
Multi-Modal and Modality Specific Error Handling in the GEMINI Project

Yu-Fang H. Wang, Stefan W. Hamerich, Volker Schless

TEMIC Speech Dialog Systems
Research Department

Soeflinger Str. 100 – 89077 Ulm
Germany

{helena.wang|stefan.hamerich|volker.schless }@temic-sds.com

Abstract
GEMINI (Generic Environment for Multilingual Interactive
Natural Interfaces) is an EC-funded research project which
started in April 2002. The goal of GEMINI is to provide a flex-
ible platform for the generation of applications, able to produce
multi-modal and multilingual dialogue interfaces to databases
with a minimum of human effort. All description models which
are generated by the tools of the platform are based on our
newly designed XML-based description language called GDi-
alogXML (Gemini Dialog XML). It is an abstract dialogue
description language, which is flexible enough to account for
both modality independent and modality specific features of
the target language, i.e. VoiceXML or xHTML. The platform
will generate high-quality, state-of-the-art applications, e.g. a
speech application that includes mixed-initiative dialogues and
sophisticated error handling.

In this paper, we focus on the treatment of error handling
for speech. Error handling for the web will be done in a future
stage of the project.

1. Introduction
GEMINI is funded within the European Union’s Fifth RTD
Framework Programme for two years beginning in April 2002.
Its consortium consists of the following partners: Knowledge
S.A. (Greece) as coordinator, University of Patras – Wire Com-
munications Laboratory (Greece), TEMIC Speech Dialog Sys-
tems (Germany), Universidad Politecnica de Madrid – Grupo
de Tecnoloǵıa del Habla (Spain), Forschungsinstitut für anwen-
dungsorientierte Wissensverarbeitung (Germany) and Egnatia
Bank S.A. (Greece).

The main objective of the GEMINI project is to provide an
application generation platform (AGP) for the semi-automatic
generation of high-quality applications (see section 2.2). One
of the pilot applications will be a citizen-to-administration in-
formation system. In Figure 1 an example dialogue is presented.

GEMINI’s special feature is the capability to easily gener-
ate an application in several modalities (e.g. speech or web) and
several languages. The underlying core concept here is to use
a modality and language independent representation of a dia-
logue description, and to extend this generic dialogue form by
modality-specific aspects. For example, certain prompts will be
generated in the generic dialogue form since they will occur re-
gardless of a modality (e.g. database connection failure or help

This work was partly supported by the European Commission’s In-
formation Society Technologies Programme under contract no. IST-
2001-32343. The authors are solely responsible for the contents of this
publication.

sys: Welcome to CitizenCare. Please say your
concern or the name of an authority.

usr: Identity Card
sys: The registration office is concerned with

identity cards. Do you want information
about the authority, the contact person, or
the procedure?

usr: About the authority please
sys: You can ask for special information like the

address or opening hours, or just say ”all”
usr: When is it open today?
sys: Today the office hours are from 9 am to 1 pm.

Figure 1: Example dialogue for the CitizenCare application.

prompts). Because of that, prompts are represented by refer-
ences rather than concrete verbalisations.

To ease the generation of a specific application out of the
modality-independent and the modality-dependent part of the
dialogue description, we have developed a generic description
language, GDialogXML (see section 2.3).

The platform is accessible via an assistant that helps the de-
veloper to create the target application. The intended developer
is a speech or web application designer who does not want to
care about the peculiarities of database queries, thus GEMINI
enables non-database-experts to use access to database applica-
tions.

The resulting applications make use of prominent features
of the target language, i.e. the resulting VoiceXML scripts
will allow for mixed-initiative dialogues and access to external
database servers. Additionally the error handling capabilities of
VoiceXML will be extended (refer to section 3.2.4).

When using the term error handling, we distinguish several
types of errors:

1. feedback to the users on errors outside the dialogue, e.g.
database connection failure (see section 3.1);

2. reducing the occurrence of user input that does not match
the current grammar: design of prompts, especially user-
level-dependent prompts and help prompts (refer to sec-
tion 3.2.1);

3. avoiding incorrectly recognised user input by using con-
firmation questions (see section 3.2.4).

This paper is organised as follows: After introducing the
objectives of GEMINI, we briefly give an overview of the plat-
form built during the project and the description language that is

used to model abstract and modality independent dialogues. Af-
terwards, we present the implementation of the error handling
concepts in GEMINI and the evaluation criteria used.

2. GEMINI
2.1. Project Goals

GEMINI [1] has two main objectives: First, the development
of a flexible platform able to produce user-friendly, high qual-
ity, multi-modal and multilingual dialogue interfaces to a wide
area of databases with a reduction of human effort to entering
parameters while being guided by a graphical user interface.

Second, the demonstration of the platform’s efficiency, ef-
fectiveness, and adaptability to new applications and languages
by developing two pilot applications based on this platform:
CitizenCare, an eGovernment platform framework for citizen-
to-administration interaction which will be available for spoken
and web-based user interaction (German and English), and EG-
Banking, a voice-portal for interactions with bank customers
(English, German, Greek, and Spanish).

One core idea of GEMINI is that given (1) a database, (2) a
description of the database structure, (3) a connector to access
the data, and (4) a list of the kinds of requests the user may
make, the system should be able to automatically generate the
necessary dialogue scripts to run the service.

During specification and implementation, the project ex-
ploits experience gained from previous EC-projects (see e.g.
[2, 3, 4]).

Other features are:

• user-friendly and transparent GUI

• availability of linguistic resources: libraries for dialogue
acts and grammars for several languages.

• separation of dialogue modelling and data query imple-
mentation

• easy development of an interface to a database applica-
tion without being a database expert

• connectivity to several data sources (e.g. various DBMS,
XML documents)

• high-degree of personalisation: i.e. user modelling and
speaker verification

• support of different run-time platforms

The expected gains from GEMINI are faster development
times and cost reductions (as compared to standard develop-
ment).

2.2. The Application Generation Platform (AGP)

The approach for setting up the AGP is a three-level architec-
ture with increasing specificity regarding the modalities. For a
graphical overview see Figure 2.

The first level is the most general one which specifies (1) the
basic application description, (2) the database connector (con-
taining e.g. the database settings), and (3) the data model. We
call this layer framework layer. The application description con-
tains global variable settings for error handling like timeout for
speech detection and database connection, and the number of
retries for getting the user’s input.
All input to this layer is done manually using graphical user
interfaces.

On the second level, the modality- and language-
independent dialogue structure is generated in a semi-automatic

Figure 2:Schematic view of the AGP architecture.

way. This is mainly done in the Retrieval Modelling Assistant
(RMA), which produces the Generic Retrieval Model (GRM).
The GRM contains the abstract dialogue flow, as well as ref-
erences to the multi-modal help concepts. Here, user-level de-
pendent responses to erroneous input and similarly, user-level
specific prompts are referenced.

The third level adds modality-specific data to the general di-
alogue level. Modality-specific differences in the dialogue flow
will be modelled here, as well as the language-dependent parts
like prompts, grammars, and error messages. The modality-
specific data, called Modality Extension Description (MED) is
automatically linked with the GRM, resulting in the so-called
Dialogue Model. For each target modality, a separate dialogue
model is created, including a complete dialogue description
with prompt concepts, help concepts and grammar references.
The verbalisation of the prompts is done in the prompt concept
file (PCF). The dialogue model, having been merged from the
GRM and MED, is completely implemented in GDialogXML,
which is described in more detail in the next section.
For speech, a VoiceXML script is finally generated automati-
cally from (1) the dialogue model, (2) the prompt concept file,
(3) the application description, and (4) the database connector.
Analogously, a xHTML script will be generated for the web
modality.

2.3. GDialogXML

GDialogXML is an XML based object-oriented, abstract dia-
logue description language, which was newly defined for use in

the GEMINI AGP.
In GDialogXML, each dialogue has the following sections:

variables here all local variables of the current dialogue are
declared. In GDialogXML, there are the following types
of variables: local variables (for any local operation), in-
put variables (for containing user input), arguments (con-
taining parameters for this dialogue), and return values
(containing values which are given back from the cur-
rent dialogue)

presentation this is used for calling the presentation for the
current modality, which means calling a prompt for
speech and calling an editor for web modality

filling here user input is collected, for speech modality this is
done by calling the recogniser with a specified grammar
(rule)

reaction specifies the reaction that will be initiated after get-
ting some user input

help means the reference to a multi-modal help concept, which
will be defined in the PCF.

<xPresentation>
<PromptCall>

<xPrompt>
<PromptConcept refr="ask4City"/>

</xPrompt>
</PromptCall>

</xPresentation>
<xFilling>

<RecognizerCall>
<xGrammar>

<Grammar refr="cities" type="jsgf"/>
</xGrammar>
<xAcceptors>

<Var refr="city"/>
</xAcceptors>
<xNomatchReaction>

<PromptCall>
<xPrompt>

<PromptConcept refr="CityNomatch"/>
</xPrompt>

</PromptCall>
<DoFilling/>

</xNomatchReaction>
</RecognizerCall>

</xFilling>

Figure 3: Clipping from MED example.

Since for the speech modality the most important factors
are presentation and filling, a short clipping from these parts
in a MED is given in Figure 3. It can be seen that modality
specific error handling is part of GDialogXML. In the figure
only the nomatch error is displayed, which means that in the
current utterance no match for the grammar could be found.
In general, GDialogXML allows the handling of the following
recognition errors:

• ”noinput”: no recognition after exceeding the timeout
threshold

• ”nomatch”: the recognised utterance could not be
matched with any item of the specified grammar

• ”confidencetoo low”: the confidence value of the recog-
nised utterance is below the lower threshold

3. Error Handling Capabilities

The dualistic approach allows for modality independent as well
as for modality specific error handling. The first error type will
be handled in the GRM, while the second one will be dealt with
in the respective MEDs.

3.1. Modality Independent Error Handling

An example for an error which might occur independent of the
modality is a database connection failure, i.e. the server does
not respond after some specified timeout value. Its handling
involves (1) receiving the error message from the assistant that
calls the database server, and (2) giving an appropriate feedback
message to the user.

Here the idea of using prompt references instead of full ver-
balisations proves useful: the system reaction can be expressed
in a modality independent way while its modality dependent re-
alisation has to be presented via different output channels.

3.2. Error Handling for Speech

In this section our concepts for error handling in the speech
modality are presented.

Underlying all concepts for handling errors is a careful de-
sign of the prompts, which significantly contributes to dialogue
success. For example, prompts determine the syntactic category
of the user response so both items should be consistent. For ex-
ample, asking ”where do you want to go to” will trigger a to-PP
(e.g. ”to Paris”), while the question ”what is your destination”
will trigger a simple noun phrase (e.g. ”Paris”). We also have
to take into account the advantages of directed prompts as com-
pared to open-ended prompts, see [9, 10] for further details.
As has already been described in section 1, prompts are also rel-
evant for typical error handling contexts, i.e. for offering help or
informing the user on some malfunctions of the system.

3.2.1. Incremental Help on Noinput and Nomatch

Instead of always prompting ”I did not understand” or ”I could
not hear you” we will we offer incremental help. At each stage
more information is provided. For example:

• 1st time noinput: Pardon?

• 2nd time noinput: Sorry. Please name the destination
city.

• 3rd time noinput: [automatic transfer to operator]

This strategy avoids users to be annoyed by lengthy
prompts. On the other hand, users which do not know what to
say, are guided by the system to answer according to the current
dialogue state.

3.2.2. User Level Dependent Error Handling

The wordings of the prompts also depend on the current user
level. For the GEMINI AGP we will support at least two dif-
ferent user levels, ’novice’ and ’expert’. While the former user
type will obtain extensive help prompts, short help prompts are
regarded necessary for the latter in order not to annoy the user.

3.2.3. Verification Status of Filled Slots

Verification is indispensable for the system to complete its task.
For this purpose, it is necessary to know the verification sta-
tus of the current dialogue field variable. However VoiceXML
does not offer an inbuilt mechanism for the verification of slot
variables. Therefore we simulate this property by adding an ex-
tra variable to each slot containing the verification status of the
variable. This is a temporary solution since we would appreci-
ate more enhanced and integrated methods for VoiceXML.

3.2.4. Confidence-Driven Choice of Implicit or Explicit Verifi-
cation

Confidence scores for speech recogniser output are often used
for dialogue management, refer e.g. to [5, 6].

Although explicit verification is easy to understand for the
user, it has the disadvantage of unnecessarily lengthening the
dialogue. While implicit verification seems to be an elegant so-
lution in terms of speeding up the dialogue and being ”more
natural”, it does have a well-known disadvantage: If the utter-
ance is incorrectly recognised and prompted back, the user can
be severely confused (see [7, 8]). Consider the dialogue frag-
ment in Figure 4.

sys: what is your destination ?
usr: Rome please
sys: when do you want to leave from Rome?
usr: Wednesday
sys: [mistaking Wednesday as Venice]

when do you want to leave from Venice?

Figure 4: Example dialogue with classification error.

There are several possibilities to avoid implicit verification
questions and classification errors to co-occur in one system
prompt:

• to provide for an explicit ”no” in the grammar to recog-
nise the user rejection of an implicit verification. This
way, the difference between a disconfirmation and a nor-
mal continuation of the dialogue would just be identified
by a preceding ”no” in the first case (”no, Wednesday”).
However, this is an unreliable indicator since the cor-
rected utterance could also just be prosodically marked
(”WEDNES-day”).

• make use of language models that give priority to the
’new’ word which are also in the focus. So, for the ex-
ample above, a time expression is more likely to occur
than a city name.

Language models will in fact be used in GEMINI. Inde-
pendent of those or other statistics-based methods (s. [11]), we
have chosen a simple, confidence-based solution to combine the
advantages of both strategies while making their disadvantages
less likely to occur. A basic design decision is that even with
an excellent confidence score, the user utterance must be con-
firmed before leaving the dialogue, because this still does not
guarantee correct recognition. We distinguish three confidence
intervals:

1. In the case of very high confidence scores, implicit veri-
fication is used. This is because in the upper confidence
interval, correct recognition is most probable and will

make confusing verification questions less likely to oc-
cur.

2. For a medium-range score, explicit verification is applied
to verify the recognition result. So, even if a classifica-
tion error occurs, it is much easier for the user to react
on the system prompt, see section 5.

3. In the remaining cases (i.e. the confidence value of the
utterance is under the low-confidence-threshold), incre-
mental help is offered to support the dialogue.

Applying this, the example from section 4 changes by re-
placing the last sentence which contains the implicit verification
question by the clearer explicit verification question:

sys: ...
usr: Wednesday
sys: [mistaking Wednesday as Venice]

Did you say Venice?

Figure 5: Clipping of example dialogue using a dialogue strat-
egy based on confidence values.

For the AGP, we are planning to integrate this method of
choosing among verification strategies and measure the number
of correct recognitions for each strategy during the evaluation
phase.

4. Evaluation
The project will be evaluated with respect to the two main ob-
jectives named in chapter 2.1. For this evaluation the standards
are provided by the EAGLES project, e.g. refer to [12].

1. Evaluation of the AGP: Compared to implementing a
speech or web application without any automatic gener-
ation environment, does GEMINI really provide a time-
saving and comfortable tool? How satisfied are system
developers with it?

2. Evaluation of the applications generated from it: How
good is the overall quality of the resulting application?

4.1. Evaluation of the AGP

The evaluation will be performed by having experienced system
designers use the GEMINI platform. It will involve the follow-
ing steps:

1. Training Phase: The developers will be instructed on
how to use the platform. They will write test applica-
tions in order to get familiar with it.

2. Implementation Phase: Complex applications are cre-
ated using the AGP.

3. Evaluation Phase: The developers will fill out an evalu-
ation form that, for each property of the GEMINI plat-
form, asks two questions: Was the property available at
all, and how important does the developer regard the fea-
ture? Objective criteria will be the absolute development
time for a base application, for the application in another
modality, and in another language. It will be measured
how fast these derived applications (additional modali-
ties or languages) were set up.

In the evaluation form, we are mainly interested in the fol-
lowing questions:

• Which properties are considered most important,
e.g. speed up of application development, reusability of
dialogue modules?

• Which features are important to be included in such a
platform, e.g. multi-modality, multilinguality?

4.2. Evaluation of the AGP Applications

We evaluate the applications in order to get feedback on their
overall quality. The results will be used for constant improve-
ment and tuning of the system. Evaluation will take place in
three stages. At each stage, the respective user group will be less
experienced with the system and the number of users will be
larger, ranging from GEMINI developers to pre-selected users
from the public. While the first phase serves mainly as qual-
ity assessment of the system modules, measuring e.g. speech
recognition and grammar accuracy, the second and third stage
focus on the dialogue behaviour. We will use objective and sub-
jective parameters.

4.2.1. Objective Parameters

There are the following objective parameters:

• Duration parameters: dialogue duration, turn duration.
We will measure the average time for a routine opera-
tion and relate them to problematic dialogues. Ideally,
the duration values are indicators whether a dialogue was
problematic even before analysing it.

• Task completion: task success rate, i.e. did the user get
the expected information? Percentage of tasks that sup-
plied the user with the required information.

• Counts of negative cues: number of hang-ups, number
of dialogue turns, number of calls to the operator.

• Correction capabilities: was the system able to accept
the user correction? This will be investigated for both
explicit and implicit verification questions.

• Classification errors: how many times did classification
errors occur? These numbers can be used to adjust the
confidence threshold between explicit and implicit veri-
fication. If the number of errors is high, the system might
have asked many confusing implicit verification ques-
tions (so raise the threshold). On the other hand if the
number of errors is low, there might have been too many
annoying explicit verifications (so lower the threshold).
Moreover, the classification errors will tell us about how
well the language models fit to the respective application.

With regard to error handling as described in section 3, the
following points will be relevant:

• Database failure: Does a (simulated) database connec-
tion failure trigger the appropriate error message?

• Noinput, nomatch errors: Number of noinput and no-
match errors in each dialogue and in the overall corpus.
This will give feedback on the speech recognition quality
and grammar accuracy.

• Incremental help: Number of occurrences of each help
level. How often did level 1 occur (”Sorry I did not hear
you. What did you say?”), how often level 2, etc. In aver-
age, did the users wait until level 3 to be transferred to a
human operator, or did they hang up before the dialogue
ended?

• Verification: Number of occurrences of explicit and im-
plicit verification questions per dialogue and in the over-
all corpus; number of classification errors for explicit
and implicit verification

4.2.2. Subjective Parameters

For subjective evaluation, the user will have to answer a ques-
tionnaire to express their opinions and feelings about the sys-
tem. We are interested in the following aspects:

• User satisfaction: E.g. did you get the information that
you asked for? Did the system understand you at first
go? Did the system work as expected?

• Questions regarding prior experience: Have you got
prior experience with such systems?

• System performance: Are there systematic errors? Are
there words not recognised by the system?

With regard to error handling as described in section 3, we
will ask questions as follows:

• Help: Did you find the help provided sufficient? Did
you find the incremental help concept useful or is there
a step that you find superfluous (e.g. ”please repeat”).
What would you improve?

• Explicit verification: Was it always clear to you what the
system wanted?

• Implicit verification: Was it always clear to you what the
system wanted?

• Verification: Did you feel more comfortable with explicit
or implicit verification questions? If this differed from
case to case, please give examples.

5. Conclusion and Future Work
The main task of the GEMINI project is the design and imple-
mentation of an application generation platform, which gener-
ates state of the art speech and web applications. For this plat-
form, an abstract dialogue description language, called GDi-
alogXML, was defined. Apart from other features, it allows for
both multi-modal and modality specific error handling.

We introduced the error handling capabilities of the AGP
and its applications. This includes user-level dependent and
confidence driven error handling strategies. For evaluation both
objective and subjective criteria will be applied.

We will use the platform’s ability to easily generate several
applications for the evaluation of different dialogue and error
handling strategies. Based on this evaluation the platform will
be extended by additional features. Among others the integra-
tion of speaker and language identification capabilities are the
next steps.

6. References
[1] GEMINI Project Homepage: www.gemini-project.org

[2] Ehrlich, U. et al., ”ACCeSS - Automated Call Center
through Speech Understanding System”, in Proc. EU-
ROSPEECH, Rhodes, Greece, 1997, p. 1819-1822.

[3] Brøndsted, T. et al., ”The IntelliMedia Workbench – a
generic Environment for multimodal Systems”, in Proc.
ICSLP, Sydney, Australia, 1998.

[4] Lehtinen, G. et al., ”IDAS: Interactive Directory Assis-
tance Service”, in Proc. of the international Workshop
’Voice Operated Telecom Services’, COST 249, Ghent,
Belgium, 2000, p. 51-54.

[5] Komatani, K. and Kawahara, T., ”Flexible Mixed-
Initiative Dialogue Management using Concept-Level
Confidence Measures of Speech Recognizer Output”, in
Proc. COLING, Saarbrücken, Germany, 2000, p. 467-473.

[6] San-Segundo, S. et al., ”Confidence Measures for Dia-
logue Management in the CU Communicator System”, in
Proc. ICASSP, Istanbul, Turkey, 2000.

[7] Lavalle, S. et al., ”Dialogue and Prompting Strategies
Evaluation in the DEMON System”, in Proc. LREC,
Athens, Greece, 2000

[8] Weegels, M., ”Users’ Misconceptions of a Voice-
Operated Train Travel Information System”, in IPO An-
nual Progress Report, Eindhoven, The Netherlands,1999

[9] Litman, D. J. et. al. ”Evaluating Response Strategies in a
Web-Based Spoken Dialogue Agent.” in Proc. ACL and
COLING, Montreal, Canada, 1998, p. 780-786.

[10] Balentine, B.; Morgan, D., ”How to build a speech recog-
nition application. A style guide for telephony dialogues”,
Enterprise Integration Group, San Ramon, USA, 1999.

[11] Krahmer, E. et al. ”Problem Spotting in Human-Machine
Interaction”, in Proc. EUROSPEECH, Budapest, Hun-
gary, 1999.

[12] Hanrieder, G. et al. ”Fly with the EAGLES: Evaluation
of the ’ACCeSS’ Spoken Language Dialogue System”, in
Proc. ICSLP, Sydney, Australia, 1998.

