
Implementation of Dialog Applications in an Open-Source VoiceXML Platform
Ricardo de Córdoba, Fernando Fernández, Valentín Sama, Luis F. D’Haro,

Rubén San-Segundo, Juan M. Montero

Speech Technology Group. Dept. of Electronic Engineering. Universidad Politécnica de Madrid
E.T.S.I. Telecomunicación. Ciudad Universitaria s/n, 28040 Madrid, Spain
{cordoba, efhes, vsama, lfdharo, lapiz, juancho}@die.upm.es

http://www-gth.die.upm.es

ABSTRACT
In this paper, we study the approach followed to use the
VoiceXML standard in a dialog system platform already
available in our group. As VoiceXML interpreter we have
chosen OpenVXI, an open source portable solution where we
can make the modifications needed to adapt the solution to the
characteristics of our recognition and synthesis modules; so
we will emphasize the changes that we have had to make in
such interpreter. Besides, we review some relevant modules in
our platform and their capabilities, highlighting the use of
standards in them, as SSML for the text-to-speech system and
JSGF for the specification of grammars for recognition.
Finally, we discuss several ideas regarding the limitations
detected in VoiceXML.
Keywords: automatic dialog systems, speech
recognition, voice synthesis, VoiceXML, OpenVXI.

1. Introduction
The Gemini project1 (Generic Environment for Multilingual
Interactive Natural Interfaces), is a two year project that is just
finishing with the following partners: Knowledge S.A.
(Greece) as coordinator, Patras University – WCL (Greece),
TEMIC SDS (Germany), UPM – GTH (Spain), FAW
(Germany) and Egnatia Bank (Greece). It exploits the results
obtained in the IDAS project ([1][2]) and from real-world use
of similar systems, to create a generic platform for the
development of user-friendly, natural, high quality, intuitive,
platform independent and multi-modal interactive interfaces to
a wide area of databases employed by information service
providers.
The main objective of the project has been the development of
a platform able to generate dialog applications in a semi-
automatic way that are able to handle several languages and
several modalities at the same time [3]. The second basic
objective is the preparation of a real-time platform where the
scripts generated in the design platform could be executed.
These scripts for a speech application are written in
VoiceXML 2.0.
To execute the scripts, we need an interpreter. We have chosen
OpenVXI 2.0.1, from SpeechWorks [4], as it is an open-
source solution and offers portability, as any speech
recognizer or text-to-speech system can be used. There is no
restriction for the telephone platform either. It has some

1 This work was partly supported by the European Com-
mission’s Information Society Technologies Programme under
contract no. IST-2001-32343. The authors are solely
responsible for the contents of this publication.
Refer to the GEMINI Project Homepage on
www.gemini-project.org for further details.

drawbacks though: the documentation is rather reduced and
there is not any functional implementation that can be used as
a model for development.
The use of VoiceXML gives our system a high degree of
standardization, thanks to the growing interest in VoiceXML
as standard language for the design of speech applications.
To demonstrate the efficiency of the platform, it has been
tested in a banking application with several services. It offers
general information of bank products: personal loans, car
loans, mortgages, deposits, credit cards, etc.; user
authentication based in account number and PIN; account
balance and last transactions information; and the possibility
to perform transactions.

2. OpenVXI interpreter
The OpenVXI interpreter is an open-source software
developed by SpeechWorks [4] that is used to execute
VoiceXML scripts. Its main advantage is that it provides a big
part of the functionality needed to execute dialog applications,
as a XML interface that processes the VoiceXML script, a
JavaScript API, an API that handles WWW operations and an
API for registrations. For all functions related to input/output
(recognition, synthesis and telephone control) it provides
incomplete interfaces that can be modified to adapt them to the
needs of each platform. Let us describe the work done in each
module.

2.1 Speech recognition module
A great effort has been made to adapt our recognition software
to OpenVXI. The system allows the dynamic loading and
using of different recognizers, even simultaneously, during the
execution of the VoiceXML application. We have
implemented VoiceXML based mechanisms that identify the
recognizer that has to be used in each prompt of the
application. We can also activate different grammars in
parallel. Using this functionality, we can use state-specific
language models and acoustic models, so that we can adapt to
different circumstances: continuous speech, isolated speech,
connected digits, dates, etc.
To do that, following the directives of the VoiceXML 2.0
specification, we have defined a new property that will
identify the recognizer to be used. This is an example:
<property name= “es.upm.gth.recognizer” value=”Dates” />
The platform will load and use the recognizer specified
(specific for Dates, in this case).
Our implementation of the recognition interface for OpenVXI
has the following characteristics:

• Management and registration of errors and events (e.g.
timeouts).

We have implemented the mechanisms needed to handle
events as ‘user asks for help’, which can be related to the
prompt provided by the system or with the state of the dialog,
‘user wants to exit’, ‘user wants the prompt to be repeated’ or
‘system timeout after no speech detected in the recognition’.

• Several input channels
The module is designed so that it can use as input both the
telephone line, a microphone or previously saved files. Our
engine allows the wav files recorded during the recognition to
be saved, so that they can be used afterwards for debugging
purposes.
We will now describe the functionality that is not provided in
OpenVXI and that we have implemented:

1. A channel identifier
We need an identifier for the channel currently used, so that
we can assign exclusively a specific input audio device. We
have assigned a number to each channel thread; so, we have
needed to change the function headers to include that value.

2. Pre-loading of the recognizer
In order to save time in the real-time system, we need to load
the recognizer data (models, structures, grammars, etc.) when
the system is first run. There is no mention in VoiceXML or in
OpenVXI regarding the loading of the recognizer, and there is
no specific time or place where that loading can be done. We
have identified two possible places to do it: during the loading
of the grammar or in the first call to the recognizer. As the
loading of the grammar is previous to the recognition, it is the
place where we have finally decided to load the recognizer.

3. Grammar-recognizer link
We need a direct link between the active grammar(s) and the
recognition models. In OpenVXI you can have multiple active
grammars, as well as different recognition models, but the link
between them is left open both in VoiceXML and OpenVXI.
To let the interpreter know which specific models and
grammars should be used in the recognition, we decided to use
the implementation of the method LoadGrammarFromUri
from the recognition interface VXIrec (empty in the original
distribution of OpenVXI). This method is used to load a
specific grammar when the attribute “src” in the label
<grammar> is not null. This attribute indicates the URI
direction of the document with the grammar definition. Our
implementation includes the search and loading of that
document. Moreover, we allow that a link between a grammar
and some specific models be made using the attribute “type”
associated to the label <grammar> used to declare the
grammar.

<grammar src=“data/bigram.dat” type=“Isolated”/>
this line indicates to the interpreter the recognition models that
should be loaded (referenced by “Isolated”) and the grammar
linked to those models (“data/bigram.dat”). Besides, any link
between a grammar and some models can be established using
a different “type” for each model.

2.2 Speech generation module
This engine offers all the services related to voice generation
considered in the VoiceXML standard, including the
reproduction of audio files and text-to-speech conversion to
handle variable content messages. The voice generation engine
consists of the following modules:

• Speech synthesis module. Created using the functions
offered by “Boris”, the text-to-speech system developed
by GTH [5].

• Recorded speech player module. It allows the
reproduction of speech files specifying the full path of
the file.

The implementation also covers the following issues:

• The user is able to modify the prosody of the speech,
using the tags specified in the SSML standard. To cope
with this, several new functions have been developed to
interpret SSML tags.

• It uses speech synthesis when the audio file specified is
not available.

• The process is asynchronous, non-blocking, so that the
user can interrupt the dialog (barge-in) according to the
specification VoiceXML 2.0.

• Management and registration of the different errors and
events.

The functionality that is missing in OpenVXI and that we have
had to implement is the following:

1. A channel identifier
We also need a channel identifier in a similar way than for the
recognition (see Section 2.1).

2. FIFO queue
We have had to implement a structure in the Queue procedure
where to keep the voice messages that will be played when
calling the Play procedure.

3. Play procedure
The official documentation of this procedure is incomplete for
the non-blocking reproduction. What we need to do is: check
if there is any message to be played (if not, exit); check if
there is currently another playing process running (if yes, wait
until it is over); and a loop where all pending messages in the
queue are played in a blocking fashion except the last one that
will be played asynchronously.

The main objective of the SSML (Speech Synthesis Markup
Language) standard [6] is to provide a standard way to control
the different aspects of speech synthesis, as the f0, the
pronunciation, the volume, etc. It uses a set of labels that are
inserted in the text to be synthesized. We have implemented
the following labels in our synthesizer:

1. “emphasis” (to emphasize specific fragments), with the
following values for the “level” attribute: “strong”,
“moderate”, “none” and “reduced”.

2. “break” (a break of a specific duration), with the “time”
attribute, which is an integer followed by “ms”, e.g.,
“300ms” to make a break of 300 ms.

3. “prosody”, with “pitch”, “rate” and “volume” attributes.
For all of them, the values can be specified in three ways:
(a) using discrete values with strings, like “x-high” ||
“high”|| “medium”||..., (b) with a floating point value and
the corresponding unit, like “100Hz”, or (c) using a
relative value as a positive or negative percentage, e.g.
“+10%”. We have chosen this last option for its flexibility
and portability to new voices.

Example:
¿Do you want to transfer <break time=“90ms”/> <emphasis
level=“strong”> 100 euros </emphasis> from your account
<prosody volume=“+20%”> 34656 </prosody> to the account
<prosody pitch=“+40%”> 56454 </prosody>?

2.3 Telephone control module
The VoiceXML standard only specifies the actions to
disconnect and transfer the calls, so the integration of the
telephone services in our platform has been relatively easy.
The main function of this module is to connect the system to
the telephone line and adapt the signal levels at both sides of
the interface. It performs many other functions:

• Signal adaptation to connect input and output external
devices, as loudspeakers, microphones or headphones.

• Control of connection/disconnection.
• Control of an external recorder.
• Call / Put down detection.
• DTMF detection.

We have implemented the corresponding control mechanisms
for these functions in the OpenVXI interpreter, always
following the specifications of VoiceXML 2.0.
We have also introduced a new and useful functionality: the
simulation of the telephone line using a microphone and a
loudspeaker. This way, we can test the system or make
demonstrations using those devices instead of the telephone
line with a simple change in a configuration file.

3. The platform modules
We will briefly describe some relevant modules available in
our group to create a runtime platform able to execute dialog
applications in real time.

3.1 Speech recognition module
Right now, our system uses continuous HMM trained with the
SpeechDat database, with 4.000 speakers and some 46 hours
of continuous speech. We use triphone models clustered using
a decision-tree algorithm. The system has 1807 different
states, with 6 Gaussians in each state. The error rate for a
continuous speech telephone task using 3,065 words, is 4.2%.
Besides, in our system we use an isolated word recognizer
with very similar characteristics to the previous one,
specialized to isolated utterances. We also have recognizers
adapted to the recognition of digits and spelling (we can use
spelling when there are recognition errors).
We also have a module dedicated to compute confidence level
values of the recognition, as it is absolutely needed to decide
the confirmation type and the user level. If the confidence
level is low, explicit confirmation should be used; if it is high,
we could use implicit or no confirmation. This module uses
parameters at word and sentence level offering high reliability.

3.2 Understanding module
The understanding module extracts the concepts that will be
used by the OpenVXI interpreter to fill the structure that
contains the recognition results.

We have adapted this module to the banking application
developed in the project. The understanding is based in
context dependent rules, using a single dictionary for all the
prompts of the system (16 in total). This dictionary is
semantically labeled based on the information that has to be
extracted. Words that do not provide useful info are assigned
the “garbage” category, just like the out-of-vocabulary words.
Nevertheless, they can be used in the rules if needed.
To label the dictionary, we have taken into account that the
same word may appear in different prompts. In addition, a
word may have multiple categories, one of them “garbage”, so
that, if it is needed, the word can be transformed by the
understanding rules before the elimination of “garbage” items.
We think that this does not cause problems, as the
understanding rules change in each prompt (prompt-specific
rules) and the system knows the current state in the dialog, so
that it only activates the correct prompt rules.
The sequence of actions done in this module can be
summarized as follows: 1) input string pre-processing,
including the assignation of categories, digit processing,
interjections suppression, etc.; 2) rules applied before the
suppression of words with category “garbage”; 3) suppression
of “garbage” words; 4) rules applied after the suppression, 5)
writing of the understanding concepts. Let us see an example:
1) Pre-processing.
2) rewrite3 (“ID_change”, “garbage”, “ID_currency”,

“currency_exchange”);
3) Suppression of “garbage” words
4) rewrite2 (“ID_want”, “currency_exchange”,

“SLOT_currency_exchange”);
5) Writing the results.
We use rewriting rules that specify first the origin categories
and, in the last position, the destination category. In the rule
from step 2, three words specified in this order (the first ones)
are going to be converted in an item of category
“currency_exchange”. This rule will gather expressions like
“cambio de moneda” in Spanish. After the suppression of
“garbage” words, the rule in step 4 converts the items
“ID_want” and “currency_exchange” into the result
“SLOT_currency_exchange” that is used in sep 5.

3.3 Language modeling module
We can use the usual stochastic language models. Besides, in
this project we have developed JSGF (Java Speech Grammar
Format) grammars. These grammars are platform-independent
and are based in the concept of rule grammar adapting some
Java conventions to the traditional specification of grammars.
As in the understanding module, we have a different JSGF
grammar for each prompt of the system, besides one specific
grammar for digits. As our system is multilingual, there are
different grammars for each language available.
This is an example of JSGF grammar for a prompt in Spanish:
#JSGF V1.0 ISO8859-1;
grammar GeneralInformationCathegory;
public <infocathegory> =
 <Deposit_Products> {this.$value="DepositProducts"}|
 <Cards> {this.$value = "Cards"} |
 <Exchange_Rates> {this.$value="ExchangeRates"};

<Deposit_Products>= [infórmeme (sobre | de)] depósitos
[<Polite>];

<Cards>= [<I_want>] tarjetas ;
<Exchange_Rates>= [<I_want>] cambio [<Currencies>] ;
<Currencies> = de (moneda | divisas)
<I_want> = [(quiero | deseo)] información (de | sobre);
<Polite> = (por favor);

This is the grammar for a prompt where the user selects
between several banking products (deposits, credit cards or
currency exchange information). The optional items are shown
in square brackets and parentheses have been used to group or
disambiguate expressions. Also, inside brackets we have
labels with specific information of the application.
Alternatives are expressed using ‘|’. For example, in the rule
<Exchange_Rates> the item <I_want> is optional, so they
may appear or not, and in that item there are several
alternatives (“quiero” or “deseo”, etc.)

3.4 Language identification module
Our system needs to be multilingual. To this end, we have to
detect the language using a short segment of speech and then
switch to the speech recognizer specific of that language.
Different techniques can be used. In our group, we have used
PPRLM, based in the modeling of the sequence of phonemes
obtained for each of the languages considered using a very
simple phoneme recognizer. More details and results can be
read in [7].

4. Limitations of VoiceXML
VoiceXML is a very powerful language for dialog handling,
and offers a great variety of control possibilities over the
recognition and synthesis services. However, it offers so many
possibilities that is quite difficult to support all the services
offered. That is why most VoiceXML platforms available
nowadays (BeVOCAL Cafe, Hey Anita, etc.) do not support
all the functionalities.
Nevertheless, we have detected several limitations in
VoiceXML definition that we will describe (see also [8]):

• In VoiceXML there is no specification regarding how to
identify the different active recognizers. This issue can
be solved using the <property> tag. Many things can be
done using this tag, but none of them refers to the use of
different recognizers in runtime. See in Section 2.1 how
we have used this tag.

• The telephone control aspects are not completely
defined. The consequence is that many VoiceXML
platform developers do not implement the telephone part
of the platform. Moreover, in the VoiceXML and
OpenVXI mailing list [9] there is very little interest in
the telephone aspects of VoiceXML.

• Handling of calls to returning dialogues. VoiceXML
offers a mechanism to handle them, but it is only allowed
in a <form>. We think that calling subdialogs from
within <fields> or <blocks> is highly desirable.

• Compared to other programming languages, VoiceXML
lacks common constructs for program logic, like loops
(e.g. while and for). Generally, the usage of ECMA

script is recommended. But this solution is useless when
operations across fields or dialogues are needed.

• The access to external sources (e.g. a database) is only
possible via CGI scripts. This is easy when transmitting
data to a database. Nevertheless, problems arise when
data from a database is to be returned into the dialogue
flow. Here, VoiceXML code has to be generated by a
CGI script that contains assignments of string constants
to variables.

• To ease the automatic generation of VoiceXML scripts
and simplify the handling of multilingual prompts it
would be useful to establish the external representation
of prompts by introducing prompt concepts.

5. Conclusions
We have developed a complete platform for dialog systems
able to execute VoiceXML scripts using the functionality
offered by OpenVXI. We have presented all the details
necessary to adapt an existing system to the OpenVXI
environment, highlighting and proposing solutions to the
limitations that were found both in OpenVXI and in
VoiceXML, which can be used by the standards associations.
We have also presented the most relevant modules of the
platform, pointing out the use of standards in them, as SSML
and JSGF.

6. REFERENCES
[1] Lehtinen, G., S. Safra, …, J.M. Pardo, R. Córdoba, R.

San-Segundo, et al. 2000. “IDAS: Interactive Directory
Assistance Service”, VOTS-2000 Workshop, Belgium.

[2] R. Córdoba, et al. “An Interactive Directory Assistance
Service for Spanish with Large-Vocabulary Recognition”,
Eurospeech 2001, pp. 1279-1282.

[3] Hamerich, S. W., V. Schubert, V. Schless, R. Córdoba,
J.M. Pardo, L.F. d’Haro, B. Kladis, O. Kocsis, S. Igel.
“Semi-Automatic Generation of Dialogue Applications in
the GEMINI Project”, Sigdial 2004.

[4] SpeechWorks web page: http://www.speechworks.com/.

[5] Pardo, J.M., et al. 1995. “Spanish text to speech: from
prosody to acoustic”. ICA, Vol. III.

[6] Burnett, D. C., M. R. Walker, A. Hunt. 2002. “Speech
Synthesis Markup Language Version 1.0”. W3C Working
Draft, http://www.w3.org/TR/speech-synthesis.

[7] Córdoba, R., G. Prime, et al. 2003. “PPRLM Optimization
for Language Identification in Air Traffic Control Tasks”,
EUROSPEECH, pp. 2685-2688.

[8] Hamerich, S. W., Y.F.H. Wang, V. Schubert, V. Schless,
S. Igel. 2003. “XML-Based Dialogue Descriptions in the
GEMINI Project”. Proceedings of the “Berliner XML-
Tage 2003”, Berlín, Germany, pp. 404-412.

[9] VXIDiscuss. Mailing list for VoiceXML and OpenVXI
interpreter: http://www.speechinfo.org/vxi-discuss/

