non-speech frames. This
segmentation is sent to the speech recognizer that will only
process speech pronunciations. A good voice activity
detector is important to reduce speech recognition errors
caused by noise frames.

Nowadays, there is an increasing interest for developing
robust Voice Activity Detectors (VAD) for real-time
applications in adverse conditions. Similar to the VAD
proposed in this work, Sohn [1] uses a statistical model-based
detector including an effective hang-over scheme which
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considers the previous observations by a first-order Markov
process for modelling speech occurrences. This contributes
with an analysis of the discrimination power of the different
MFCCs and proposes a noise level adaptation process for
increasing VAD robustness against different signal to noise
ratios (SNRs).

Traditionally, log frame energy has been a very effective
feature for detecting speech in any condition but it has the
problem that it is necessary to adapt log energy thresholds for
different SNRs. Increasing VAD robustness for different
SNRs has been aimed in several works. In Ramirez et al. [2],
authors face the problem of SNR independence by using the
Kullback-Leibler divergence measure. In [3] authors train
different noise or non-speech models for different SNRs and
they propose an automatic decision module to choose the
appropriate model based on SNR values estimated
frame-by-frame. This solution has two main problems: it is
cost-effectively expensive and complex to implement, and
when the automatic decision is wrong, VAD performance
degrades rapidly. The proposed VAD presented herein uses
only one model for speech and another for non-speech for all
SNRs, reducing the complexity and avoiding performing any
automatic decision from a SNR estimation. This
characteristic has been possible thanks to the noise adaptation
process. On the other hand, improving Sheikhzadeh’s work
[3], Acero [4] proposed the idea of using normalized log
energy (subtracting the average noise log energy) to avoid
training different models depending on the SNR. Acero’s
work has been considered as the baseline for the study
presented herein. Acero’s VAD uses an HMM-based
algorithm and a pulse detection mechanism using a simple
post-process technique based on two thresholds instead of
four, as Lamel [5] algorithm does. Herein, authors propose a
new front-end including an analysis about the discrimination
power of the different MFCCs. Besides, the log energy
normalization is an improved version of that included in
AMRI [6]: the noise level, necessary for normalized log
energy calculation, is adapted online during noise frames (not
during speech frames). An important aspect Acero did not
consider in his VAD proposal was to consider normalized log
energy calculation for HMMs training: Acero’s VAD
performed normalization using post-training statistical
information from HMMs. The same problem happens in Qi
Li [7] that uses the detected endpoints to apply energy
normalization sequentially.

Another endpoint detector including spectral information
is Zhang [8] VAD. Zhang, considering the idea that
linguistic information plays an important role in voice
activity detection, presented a 5-state HMM-based VAD
that uses MFCCs, short-term energy, and zero-crossing rate
into the feature vector, but without including normalized log
energy and delta log energy information. Finally, in [9] two
classification techniques, SVM and GMM, for VAD are
presented using modified group delay. Two different models,
speech model and non-speech model are considered by the
classifiers, similar to our work but using a different feature
vector.
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This work presents an improved VAD for robust voice
detection in noisy environments with different SNRs. This
improvement is based on three main contributions:

1) an improved front-end including a selection of
the most discriminative MFCCs;

2) an improved reference level estimator for log
energy normalization; and

3) training the HMMs considering log energy
normalization.

The proposed VAD uses only two HMMs: one to
represent speech frames and the other to represent
non-speech frames, but obtaining very good results in
different conditions (SNRs).

Feamre State Machine
Vector —p»| HMM-based algarithm |l  SpeechPuke
Edrection Sructre

Speech 4-state HMM
Noise 3-state H MM

Fig. 1. Voice Activity Detector Block Diagram

This is organized as follows: the proposed VAD is
described in the Voice Activity Detector Structure section;
The Front-End Comparison section shows the improvement
of the new VAD compared to Acero’s for segmenting speech
and non-speech frames (front-end comparison); the Global
Detection Results section presents global detection results
when comparing our new approach to other well-known
VADs over three real mobile telephone databases. Finally,
conclusions are presented.
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Fig. 2. Feature Extraction

VOICE ACTIVITY DETECTOR STRUCTURE

The proposed VAD is composed of three main modules
(Figure 1). The first is the feature vector extraction, the
second is the HMM-based algorithm, and the third is the
Speech Pulse Detector implemented as a state machine.
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Feature Vector Extraction

The feature vector v(n) is composed by five features as
shown in Figure 2.

The five features are the most discriminative MFCCs (C1,
C2 and C3), obtained from a previous study which is
developed and explained later in this section (Table 1),
normalized log energy (cOn) and delta log energy (dc0)
calculated at every frame. In this work, the frame length is 24
ms with a 50% overlap. The GenCeps module computes
MFCCs from a 12 Mel filter bank with pre-emphasis. If this
specific feature extraction (MFCCs) is also used for speech
recognition, front-end calculation will not increase the
processing time.

To find out the more discriminative MFCCs, that is those
coefficients that produce bigger differences between the two
acoustic classes (speech and non-speech), the speech and
non-speech probability distribution functions for the first
nine MFCCs (C0-C8) were computed and analysed. This
analysis was done along the training database assuming
independence between MFCCs. All of the MFCCs were
calculated for all of the frames (speech and non-speech).

The discrimination power of a MFCC can be measured as
the inverse of the uncertainty [10]. The uncertainty (1) is the
probability of miss-classifying a frame according to only that
coefficient.

th_best ©
uc; = f Pspl(x; )dx + f Pron-sp(Xi )d% (1)
o th_best

where x; represents the i ‘th MFCC. Psp and Pnon-sp denote
the probability distributions of MFCC for speech and
non-speech frames, respectively. For each coefficient
independently, probability distributions in the training set
were estimated for each acoustic class (speech and
non-speech). The probability distributions were estimated
without normalizing the histograms. The classification error
(uncertainty) computed using (1) is based on an optimum
threshold, th_best in (1), (x; > th_best is speech otherwise
non-speech) considering the probability distribution
functions as continuous functions (without normalization).
This th_best is the intersection point between the two
probability distribution functions. Note that in this specific
case discrete probability distributions are used and the
th_best is the nearest discrete value to the intersection point
between the two ideal continuous probability distribution
functions.

Table 1 contains uncertainties for all MFCCs, sorted by
uncertainty. The MFCCs selected to train the speech and
non-speech acoustic models of the original VAD system are
highlighted in bold. The uncertainty results show that the
more discriminative MFCCs (lower uncertainty) are, in
sequence, C3, C0, CI and C2. As C0 will be used to calculate
normalized log energy (cOn), C3, CI and C2 were selected to
be incorporated into the final feature vector. In the
developing experiments, the use of more MFCCs (C4 for
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Table 1. Probability Distributions Uncertainty
for Each MFCC

Index of the MFCC Uncertainty

0.3428
0.3606
0.3623
0.3686
0.3765
0.3898
0.4137
0.4371
0.4495

W AN NN AN =S W

example), in addition to the three considered MFCCs, did not
obtain better detection results. Because of this, in order to
avoid increasing the VAD processing time, only C1, C2 and
C3 were considered.

The next feature considered in the proposed front-end is
the normalized log energy. In order to compute the
normalized log energy, it is necessary to estimate the
background noise log energy (bg_n). The noise estimator is

bg_ri+1]=(1.0-a) -bg_ril+ca-efi-1] @)

based on an improved version of the AMR1 algorithm [6],
where i denotes actual frame, en the energy and a. takes
values according to the next criterion:

else a=2 &

if bg_ril<erdi-1], a=10- A}

In this study A has been set to 0.85, getting in this way an
85% adaptation to energy falls due to silence or stationary
background noise. Finally, normalized log energy is
calculated frame-by-frame as the difference between the log
energy at the current frame (C0) and the background noise
log energy estimated in this frame.

The last incorporated feature is delta log energy. This
feature is calculated at frame i as the difference between log
energy in frame i (C0) and log energy in previous frame (i-1).

HMM-Based Algorithm
This algorithm uses two acoustic models: a speech model
and a noise or non-speech model. Model topology is
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SPEECH MODEL

NOISE MODEL

Fig. 3. HMM:s Structure
represented in Figure 3. Both HMMs are lefi-to-right models
with three and four emitting states for noise and speech
model, respectively, and one mixture per state (the exact
number of states is not critical). Note that jumping states are
allowed.

The HMM-based algorithm consists of the calculation of a
parameter named score for each frame, which is derived
directly from the log likelihoods of one frame given
speech/non-speech models (4).

score- 1og(L(pspeecd)- 109U (@noisd)) @

where L(F) = prob(F% v(n)) symbolizes the likelihood of
frame n given an acoustic model. Another important aspect is
that speech and noise models are connected to each other.
Figure 3 presents a network where the noise model can be
followed by the speech model, and vice versa.

Speech Pulse Detection

The HMM based algorithm provides a preliminary frame
classification into speech and non-speech frames. This
classification is based on the speech/noise log likelihood
ratio: score. If score is higher than zero, the frame is
pre-classified as a speech frame; otherwise the frame is
pre-classified as a noise or non-speech frame. After this
decision, the speech pulse detection module adds additional
information to detect speech pulses providing the final frame
classification into speech or non-speech frames. This
information is related to the pulse duration, silence between
pronunciations, and pulse extension:

* Pulse duration:
If pulse duration is less than 168 ms (14 frames,
considering 12 ms advance), is not considered
as a speech pulse. With this condition, the VAD
avoid detecting clicks, coughs or blows as
speech. This value is the maximum delay of the
VAD system.
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* Silence between pronunciations:
If the silence between consecutive speech pulses
is less than a configuration parameter in ms,
pulses are connected as only one. This value can
be adjusted depending on the type of
background noise.

* Pulse extension:
the algorithm adds three frames before and after
speech pulse in order to avoid losing low energy
speech frames at the beginning and the end of
pronunciations (fricative and occlusive sounds).

Front-End Comparison

In order to evaluate the improvement achieved with the
new front-end proposed in this work, this section presents a
comparison between the proposed VAD and Acero’s VAD
[4] considering only the frame segmentation proposed by the
HMM-based algorithm (without considering the third
module: speech pulse detector).

For this analysis, these authors have considered a database
consisting of 101,350 hand-labelled files from real
conversations between users and real services recorded over
GSM mobile phones. This database includes high speaker
variability: 150 males and 148 females, aged between 21 and
43-year-old and located in outdoors environments containing
several kinds of noises. This database contains both
stationary and non-stationary noise like hits, clicks, so that
noise model considered this effect. The SNR average for the
training database was around 20 dB and all audio files have a
SNR higher than 18 dB. This database has been randomly
divided in two sets: 90% for training the HMMs and
performing the analysis of MFCCs discrimination power (see
II.A), and 10% for developing the system (tuning the
different thresholds).

For testing, these authors have considered two new
databases:

1. A stationary noise database
(motor vehicle noise) composed of 2800
hand-labelled files that contains spontaneous
spoken language over GSM mobile phones
recorded while the main speaker is in different
situations: the main speaker is in a bus stop,
inside a car, a bus, or the main speaker is
talking over his/her mobile phone while he/she
is driving a car at different speeds. Different
speakers, 11 males and 7 females, aged between
19 and 33 years, were considered. This is a
stationary noise database including mainly
motor-vehicle noises: similar stationary noise
appears in control tower for ATC. SNR ranges
between and 20 dB.

2. A non-stationary noise database:
2900 hand-labelled files containing
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conversational language over GSM mobile
Pphones in airports, bars with television, social
gathering programs, and far-field speakers.
Different speakers, 11 males and 10 females,
aged between 25 and 47 years old were
considered. This non-stationary noise database
contains files with different SNRs from 5 dB to
25dB.

Figure 4 presents Detection Error Trade-off (DET) curves
(varying the score threshold) for Acero’s front-end and the
new proposed front-end considering the stationary noise
database with a 5 dB SNR. As shown, the behaviour of the
new VAD is much better than Acero’s, in both cases, false
alarm and miss rates.

Extending results to other SNRs and fixing score threshold
to zero (Note that this decision means only one point in DET
Curve), Table 2 presents false alarm and miss rates for
different SNRs.

As Table 2 shows, non-speech model allows obtaining a
very good false alarm rate in both cases: the new robust VAD
performs a little better than Acero’s. However, differences
are bigger when comparing miss rates: the new robust VAD
speech model performs much better than Acero’s. In
conclusion, the global improvement is important with this
type of noise. Table 3 shows the Equal Error Rate (EER)
over the stationary noise database for different SNRs.

| SEEe

False Alarm probabilty (in %)

Fig. 4. DET Curve over score parameter. Stationary noise
SNR =5 dB. Dashed line for Acero’s VAD
and continuous line for the proposed VAD

Table 3 shows the EER improvements of the new VAD
over Acero’s VAD for all SNRs. As expected EER decreases
when SNR increases. Table 3 also includes the EER

Table 2. False Alarm Rate and Miss Rate for Different SNRs Considering the Database with Traffic Noise

SNR (dB) False Alarm Rate False Alarm Rate Miss Rate Miss Rate
(Acero’s VAD) (New VAD) (Acero’s VAD) (New VAD)
0 1.58% 1.55% 67.23% 55.67%
5 1.38% 1.27% 61.53% 43.72%
15 2.09% 1.83% 54.46% 32.88%
20 2.62% 2.34% 52.89% 31.25%

Table 3. EER for Acero’s Vector and the New Final Extended Vector for Different SNRs

SNR (dB) EER EER EER
(Acero’s VAD) (considering only log energy + (New VAD)
delta log energy)
53.2% 72.8% 41.7%
42.9% 57.9% 33.4%
15 32.7% 38.3% 24.8%
20 25.1% 27.6% 18.3%
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Table 4. False Alarm Rate and Miss Rate for Different SNRs Considering the Database with Babble Noise

SNR (dB) False Alarm Rate False Alarm Rate Miss Rate Miss Rate
(Acero’s VAD) (NewVAD) (Acero’s VAD) (New VAD)
5 15.88% 14.72% 82.12% 82.03%
10 14.70% 13.60% 77.63% 76.11%
15 12.65% 10.50% 72.61% 66.89%
20 10.30% 7.74% 66.63% 54.75%
25 5.41% 3.68% 55.95% 35.10%
considering only log energy and delta log energy (without
log energy normalization and MFCCs).
Table 4 presents false alarm and miss rates for different VAD comparison. Stationary noise
SNRs in non-stationary noise environments: 60
As expected, detection results are worse in the P
non-stationary noise database compared to the stationary
noise database: the false alarm rate increases due mainly to o
the far-field speech included in the non-stationary database. ..:, €|
Even in this case, the proposed VAD obtains better results ° e o
than Acero’s VAD for all SNRs. gyl 1470
In order to improve speech vs. noise frame decision, a new 10 181 o prpes 108
constraint over the normalized log energy was evaluated. The ; .
decision about the frame type was based on acoustic model 0 5 snR(ap) ' 15

log likelihood and the normalized log energy:

* Score > 0 and normalized log energy > 0 =
Speech frame.

* Score 2 0 and normalized log energy < 0 =
Noise frame.

* Otherwise = Noise frame.

Considering the two constraints, the results showed a
relative improvement of 28.3% for false alarm and a relative
reduction of 11.6% for miss rate over the stationary noise
database with a 0 dB SNR. So, the second constraint, based
on the normalized log energy, did not report better results.
The global results depend on the false-alarm-rate /
miss-rate-ratio. If the ratio is close to one (equal error rate)
the second condition will improve the global detection error;
but if the proportion tends to zero (as in our experiments)
there is no improvement: global detection error gets worse.

It is important to remark that the results obtained in this
section do not include the “Speech pulse detection” module.
The main goal is to compare the front-end (feature
extraction) module. Moreover, the “Speech pulse detection”
module parameter adjustment depends on the kind of
application in which the VAD is used. In the next section,

IEEE A&E SYSTEMS MAGAZINE, NOVEMBER 2011

Fig. 5. Global Detection Error for Different SNRs
considering the Database with Stationary Noise
global detection errors are shown with the complete scheme:
including the Speech Pulse Detection module.

GLOBAL DETECTION AND EVALUATION RESULTS

This presents evaluation results considering the full
proposed VAD (including the Speech Pulse Detector) and
comparing the performance to others well-known VADs:
AMRI [6], AMR2 [6], AURORA(FD) [11] and G729 annex
b [12]. The “New HMM VAD” working point is set to score
= 0 (the same used in the previous section). The working
points for the reference VADs are those adjusted and
considered by the standard, so no software modification has
been done. Three hand-labelled databases have been
considered in these experiments. The first is a clean speech
database that includes 2500 hand-labelled files containing
short phrases over GSM mobile phones from 9 males and 8
females, aged between 23 and 41 years. In this case, there is
no specific noise, only the noise produced by channel:
speakers are located in a quiet room. The SNR database
average is around 25 dB (a clean speech database). The next
two databases are the test databases described in the previous
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Table 5. Global detection error (GDE) with clean speech

GDE  AURORA (FD) AMRI1 AMR2

g729b Acero’s VAD New VAD

% 40.59 22.38 13.55

32.98 18.12 13.34

section: a stationary noise database and a non-stationary
noise database.

These three databases include all possible environments in
which a speaker can be located, including noise in control
tower for ATC or similar applications.

The next figures show the “Global Detection Error”
(GDE) (Equation 5 below): sum of normalized speech and
non-speech frames detection errors (Figure 5), so normalized
false alarm rate and normalized miss detection rate.

In (5) Nf denotes number of noise frames, Sf number of
speech frames, Sf — Nfnumber of noise frames detected as
speech, number of speech frames considered as noise. For

Nyt Nsr.
GDE(%=—1%({ NFeSfry —SEeNE ®)

Nt Nsr

VAD comparison. Non-stationary noise

[~—AUROm D)
[~ anr1

AMR2
[-v®
| =s—Acer's VAD
o| |—e—proscwd vAD

15
SNR (dB)

Fig. 6. Global detection error for different SNRs
considering the database with non-stationary noise

clean speech, results are shown in Table 5.

The proposed VAD obtains the best results in the three
databases, followed by AMR2 VAD. It is important to
remark the flat behaviour of the proposed VAD over the
stationary noise database for different SNRs and the error is
very similar to that obtained for clean speech result. This
behaviour demonstrates the robustness of the proposed VAD.
This behaviour has been possible due to the use of a new
front-end including the most discriminative MFCCS and
normalized log energy computed after a voice level
adaptation process. Nevertheless in a non-stationary
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database, global detection error decreases when SNR
increases.

Numerical results show that the proposed VAD is the best
approach compared to other well-known VADs. For
example, a relative overall detection error improvement of
26.41% and 31.02% have been obtained for SNR = 0 dB with
stationary noise when comparing to Acero’s VAD and
Motorola VAD (AMR?2), respectively. On the other hand, in
babble noise conditions, the proposed VAD obtains a relative
error improvement of 5.20%, 21.89%, 24.25%, 34.44% and
36.61% (for SNR = 5 dB) when compared to Acero’s VAD,
AMR2, AURORA(FD), G729 annex b, and AMR1,
respectively.

CONCLUSION

This presents an improved VAD for robust detection in
noisy environments with different SNRs without the need of
tuning. This improvement is based on three main
contributions: an improved front-end including a selection of
the most discriminative MFCCs, an improved reference level
estimator for log energy normalization, and finally, the
HMMs training considering the log energy normalization
process. The proposed VAD uses only two HMMs: one to
represent speech frames and the other to represent
non-speech frames.

The evaluation in noise conditions has been carried out
using two noisy databases: considering stationary noise and
non-stationary noise. In a stationary noise database, noise
model performs very well for all SNRs. As expected, this
aspect is more difficult in the presence of a non-stationary
noise. Final results show that the proposed VAD is the best
approach compared to other well-known VADs. GDE is
lower than 12% for all SNRs in a stationary noise
environment. Nevertheless VAD results in non-stationary
noise are not very good, as expected.

Future work will focus on incorporating new information
to reject pulses coming from far-field speakers. This will be
included in the Speech Pulse Detection Module.
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